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Pricing American bond options using a cubic spline collocation method

Abdelmajid El hajaji, Khalid Hilal, Abdelhafid Serghini and El Bekkaye Mermri

abstract: In this paper, American options on a discount bond are priced under
the Cox-Ingrosll-Ross (CIR) model. The linear complementarity problem of the
option value is solved numerically by a penalty method. The problem is transformed
into a nonlinear partial differential equation (PDE) by adding a power penalty term.
The solution of the penalized problem converges to the one of the original problem.
To numerically solve this nonlinear PDE, we use the horizontal method of lines to
discretize the temporal variable and the spatial variable by means of trapezoidal
method and a cubic spline collocation method, respectively. We show that this full
discretization scheme is second order convergent, and hence the convergence of the
numerical solution to the viscosity solution of the continuous problem is guaranteed.
Numerical results are presented and compared with other collocation methods given
in the literature.

Key Words: Cox Ingersoll Ross CIR; American put; Trapezoidal method;
Spline collocation.
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1. Introduction

Although the concept of interest rates seems to be something natural that ev-
erybody knows to deal with, the management of interest rate risk, i.e. the control
of changes in future cash flows due to fluctuations in interest rates is an issue of
great complexity. In particular, the pricing and hedging of products depending in
large part on interest rates create the necessity for mathematical models.
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Here we adopt the CIR model developed by Cox, Ingersoll and Ross in 1985
[8], is one of the most widely used term structure model and has several favorable
features. Various mathematical results about CIR were known since the work
presented in [13]. CIR model is defined as the unique strong solution of the
equation

dr = κ(θ − r)dt + σ
√
rdW,

where dW is the increment of a Wiener process, θ is the long-term level of the short
rate, κ > 0 stands for the reversion speed, and σ2r is the variance with constant
σ > 0. In practice, r is positive, which enforces the constraint 0 < σ2 < 2κθ (Fellers
condition [8]). In [8], it has been shown that the price P (r, t, s) of a pure discount
bond with face value of one dollar at its maturity date s is given as follows

P (r, t, s) = A(t, s)e−B(t,s)r,

where

A(t, s) = [
φ1e

φ2(s−t)

φ2[e
φ1(s−t) − 1] + φ1

]φ3 , B(t, s) =
eφ1(s−t) − 1

φ2[e
φ1(s−t) − 1] + φ1

,

φ1 =
√
µ2 + 2σ2, φ2 =

µ+ φ1

2
, φ3 =

2θ

σ2
, θ = κθ, µ = κ+ ζ,

and ζ is the market risk premium.

We concentrate on the numerical solution of the CIR model which can be
formulated as parabolic partial differential complementarity (PDC) problem with
suitable boundary and terminal condition (see [1,17,22]). This complementarity
problem is, in general, not analytically solvable. Hence, several approximation
techniques have been developed for the solution of American bond option pricing
problem. Numerical solution by penalty methods have been considered, e.g. by
[1,2,9,12]. In this paper we develop a novel numerical method for solving a PDC
problem by using the cubic spline collocation method and the generalized Newton
method. First, the PDC problem is approximated by a sequence of nonlinear
equation problems by using the penalty method given in [23,27]. It is shown
that the penalized equation converges to the one of the PDC problem with an
arbitrary order. This arbitrary order convergence rate allows one to achieve the
required accuracy of the solution with a small penalty parameter. A numerical
scheme for solving the penalized nonlinear PDE is also proposed. Then we apply
the spline collocation method to approximate the solution of a boundary value
problem of second order. The discret problem is formulated as to find the cubic
spline coefficients of a nonsmooth system ϕ(Y ) = Y , where ϕ : Rm → R

m. In
order to solve the nonsmooth equation we apply the generalized Newton method
(see [4,5,20], for instance). We prove that the cubic spline collocation method
converges quadratically provided that a property coupling the penalty parameter
λ and the discretization parameter h is satisfied.
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Numerical methods to approximate the solution of boundary value problems
have been considered by several authors. We only mention the paper [3] and
references therein, which use the spline collocation method for solving the boundary
value problems.

The organization of this paper is as follows. In Section 2, we present the penalty
method to approximate the PDC problem by a sequence of second order boundary
value problems. In Section 3 we construct a cubic spline to approximate the solution
of the boundary problem. Section 4 is devoted to the presentation of the generalized
Newton method. In Section 5 we show the convergence of the cubic spline to the
solution of the boundary problem and provide an error estimate. Finally, some
numerical results are given in Section 6 to validate our methodology and compare
our method with [25].

2. Penalty problem

Now, let u(r, t) be the value of an American put option on a zero-coupon bond
with striking price K, where the holder can receive a given payoff Λ(r, t) at the
expiry date T . Introducing a time-reverse transformation τ = T − t, the option
pricing problem can be formulated as the following parabolic partial differential
complementarity problem ( [24]):





Lu(r, τ) ≥ 0
u(r, τ)− Λ(r, τ ) ≥ 0

Lu(r, τ).(u(r, τ )− Λ(r, τ )) = 0
(2.1)

almost everywhere in (0,+∞)× (0, T ), where

L =
∂

∂τ
− [

1

2
σ2r

∂2

∂r2
+ (θ − µr)

∂

∂r
− rI]

is a degenerate parabolic partial differential operator. The initial condition is

u(r, 0) = Λ(r, 0) = max[K − P (r, T, s), 0] for a put,

and the boundary conditions are

u(0, τ) = Λ(r, τ), r → 0,

u(r, τ ) = Λ(r, τ ), r → ∞, (2.2)

For computational purposes, it is necessary to restrict r to a finite region I = [0, R],
where R denotes a sufficiently large number to ensure the accuracy of the solution,
see [24]. Thus, relation (2.2) becomes

u(R, τ ) = Λ(R, τ)

Remark 2.1. It is worth noting that T < s and K < P (0, T, s) = A(T, s) for a
call option or K > A(T, s) for a put option, since otherwise the option would never
be exercised and would be worthless.
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Let λ be a real positive number. The penalty problem is given by the following
boundary value problem (see [26]):





Luλ(r, t) = F (t, uλ(r, t)), ∀(r, t) ∈ Ω,

uλ(r, 0) = ψ0(r), ∀r ∈ Ωr,

uλ(0, t) = ψ1(t), ∀t ∈ Ωt,

uλ(R, t) = ψ2(t), ∀t ∈ Ωt,

(2.3)

where Ω = Ωr × Ωt = (0, R) × (0, T ) and L : C(Ω)
⋂
C2,1(Ω) → C(Ω) is the

Black-Scholes operator defined as

L =
∂

∂t
− α(r)

∂2

∂r2
− β(r)

∂

∂r
− γ(r)I.

and

F (t, uλ(r, t)) = λ[Λ(r, t)− uλ(r, t)]+,

α(r) = 1
2σ

2r, β(r) = θ − µr, γ(r) = −r,
ψ0(r) = Λ(r, 0), ψ1(t) = Λ(0, t), ψ2(t) = Λ(R, t).

with α(r) ≥ α̃ > 0, γ(r) ≤ γ̃ < 0 on Ω and α, β, γ, ψ0, ψ1, ψ2, are sufficiently
smooth functions.
Here we assume that the problem satisfies sufficient regularity and compatibility
conditions which guarantee that the problem has a unique solution u ∈ C(Ω)

⋂

C2,1(Ω) satisfying (see, [15,16,18]):

∣∣∣∣
∂i+juλ(r, t)

∂ri∂tj

∣∣∣∣ ≤ k on Ω; 0 ≤ j ≤ 3 and 0 ≤ i+ j ≤ 4, (2.4)

where k is a constant. The following theorem proves the order of convergence of
the solution uλ to u.

Theorem 2.2. ( [14]) Let u and uλ be solutions to problems (2.1) and (2.3) re-
spectively. Then, there exists a constant C > 0, independent of u , uλ and λ, such
that

‖u− uλ‖2 ≤ C

λ1/2

where λ is the penalty parameter used in (2.3)

Lemma 2.3. The function F is a nonlinear continuous and λ-Lipschitz on uλ.

Proof: F is Lipschitz, indeed For any two function uλ and vλ, we have:
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|F (t, uλ)− F (t, vλ)| = λ|[Λ− uλ]+ − [Λ− vλ]+|

= λ

∣∣∣∣
(Λ − uλ) + |Λ− uλ| − (Λ − vλ)− |Λ− vλ|

2

∣∣∣∣

≤ λ

∣∣∣∣
vλ − uλ

2
+

|Λ− uλ| − |Λ− vλ|
2

∣∣∣∣

≤ λ

(∣∣∣∣
vλ − uλ

2

∣∣∣∣+
∣∣∣∣
|Λ− uλ| − |Λ− vλ|

2

∣∣∣∣
)

≤ λ

(∣∣∣∣
vλ − uλ

2

∣∣∣∣+
∣∣∣∣
vλ − uλ

2

∣∣∣∣
)

≤ λ|vλ − uλ|.

Then F is a nonlinear continuous function on uλ and satisfies the following Lipschitz
condition:

| F (t, uλ(r, t))− F (t, vλ(r, t)) | ≤ λ | uλ(r, t)− vλ(r, t) |, ∀(r, t) ∈ Ω.

✷

In the sequel of this paper we will consider the model (2.3) for numerical traite-
ment.

3. Time discretization and description of the Trapezoidal method

We denote by ‖ . ‖∞ the uniform norm.

The observation period has to be specified first and is set from today (time
point t = 0) to time point T . This period will be divided into M equally spaced
time intervals with length ∆t = T

M , tm = m∆t. The price of the underlying (either
the project value or the value of a twin security with the same risk profile) is
assumed to stay in a range Ωr. We discretize the variable time in (2.3) by means
of Trapezoidal method. Then the semi-discretization yields the following system
of equations:

um+1
λ − umλ

∆t
− 1

2
Lr(u

m+1
λ + umλ ) =

1

2
[F (tm, u

m
λ ) + F (tm+1, u

m+1
λ )],

That is

(1 − ∆t

2
Lr)u

m+1
λ = (1 +

∆t

2
Lr)u

m
λ +

∆t

2
[F (tm, u

m
λ ) + F (tm+1, u

m+1
λ )], (3.1)

where, Lr : C(Ωr)
⋂
C2(Ωr) → C(Ωr) is the differential operator defined by

Lr = α(r)
∂2

∂r2
+ β(r)

∂

∂r
+ γ(r)I,
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and umλ approximate the exacte solution uλ(r, t) at the time level tm = m∆t.
Then, the approximate problem of (2.3) is





p(r)
∂2um+1

λ

∂r2
+ q(r)

∂um+1
λ

∂r
+ l(r)um+1

λ = Jm
λ (., um+1

λ ), ∀r ∈ Ωr,

u0λ = ψ0(r), ∀r ∈ Ωr,

um+1
λ (0) = ψm+1

1 , 0 ≤ m < M,

um+1
λ (R) = ψm+1

2 , 0 ≤ m < M.

(3.2)
where, for any m ≥ 0 and for any r ∈ Ωr, we have

Jm
λ (·, um+1

λ ) = −(1 +
∆t

2
Lr)u

m
λ − ∆t

2
[F (tm, u

m
λ ) + F (tm+1, u

m+1
λ )],

p(r) =
∆t

2
α(r),

q(r) =
∆t

2
β(r),

l(r) =
∆t

2
γ(r) − 1,

ψ0(r) = Λ0(r) = Λ(r, 0),

ψm+1
1 = Λm+1(0) = Λ(0, tm+1)

ψm+1
2 = Λm+1(R) = Λ(R, tm+1),

um+1
λ is solution of (3.2), at the (m+ 1) th-time level.

The following theorem proves the order of convergence of the solution umλ to
uλ(r, t)

Theorem 3.1. problem (3.2) is second order convergent i.e.

‖uλ(r, tm)− umλ ‖∞ ≤ C(∆t)2.

Proof: We introduce the notation em = uλ(r, tm)− umλ the error at step m.
By Taylor series expansion of uλ, we have

uλ(r, tm+1) = uλ(r, tm+ 1
2
) +

∆t

2

∂uλ

∂t
(r, tm+ 1

2
) +

(∆t)2

8

∂2uλ

∂t2
(r, tm+ 1

2
) +O((∆t)3),

uλ(r, tm) = uλ(r, tm+ 1
2
)− ∆t

2

∂uλ

∂t
(r, tm+ 1

2
) +

(∆t)2

8

∂2uλ

∂t2
(r, tm+ 1

2
) +O((∆t)3).

By using these expansions, we get

uλ(r, tm+1)− uλ(r, tm)

∆t
=
∂uλ

∂t
(r, tm+ 1

2
) +O((∆t)2), (3.3)
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and by Taylor series expansion of
∂uλ

∂t
, we have

∂uλ

∂t
(r, tm+1) =

∂uλ

∂t
(r, tm+ 1

2
)+

∆t

2

∂2uλ

∂t2
(r, tm+ 1

2
)+

(∆t)2

8

∂3uλ

∂t3
(r, tm+ 1

2
)+O((∆t)3),

∂uλ

∂t
(r, tm) =

∂uλ

∂t
(r, tm+ 1

2
)−

∆t

2

∂2uλ

∂t2
(r, tm+ 1

2
) +

(∆t)2

8

∂3uλ

∂t3
(r, tm+ 1

2
) +O((∆t)3).

By using these expansions, and

∣∣∣∣
∂3uλ

∂t3

∣∣∣∣ ≤ c on Ω (see relation (2.4)), we have

1

2

∂uλ

∂t
[uλ(r, tm+1) + uλ(r, tm)] =

∂uλ

∂t
uλ(r, tm+ 1

2
) +O((∆t)2).

This implies

∂uλ

∂t
uλ(r, tm+ 1

2
) = 1

2

∂uλ

∂t
[uλ(r, tm+1) + uλ(r, tm)] +O((∆t)2)

= 1

2
[Lruλ(r, tm+1) + F (tm+1, u

m+1

λ ) + Lruλ(r, tm) + F (tm, um
λ ]

+O((∆t)2).

By using this relation in (3.3) we get

(1−
∆t

2
Lr)uλ(r, tm+1) = (1 + ∆t

2
Lr)uλ(r, tm)

+∆t
2
[F (tm, uλ(r, tm)) + F (tm+1, uλ(r, tm+1))]

+O((∆t)3),

by (3.1). Then, we obtain

(1−
∆t

2
Lr)em+1 = (1 +

∆t

2
Lr)em +

∆t

2
[F (tm, uλ(r, tm))− F (tm, u

m
λ )]

+
∆t

2

[
F (tm+1, u

m+1

λ )− F (tm+1, uλ(r, tm+1))
]
+O((∆t)3).

For an analytic function F we may bound the term O((∆t)3) by c(∆t)3 for some c > 0,
and this upper bound is valid uniformly throughout [0, T ]. Therefore, it follows from the
Lipschitz condition of Lemma 2.3 and the triangle inequality that

(
1−

∆t

2
Lr

)
‖em+1‖∞ ≤

(
1 +

∆t

2
Lr

)
‖em‖∞ +

∆t

2
λ (‖em‖∞ + ‖em+1‖∞) + c(∆t)3.

Clearly, the operator

(
1±

∆t

2
Lr

)
satisfies a maximum principle (see, [6,7]) and conse-

quently
∥∥∥∥∥

(
1±

∆t

2
Lr

)
−1

∥∥∥∥∥
∞

≤




1

1 +
∆t

2
γ̃


 .
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Since we are ultimately interested in letting ∆t → 0, there is no harm in assuming that
∆t.η < 2, with η = ‖Lr‖∞ + λ. We can thus deduce that

‖em+1‖∞ ≤




1 +
1

2
∆t.η

1−
1

2
∆t.η


 ‖em‖∞ +




c

1−
1

2
∆t.η


 (∆t)3. (3.4)

We now claim that

‖em‖∞ ≤
c

η







1 +
1

2
∆t.η

1−
1

2
∆t.η




m

− 1


 (∆t)2. (3.5)

The proof is by induction on m. When m = 0 we need to prove that ‖e0‖ ≤ 0 and hence
that e0 = 0. This is certainly true, since at t0 = 0 the numerical solution matches the
initial condition and the error is zero.
For general m ≥ 0, we assume that (3.5) is true up to m and use (3.4) to argue that

‖em+1‖∞ ≤ c
η




1+
1

2
∆t.η

1−
1

2
∆t.η










1+
1

2
∆t.η

1−
1

2
∆t.η




m

− 1


 (∆t)2 +




c

1−
1

2
∆t.η


 (∆t)3

≤ c
η







1+
1

2
∆t.η

1−
1

2
∆t.η




m+1

− 1


 (∆t)2.

This advances the inductive argument from m to m + 1 and proves that (3.5) is true.
Since 0 < ∆t.η < 2, it is true that




1 +
1

2
∆t.η

1−
1

2
∆t.η


 = 1 +




∆t.η

1−
1

2
∆t.η


 ≤

∞∑

l=0

1

l!




∆t.η

1−
1

2
∆t.η




l

= exp




∆t.η

1−
1

2
∆t.η


 .

Consequently, relation (3.5) yields

‖em‖∞ ≤
c(∆t)2

η




1 +
1

2
∆t.η

1−
1

2
∆t.η




m

≤
c(∆t)2

η
exp




m∆t.η

1−
1

2
∆t.η


 .

This bound is true for every nonnegative integer m such that m∆t < T . Therefore

‖em‖∞ ≤
c(∆t)2

η
exp




T.η

1−
1

2
∆t.η


 .

We deduce that

‖uλ(r, tm)− u
m
λ ‖∞ ≤ C(∆t)2.

In other words, problem (3.2) is second order convergent. ✷
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For any m ≥ 0, problem (3.2) has a unique solution and can be written on the
following form:





p(r)u′′λ(r) + q(r)u′λ(r) + l(r)uλ(r) = Jλ(., uλ(r)), ∀r ∈ Ωr,

uλ(0) = ψ1,

uλ(R) = ψ2,

(3.6)

where Jλ(·, uλ(r)) = Φ(r) − ∆t

2
λ[ψ(r) − uλ(r)]+, with Φ is a known function. It

is easy to see that Jλ is a nonlinear continuous function on uλ and satisfies the
following Lipschitz condition:

| Jλ(r, uλ(r)) − Jλ(r, vλ(r)) | ≤ Lλ | uλ(r) − vλ(r) |, ∀r ∈ Ωr, (3.7)

where Lλ =
∆t

2
λ.

In the sequel of this paper, we will focus on the solution of problem (3.6).

4. Spatial discretization and cubic spline collocation method

In this section we construct a cubic spline which approximates the solution uλ
of problem (3.6), in the interval Ωr ⊂ R.
We denote by ‖ . ‖ the Euclidean norm on R

n+1 and S(k) the kth derivative of a
function S.

Let Θ = {0 = r−3 = r−2 = r−1 = r0 < r1 < · · · < rn−1 < rn = rn+1 = rn+2 =
rn+3 = R} be a subdivision of the interval Ωr. Without loss of generality, we put

ri = a + ih, where 0 ≤ i ≤ n and h =
R

n
. Denote by S4(Ωr,Θ) := P

2
3(Ωr,Θ) the

space of piecewise polynomials of degree less than or equal to 3 over the subdivision
Θ and of class C2 everywhere on Ωr. Let Bi, i = −3, · · · , n− 1, be the B-splines of
degree 3 associated with Θ. These B-splines are positives and form a basis of the
space S4(Ωr,Θ).

Consider the local linear operator Q3 which maps the function uλ onto a cu-
bic spline space S4(Ωr,Θ) and which has an optimal approximation order. This
operator is the discrete C2 cubic quasi-interpolant (see [19]) defined by

Q3uλ =

n−1∑

i=−3

µi(uλ)Bi,

where the coefficients µj(uλ) are determined by solving a linear system of equations
given by the exactness of Q3 on the space of cubic polynomial functions P3(Ωr).
Precisely, these coefficients are defined as follows:





µ−3(uλ) = uλ(r0) = uλ(0),

µ−2(uλ) =
1
18 (7uλ(r0) + 18uλ(r1)− 9uλ(r2) + 2uλ(r3)),

µj(uλ) =
1
6 (−uλ(rj+1) + 8uλ(rj+2)− uλ(rj+3)), for j = −1, ..., n− 3,

µn−2(uλ) =
1
18 (2uλ(rn−3)− 9uλ(rn−2) + 18uλ(rn−1) + 7uλ(rn)),

µn−1(uλ) = uλ(rn) = uλ(R).



198 A. El hajaji, K. Hilal, A. Serghini and E. B. Mermri

It is well known (see e.g. [11], chapter 5) that there exists constants Ck, k =
0, 1, 2, 3, such that, for any function uλ ∈ C4(Ωr),

‖u(k)λ −Q3u
(k)
λ ‖Ωr

≤ Ckh
4−k‖u(4−k)

λ ‖Ωr
, k = 0, 1, 2, 3, (4.1)

where ‖uλ‖Ωr
= max

r∈Ωr

|uλ(r)|.
By using the boundary conditions of problem (3.6), we obtain µ−3(uλ) =

Q3uλ(0) = uλ(0) = ψ1 and µn−1(uλ) = Q3uλ(R) = uλ(R) = ψ2. Hence

Q3uλ = z1 + S1,

where

z1 = ψ1B−3 + ψ2Bn−1 and S1 =

n−2∑

i=−2

µi(uλ)Bi.

From equation: (4.1), we can easily see that the spline S1 satisfies the following
equation

p(ri)S
(2)
1 (ri) + q(ri)S

(1)
1 (ri) + l(ri)S

(0)
1 (ri) = g(ri) +O(h2), i = 0, ..., n (4.2)

with

g(ri) = Jλ(ri, uλ(ri))− (p(ri)z
(2)
1 (ri) + q(ri)z

(1)
1 (ri) + l(ri)z

(0)
1 (ri)), i = 0, ..., n.

The goal of this section is to compute a cubic spline collocation S̃λ =

n−1∑

i=−3

c̃i,λBi

which satisfies the equation (3.6) at the points τ i, i = 0, ..., n + 2 with τ0 = r0,

τ i =
ri−1 + ri

2
, i = 1, · · · , n, τn+1 = rn−1 and τn+2 = rn.

Then, it is easy to see that

c̃−3,λ = ψ1 and c̃n−1,λ = ψ2.

Hence

S̃λ = z1 + S̃1, where S̃1 =

n−2∑

i=−2

c̃i,λBi,

and the coefficients c̃i,λ, i = −2, ..., n−2 satisfy the following collocation conditions:

p(τ i)S̃
(2)
1 (τ i) + q(τ i)S̃

(1)
1 (τ i) + l(τ i)S̃

(0)
1 (τ i) = f(τ i), i = 1, ..., n+ 1, (4.3)

where

f(τ i) = Jλ(τ i, S̃1(τ i))−(p(τ i)z
(2)
1 (τ i)+q(τ i)z

(1)
1 (τ i)+l(τ i)z

(0)
1 (τ i)), i = 1, ..., n+1.

Taking Cλ = [µ−2, ..., µn−2]
T and C̃λ = [c̃−2,λ, ..., c̃n−2,λ]

T , and using equations
(4.2) and (4.3), we get:

(PA
(2)
h +QA

(1)
h + LA

(0)
h )Cλ = Fλ + E (4.4)
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and
(PA

(2)
h +QA

(1)
h + LA

(0)
h )C̃λ = FC̃λ

, (4.5)

with

Fλ = [g1, ..., gn+1]
T and gi =

1

∆t
g(τ i),

FC̃λ

= [f1, ..., fn+1]
T and fi =

1

∆t
f(τ i),

E = [O(
h2

∆t
), ..., O(

h2

∆t
)]T ∈ R

n+1,

P = (diag(
1

2
α(τ i))1≤i≤n+1,

Q = (diag(
1

2
β(τ i))1≤i≤n+1,

L = (diag(
1

2
γ(τ i)−

1

∆t
))1≤i≤n+1,

A
(k)
h = (B

(k)
−3+j(τ i))1≤i,j≤n+1, k = 0, 1, 2,

It is well known that A
(k)
h =

1

hk
Ak for k = 0, 1, 2 where matrices A0, A1 and A2

are independent of h, with expression A2 is:

A2 =




−15

4

1

4

1

2
0 . . . 0

3

4

−3

4

−1

2

1

2
0 . . . 0

0
1

2

−1

2

−1

2

1

2
0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0
1

2

−1

2

−1

2

1

2
0

0 . . . 0
1

2

−1

2

−3

4

3

4

0 . . . 0
1

2

1

4

−15

4

0 . . . 0 1
−5

2

3

2




.

Results of this work are basically based on the invertibility of the matrix A2. Then,
in order to prove that A2 is invertible we give the flowing lemma.

Lemma 4.1. (de Boor [10]) Let S ∈ Sk+1 such that S = 0 on [rp−1, rp]∪ [rq, rq+1]
where p < q. If S admits d zeros in [rp, rq] then d ≤ p− q − (k + 1).

Lemma 4.2. The matrix A2 is invertible.

Proof: Let D = [d1, · · · , dn+1]
T be a vector of Rn+1 such that A2D = 0. If we

put S(r) =
∑n−2

j=−2 djBj , then we have S(0) = S(R) = 0 and S(2)(τ i) = 0 for any
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i = 1, · · · , n + 1. Since S ∈ S4(Ωr,Θ) then S(2) ∈ S2(Ωr,Θ). If we assume that
S(2) 6= 0 in [r0, rn], then using the Lemma 4.1 and the fact that S(2) has n+1 zeros
in [r0, rn], we conclude that n+1 ≤ n− 2, which is impossible. Therefore S(2) = 0
for each r ∈ Ωr. This means that the function S is a piecewise linear polynomial on
Ωr. Since S(0) = S(R) = 0, then we obtain S(r) = 0 for any r ∈ Ωr. Consequently
D = 0 and the matrix A2 is invertible. ✷

Then, relations (4.4) and (4.5) can be written in the following form

PA2(I + U + V )Cλ = h2Fλ + h2E, (4.6)

PA2(I + U + V )C̃λ = h2FC̃λ

, (4.7)

with
U = hA−1

2 P−1QA1, (4.8)

V = h2A−1
2 P−1LA0. (4.9)

In order to determine the bounded of ‖ C − C̃ ‖∞, we need the following Lemma.

Lemma 4.3. If h2 <
∆t

4ρ
, then I + U + V is invertible, where ρ =

‖A−1
2 ‖∞
α̃

.

Proof: From the relation (4.8), We have

‖U‖∞ ≤ h‖A−1
2 ‖∞‖P−1‖∞‖Q‖∞‖A1‖∞ ≤ hρ‖A1‖∞ max

i=0...n
|β(τ i)|.

For h sufficiently small, we conclude

‖U‖∞ <
1

4
. (4.10)

From the relation (4.9) and ‖A0‖∞ ≤ 1, we have

‖V ‖∞ ≤ h2‖A−1
2 ‖∞‖P−1‖∞‖L‖∞‖A0‖∞

≤ h2
‖A−1

2 ‖∞
α̃

max
i=0...n

|γ(τ i)−
2

∆t
|

≤ h2ρ max
i=0...n

|γ(τ i)−
2

∆t
|

≤ h2ρ max
i=0...n

(τ i) +
2h2ρ

∆t
.

For h sufficiently small, we conclude that h2ρ max
i=0...n

(τ i) <
1

4
. Then

‖V ‖∞ <
1

4
+

2h2ρ

∆t
. (4.11)

As
2h2ρ

∆t
<

1

2
. So, ‖U+V ‖ ≤ ‖U‖+‖V ‖ < 1, and therefore I+U+V is invertible.

✷
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Proposition 4.4. Assume that the penalty parameter λ and the discretization
parameter h satisfy the following relation:

λh2‖(I + U + V )−1(PA2)
−1‖∞ < 2. (4.12)

Then there exists a unique cubic spline which approximates the exact solution uλ
of problem (3.6).

Proof: From (4.7), we have C̃λ = h2(I + U + V )−1(PA2)
−1FC̃λ

. Let ϕ : Rn+1 →
R

n+1 be a function defined by

ϕ(Y ) = h2(I + U + V )−1(PA2)
−1FỸ . (4.13)

To prove the existence of cubic spline collocation it suffices to prove that ϕ admits
a unique fixed point. Indeed, let Y1 and Y2 be two vectors of Rn+1. Then we have

‖ϕ(Y1)− ϕ(Y2)‖ ≤ h2‖(I + U + V )−1(PA2)
−1‖∞‖FY1

− FY2
‖∞. (4.14)

Using relation (3.7) and the fact that

n−2∑

j=−2

Bj ≤ 1, we get

|Jλ(τ i, SY1
(τ i))− Jλ(τ i, SY2

(τ i))| ≤
λ

2
∆t|SY1

(τ i)− SY2
(τ i)| ≤ Lλ‖Y1 − Y2‖∞,

Then we obtain

‖FY1
− FY2

‖∞ ≤ λ

2
‖Y1 − Y2‖∞.

From relation (4.14), we conclude that

‖ϕ(Y1)− ϕ(Y2)‖ ≤ λ

2
h2‖(I + U + V )−1(PA2)

−1‖∞‖Y1 − Y2‖∞.

Then we have
‖ϕ(Y1)− ϕ(Y2)‖ ≤ k‖Y1 − Y2‖∞,

where k =
λ

2
h2‖(I +U + V )−1(PA2)

−1‖∞. Hence the function ϕ admits a unique

fixed point. ✷

In order to calculate the coefficients of the cubic spline collocation given by the
nonsmooth system

C̃λ = ϕ(C̃λ), (4.15)

we propose the generalized Newton method defined by

C̃
(k+1)
λ = C̃

(k)
λ − (In+1 − Vk)

−1(C̃
(k)
λ − ϕ(C̃

(k)
λ )), (4.16)

where In+1 is the unit matrix of order n+ 1 and Vk is the generalized Jacobian of

the function C̃λ 7→ ϕ(C̃λ), (see [4,5,20], for instance).
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5. Convergence of the method

Theorem 5.1. Assume that the penalty parameter λ and the discretization param-
eter h satisfy the following relation:

λh2‖(I + U + V )−1(PA2)
−1‖∞ < 1. (5.1)

Then the cubic spline S̃λ converges to the solution uλ. Moreover the error estimate
‖uλ − S̃λ‖∞ is of order O(h2).

Proof: We pose ν = ‖(I+U+V )−1(PA2)
−1‖∞. From (4.8), (4.9) and Lemma 4.2,

we have

Cλ − C̃λ = h2(I + U + V )−1(PA2)
−1[(Fλ − FC̃λ

) + E].

Since E is of order O(
h2

∆t
), then there exists a constant K1 such that

‖E‖∞ ≤ K1
h2

∆t
.

Hence, we have

‖Cλ − C̃λ‖∞ ≤ h2ν
[
‖Fλ − FC̃λ

‖∞ +K1h
2
]
. (5.2)

On the other hand we have

|Jλ(τ i, uλ(τ i))− Jλ(τ i, S̃(τ i))| ≤ λ

2
∆t|uλ(τ i)− S̃λ(τ i)|

≤ λ

2
∆t|uλ(τ i)−Sλ(τ i)|+

λ

2
∆t|Sλ(τ i)−S̃λ(τ i)|.

From relation (4.1), there exists a constant K2 such that

‖uλ −Q3uλ‖∞ ≤ K2h
4‖u4λ‖∞. (5.3)

Using the fact that

|Q3uλ − S̃λ| ≤ ‖Cλ − C̃λ‖∞
n−2∑

j=−2

Bj ≤ ‖Cλ − C̃λ‖∞, (5.4)

then, we obtain

|Fλ − FC̃λ

| ≤ 1

∆t
|Jλ(τ i, uλ(τ i))− Jλ(τ i, S̃(τ i))|

≤ λ

2
‖Cλ − C̃λ‖∞ +

λ

2
K2h

4‖u4λ‖∞.
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By using relation (5.2) and assumption (5.1) it is easy to see that

‖Cλ − C̃λ‖∞ ≤ h2ν

1− λ

2
h2ν

(K2h
4λ

2
‖u(4)λ ‖∞ +K1h

2)

≤
K2h

2λ

2
‖u(4)λ ‖∞ +K1

λ

2

h2.

(5.5)

We have

‖uλ − S̃λ‖∞ ≤ ‖uλ −Q3uλ‖∞ + ‖Q3uλ − S̃λ‖∞,

then from relations (5.3), (5.4) and (5.5), we deduce that ‖uλ − S̃λ‖∞ is O(h2).
Hence the proof is complete. ✷

Remark 5.2. Theorem 5.1 provides a relation coupling the penalty parameter λ
and the discretization parameter h, which guarantees the quadratic convergence of
the cubic spline collocation S̃λ to the solution uλ of the penalty problem.

6. Numerical examples

In this section we verify numerically the obtained theoretical results in the
previous section. If the exact solution is known, then at time t ≤ T the maximum
error Emax can be calculated as:

Emax = max
r∈[0,R],t∈[0,T ]

| SM,N (r, t)− u(r, t) | .

Otherwise it can be estimated by the following double mesh principle:

Emax
M,N = max

r∈[0,R],t∈[0,T ]
| SM,N(r, t)− S2M,2N (r, t) |,

where SM,N(r, t) is the numerical solution on the M + 1 grids in space and N + 1
grids in time, and S2M,2N (r, t) is the numerical solution on the 2M + 1 grids in
space and 2N + 1 grids in time. Denote

B = (B−2, ..., Bn−2)

and

d(C̃λ) = [ψ −
n−2∑

i=−2

c̃i,λBi]
1
k

+ = [ψ −BC̃λ]
1
k

+. (6.1)

This last equation is nonlinear in C̃λ. We now apply the generalized Newton
method to this equation. Note that when k > 1, we see that vector derivative
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of d at C̃λ satisfies d ′(C̃λ) −→ ∞ as ψ − BC̃λ −→ 0+. To overcome this diffi-
culty, we use the technique proposed in [21] to smooth (6.1), yielding the following

approximation to d(C̃λ) :

d(C̃λ) =

{
(ψ −BC̃λ)

1
k , ψ −BC̃λ ≥ ǫ,

W ([ψ −BC̃λ]+), ψ −BC̃λ < ǫ,
(6.2)

for k > 0, where 0 < ǫ << 1 is a transition parameter and W (z) is a function
which smooths out the original d(z) around z = 0. We choose W (z) = a1 + a2z +
...+ anz

n−1 + an+1z
n for n ≥ 3 and impose that W (z) is such that d(.) is smooth.

This requires that W (z) satisties

W (0) =W ′(0) = 0, W (ǫ) = ǫ
1
k , W ′(ǫ) =

1

k
ǫ

1
k−1 . (6.3)

In this case, the function defined in (6.2) is globally smooth. Using the four con-
ditions given in relation (6.1) and setting a3 = ... = an−1 = 0, we can easily find
that

a1 = a2 = 0, an = ε
1

k−n+1 (n− 1

k
), an+1 = ε

1
k−n (

1

k
− n+ 1).

Taking X = ψ −BC̃λ, then relation (6.2) can be expressed as

d(C̃λ) =





X
1
k , X ≥ ε,

W (0), X ≤ 0,
anX

n−1 + an+1X
n, 0 < X < ε.

(6.4)

For z ∈ (0, ε), differentiating W (z) gives

W ′(z) = (n− 1)ε
1

k−n+1

(
n− 1

k

)
zn−2 + nε

1
k−n

(
1

k
− n+ 1

)
zn−1

= zn−2ε
1

k−n+1

[
(n− 1)

(
n− 1

k

)
+ n

(
1

k
− n+ 1

)
z

ε

]
.

Hence

∂d

∂c̃i,λ
=





− 1

k
BiX

1
k
−1, X ≥ ε,

0, X ≤ 0,

−BiX
n−2ε

1
k−n+1

[
(n− 1)

(
n− 1

k

)
+ n

ε

(
1
k − n+ 1

)
X
]
, 0 < X < ε.

In this section we apply the numerical method developed in this paper to an exam-
ple presented in the paper of the authors Kai Zhang et al. [25]. Then, we compare
the obtained results to the ones given in [25].

A vanilla put option on a zero-coupon bond has the payoff

Λ = max[K − P (r, T, s), 0], with P (r, T, s) = EA(T, s)e−B(T,s)r.
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The parameters used for this put option on a bond under the CIR model are listed
in Table 1. For the put option on a bond with the parameters in Table 1, we choose
R = 2. The coarsest grid is defined as a uniform partition of the solution domain
(0, 2)× (0, 1).

The comparison of the maximum error values between the method developed
in this paper with the one developed in [25] will be taken at five different val-
ues of the number of space steps N = 201, 401, 801, 1601, 3201 and time steps
M = 100, 200, 400, 800, 1600, for σ = 0.1 and σ = 0.5.
We conduct experiments on different values of N , M and σ. Table 2 and Table 3
show values of the maximum error (max_error) obtained in our numerical exper-
iments and the one obtained in [25]. We see that the values of maximum error
obtained by our method improve the ones in [25].

Table 1: Data used to value American put options on a zero-coupon bond under
the CIR model.

Parameter values

κ 0.10

θ 0.08

σ 0.10 and 0.50

ζ 0

E 100

K 60

T 1

s 5

Table 2: Computed results with σ = 0.1

N M our max_error max_error in [25]

201 100 0.00573 0.0721

401 200 0.00161 0.0366

801 400 0.00050 0.0144

1601 800 0.00014 0.0048

3201 1600 0.00004 0.0022

7. Conclusion

In this paper we have presented the American options on a bond under the
Cox-Ingersoll-Ross model, this problem is approximated by a sequence of nonlin-
ear equation problems by using the penalty method given in [23,27], and its time
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Table 3: Computed results with σ = 0.5

N M our max_error max_error in [25]

201 100 0.00252 0.0283

401 200 0.00073 0.0164

801 400 0.00021 0.0086

1601 800 0.00005 0.0046

3201 1600 0.00002 0.0024

discretization scheme. Then, we have developed and analyzed a cubic spline collo-
cation method and the generalized Newton method for approximating solutions of
the semi-discrete problem. We have shown the convergence of the method provided
that the penalty and discrete parameters satisfy the relation (5.1). Moreover we
have provided an error estimate of order O(h2) with respect to the maximum norm
‖ . ‖∞. Numerical experiment was performed on one known model to validate the
convergence and efficiency of the method. The computational results show that the
proposed numerical method is an efficient alternative method to the one proposed
in [25].
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