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µ-µ∗ Connectedness via Hereditary Classes

Shyamapada Modak

abstract: This paper is an attempt to study and introduce the notion of µ-µ∗ -
connected set in generalized topological spaces with a hereditary class. We have also
investigate the relationships between ∗-separated sets, ∗s - connected sets, cµ∗ -I
- connected sets, cµ∗ -cµ - connected sets, cµ-I - connected sets, ∗-I - connected
sets. Further we give some representations of the above connected sets via (µ-µ′) -
continuity and (µ-µ′) - openness.
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1. Introduction

The notion of ideal topological spaces was studied by Kuratowski [10] and
Vaidyanathswamy [15]. The notion was further investigated by Jankovic and Ham-
lett [8]. Recently, the nation of ∗-connected ideal topological spaces has been
introduced and studied in [7], [13], [14], [12] and [10].

Csaszar [6] introduced the notion of generalized topological space with hered-
itary class. This is a generalization of an ideal topological space. In this paper,
we introduce a new type of connected set on a generalized topological space with
a hereditary class and investigate properties of this connectedness. We interrelate
this connected set with many types of connected set which have been defined by
Modak and Noiri in [11].

2. Preliminaries

Let X be a nonempty set and P (X) the power set of X . A subset µ of P (X)
is called a generalized topology (GT) [1,3,4,5] if ∅ ∈ µ and the arbitrary union of
members of µ is in µ. A generalized topology µ is called a quasi-topology [5] on
X if U, V ∈ µ implies U ∩ V ∈ µ. A nonempty subset H of P (X) is called a
hereditary class [6] of X if A ⊂ B, B ∈ H implies A ∈ H. For each subset A of
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X , a subset A∗(H)(briefly A∗) of X is defined in [6] as follows: A∗(H) = {x ∈ X :
U ∩ A /∈ H for every U ∈ µ containing x}. If cµ∗(A) = A ∪ A∗ for each subset A
of X , then µ∗ = {A ⊂ X : cµ∗(X − A) = X − A} is a generalized topology on X
finear than µ [6].

Let us recall some properties established in [6] and [11].

Lemma 2.1. [6]. For a subset A of X, the following properties hold:
(1) A ⊂ B implies A∗ ⊂ B∗,
(2) A∗ is a µ-closed, that is, X −A∗ ∈ µ,
(3) A∗ ⊂ cµ(A), where cµ(A) =

⋂
{F ⊂ X : A ⊂ F, X − F ∈ µ}.

Lemma 2.2. [6]. The family B = {M −H : M ∈ µ, H ∈ H} is a base for µ∗.

In the sequel, a generalized topological space (X,µ) with a hereditary class H is
dented by (X,µ,H) and is called a GTSH. Let (X,µ,H) be a GTSH. The closure
of a subset A of X in (X,µ∗) is denoted by cµ∗(A).

Definition 2.3. [11]. Let (X,µ,H) be a generalized topology with a hereditary
class H. Nonempty disjoint subsets A, B of (X,µ,H) are said to be

(1) cµ-cµ∗-separated if cµ(A) ∩ cµ∗(B) = ∅ = cµ∗(A) ∩ cµ(B),
(2) cµ-I-separated if cµ(A) ∩B = ∅ = A ∩ cµ(B),
(3) cµ∗-I-separated if cµ∗(A) ∩B = ∅ = A ∩ cµ∗(B),
(4) cµ-∗-separated if cµ(A) ∩B∗ = ∅ = A∗ ∩ cµ(B),
(5) cµ∗-∗-separated if cµ∗(A) ∩B∗ = ∅ = A∗ ∩ cµ∗(B),
(6) ∗-I-separated if A∗ ∩B = ∅ = A ∩B∗.

Theorem 2.4. [11]. For a subset of (X,µ,H), the following implications hold:

cµ-cµ∗- separated +3

��

cµ-I- separated +3 cµ∗-I- separated

��
cµ-∗- separated +3 cµ∗-∗- separated +3 ∗-I- separated

The authors Modak and Noiri in [11] have shown that the converses of the
above implications need not hold in general.

3. µ− µ∗-connectedness

Definition 3.1. Nonempty disjoint subsets A,B of a GTSH (X,µ,H) are called
µ− µ∗ - separated if cµ(A) ∩B = ∅ = A ∩ cµ∗(B).

If cµ(A) ∩ B = ∅ implies cµ∗(A) ∩ B = ∅. Then every µ-µ∗ - separated sets
are cµ∗ -I - separated sets [11]. Again A ∩ cµ∗(B) = ∅ does not necessarily imply
A ∩ cµ(B) = ∅. So they are not separated sets in (X,µ∗).

Theorem 3.2. Let (X,µ,H) be a GTSH. Then
(1) every µ-µ∗ - separated sets is ∗-I - separated.
(2) every cµ-cµ∗ - separated sets is µ-µ∗ - separated.
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(3) every cµ-I - separated sets is µ− µ∗ - separated.
(4) every µ-µ∗ - separated sets is cµ∗-I - separated.

Proof: The proof is obvious from the following fact.
(1) A∗ ∩B ⊂ cµ(A) ∩B and A ∩B∗ ⊂ A ∩ cµ∗(B).
(2) cµ(A) ∩B ⊂ cµ(A) ∩ cµ∗(B) and A ∩ cµ∗(B) ⊂ cµ(A) ∩ cµ∗(B).
(3) A ∩ cµ∗(B) ⊂ A ∩ cµ(B).
(4) cµ∗(A) ∩B ⊂ cµ(A) ∩B.

From this Theorem and the Theorem 3.2 of [11] we get following diagram:

cµ∗ -I- separated
KS dl

$,❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

cµ-cµ∗ - separated +3 µ-µ∗- separated
KS

+3 ∗-I- separated

cµ-I- separated

It is obvious that every cµ∗-I - separated set is a ∗-I - separated set. Again if
A and B are ∗-I - separated sets, then A∗ ∩B = ∅ = A∩B∗. Now (A∪A∗)∩B =
(A ∩B) ∪ (A ∩B) = ∅. Similarly cµ∗ ∩A = ∅. ✷

Converse implications are not true in general.

Example 3.3. (1) Let X = {a, b, c, d}, µ = {∅, X, {a}, {a, b}, {a, c, d}} and H =
{∅, {a}, {b}, {a, b}}. Then ({a})∗ = ∅ and ({b, c, d})∗ = {c, d}. Now cµ∗({a}) ∩
({b, c, d}) = ∅ = ({a}) ∩ cµ∗({b, c, d}). So {b, c, d} and {a} are cµ∗-I - separated
but not µ-µ∗ - separated, because cµ({a}) = X.

(2) X = {a, b}, µ = {∅, {a}, X} and H = {∅, {a}}. Here µ∗ = {∅, {a}, {b}, X},
({a})∗ = ∅ and ({b})∗ = {b}. Therefore {b} and {a} are µ-µ∗ - separated sets but
they are not cµ-I - separated, because cµ({a}) = X. Again cµ∗({b}) ∩ cµ({a}) 6= ∅.
Therefore {b} and {a} are not cµ-cµ∗ - separated sets.

Theorem 3.4. Let A and B are two µ-µ∗ - separated If C ⊂ A and D ⊂ B then
C and D are also µ-µ∗ - separated.

Proof: Proof is obvious from the fact cµ(C) ⊂ cµ(A) and cµ∗(D) ⊂ cµ∗(B). ✷

Theorem 3.5. Let (X,µ,H) be a GTSH. If A and B are nonempty disjoint µ-open
sets, then A and B are µ− µ∗ - separated.

Proof: Proof is obvious from the fact that cµ(A) ⊂ cµ(X − B) = (X − B) and
cµ(A) ∩B = ∅ and cµ∗(B) ⊂ cµ∗(X −A) = (X −A) and cµ∗(B) ∩ A = ∅. ✷

Lemma 3.6. For U, V ⊂ X, the following statements are equivalent:
(a) U and V are µ-µ∗ - separated;
(b) There are µ - closed sets FU and FV such that U ⊂ FU ⊂ X − V and
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V ⊂ FV ⊂ X − U ;
(c) There are µ - open sets GU and GV such that U ⊂ GU ⊂ X − V and

V ⊂ GV ⊂ X − U .

Proof: (a)⇒ (b). Put FU = cµ(U), FV = cµ∗(V ). Then FU and FV are µ -
closed sets and U ⊂ FU ⊂ X − V (since cµ(U) ∩ V = ∅), V ⊂ FV ⊂ X − U (since
cµ∗(V ) ∩ U = ∅).
(b)⇒ (c). Put GU = X − FV , GV = X − FU . Now from complement, we have
V ⊂ X − FU ⊂ X − U and U ⊂ X − FV ⊂ X − V . Therefore, V ⊂ GV ⊂ X − U
and U ⊂ GU ⊂ X − V .
(c)⇒ (b). Put FU = X −GV , FV = X −GU . Then X − FU = GV i.e. V ⊂ FU ⊂
X − V . Similarly V ⊂ FV ⊂ X − U .
(b)⇒ (a). Clearly cµ(U) ⊂ FU and cµ∗(V ) ⊂ FV . Then cµ(U)∩V ⊂ (X−V )∩V =
∅ and similarly cµ∗(V ) ∩ U = ∅. ✷

Now we recall the following definition and a theorem from [11].

Definition 3.7. [11]. A subset A of a GTSH (X,µ,H) is said to be P − Q-
connected if A is not the union of two P −Q-separated sets in (X,µ,H), where P
and Q denote the operations in Definition 3.1.

For example, in case P = cµ∗ and Q = ∗, (X,µ,H) is said to be cµ∗ -∗-connected
if X cannot be written as the disjoint union of two nonempty cµ∗ -∗ - separated sets.

Theorem 3.8. [11]. For a subset of (X,µ,H), the following implications hold:

cµ-cµ∗- connected ks
KS

cµ-I- connected ks cµ∗-I- connected
KS

��
cµ-∗- connected ks cµ∗-∗- connected ks ∗-I- connected

Definition 3.9. A subset A of a GTSH (X,µ,H) is called µ-µ∗-connected if A is
not the union of two µ-µ∗ - separated sets in (X,µ,H).

µ-µ∗ - connectedness neither a cµ-cµ∗ - connectedness nor a connectedness of
(X,µ∗).

Theorem 3.10. Let (X,µ,H) be a GTSH. Then
(1) every ∗-I - connected set is µ-µ∗ - connected.
(2) every µ-µ∗ - connected set is cµ-cµ∗ - connected.
(3) every µ-µ∗ - connected set is cµ-I - connected.
(4) every cµ∗-I - connected set is µ-µ∗ - connected.

Proof: Proof is obvious from Theorem 3.2.

From this theorem and the Theorem 3.8, we get following diagram:
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cµ∗ -I- connected

��

2:

rz ❧❧❧
❧❧
❧❧
❧❧
❧❧
❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

∗-I- connected +3 µ-µ∗-connected

��

+3 cµ-cµ∗ -connected

cµ-I-connected

From Example 3.3(1), we have X is not a cµ∗ -I - connected set but it is µ-µ∗ -
connected. Again from Example 3.3(2), we get X is cµ-I - connected but not µ-µ∗

- connected although it is cµ-cµ∗ - connected. ✷

Lemma 3.11. Let (X,µ,H) be a GTSH. If A is a µ − µ∗-connected of X and
H, G are µ-µ∗ - separated subsets of X with A ⊂ H ∪ G, then either A ⊂ H or
A ⊂ G.

Proof: Let A ⊂ H ∪G. Since A = (A∩H)∪ (A∩G), then cµ(A∩G)∩ (A∩H) ⊂
cµ(G)∩H = ∅. By similar way, we have cµ∗(A∩H)∩ (A∩G) = ∅. Suppose A∩H
and A∩G are nonempty. Then A is not a µ-µ∗ - connected. This is a contradiction.
Thus, either A ∩H = φ or A ∩G = φ. This implies that A ⊂ H or A ⊂ G. ✷

Theorem 3.12. Let (X,µ,H) be a QTSH. If A and B are µ-µ∗ - separated of X
and A ∪B ∈ µ, then A, B ∈ µ∗.

Proof: Since A and B are µ-µ∗ - separated, then B = (A ∪ B) ∩ (X − cµ(A)).
Since A∪B ∈ µ and cµ(A) is µ-closed in X , then B is µ-open. By the similar way
A is µ∗-open. ✷

Theorem 3.13. If A and B are µ-µ∗-connected sets of a GTSH such that none of
them is µ-µ∗ - separated, then A ∪B is µ-µ∗ - connected.

Proof: Let A and B be µ-µ∗ - connected in X . Suppose A ∪ B is not µ-µ∗ -
connected. Then, there exist two nonempty disjoint µ-µ∗ - separated sets G and
H such that A∪B = G∪H . Since A and B are µ-µ∗ - connected, by Lemma 3.11,
either A ⊂ G and B ⊂ H or B ⊂ G and A ⊂ H . Now if A ⊂ G and B ⊂ H , then
A ∩H = B ∩G = ∅. Therefore, (A ∪B) ∩G = (A ∩G) ∪ (B ∩G) = (A ∩G) ∪ ∅ =
A ∩G = A. Also, (A ∪B) ∩H = (A ∩H) ∪ (B ∩H) = B ∩H = B. Now, cµ((A ∪
B)∩H)∩((A∪B)∩G) ⊂ cµ(A∪B)∩cµ(H)∩(A∪B)∩G = (A∪B)∩cµ(H)∩G = ∅
and ((A ∪B) ∩H) ∩ cµ∗((A ∪ B) ∩ G) ⊂ (A ∪ B) ∩ (H) ∩ cµ∗(A ∪ B) ∩ cµ∗(G) =
(A ∪ B) ∩ H ∩ cµ∗(G) = ∅. Therefore (A ∪ B) ∩ G and (A ∪ B) ∩ H are µ-µ∗ -
separated sets. Thus, A and B are µ-µ∗-separated, which is a contradiction. Hence,
A ∪B is µ-µ∗ - connected. ✷

Theorem 3.14. If {Mi : i ∈ I} is a nonempty family of µ-µ∗ - connected sets of
a GTSH, then ∪i∈IMi is µ− µ∗ - connected.
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Proof: Suppose ∪i∈IMi is not µ-µ∗ - connected. Then we have ∪i∈IMi = H ∪G,
where H and G are µ-µ∗ - separated sets in X . Since ∩i∈IMi 6= ∅, we have a point
x ∈ ∩i∈IMi. Since x ∈ ∪i∈IMi, either x ∈ H or x ∈ G. Suppose that x ∈ H . Since
x ∈ Mi for each i ∈ I, then Mi and H intersect for each i ∈ I. By Lemma 3.11,
Mi ⊂ H or Mi ⊂ G. Since H and G are disjoint, Mi ⊂ H for all i ∈ I and hence
∪i∈IMi ⊂ H . This implies that G is empty. This is a contradiction. Suppose that
x ∈ G. By the similar way, we have that H is empty. This is a contradiction.
Thus, ∪i∈IMi is µ-µ∗ - connected. ✷

Theorem 3.15. Let (X,µ) be a GTS, {Aα : α ∈ △} be a family of µ − µ∗-
connected. If A ∩ Aα 6= ∅ for every α, then A ∪ (∪Aα) is µ-µ∗ - connected.

Proof: Since A ∩ Aα 6= ∅ for each α ∈ △, by Theorem 3.14, A ∪ Aα is µ − µ∗-
connected for each α ∈ △. Moreover, A ∪ (∪Aα) = ∪(A ∪ Aα) and ∩(A ∪ Aα) ⊃
A 6= ∅. Thus by Theorem 3.14, A ∪ (∪Aα) is µ-µ∗-connected. ✷

Theorem 3.16. If A is a µ-µ∗ - connected subset of (X,µ,H) and A ⊂ B ⊂ cµ(A),
then B is also a µ-µ∗ - connected.

Proof: Suppose B is not a µ-µ∗ - connected subset of (X,µ,H) then there exist
µ-µ∗ - separated sets H and G such that B = H∪G. This implies that H and G are
nonempty and cµ(G) ∩H = ∅ = G ∩ cµ∗(H). By Lemma 3.11, we have that either
A ⊂ H or A ⊂ G. Suppose that A ⊂ H . Then cµ(A) ⊂ cµ(H) and G ∩ cµ(A) = ∅
(from above). This implies that G ⊂ B ⊂ cµ(A) and G = cµ(A) ∩ G = ∅. Thus G
is an empty set. Since G is nonempty, this is a contradiction. Hence, B is µ-µ∗ -
connected. ✷

Corollary 3.17. If A is a µ-µ∗ - connected subset of (X,µ,H) then cµ(A) is also
a µ-µ∗ - connected subset of X.

Definition 3.18. Let (X,µ,H) be a GTSH and x ∈ X. Then union of all µ-µ∗ -
connected subsets of X containing x is called the µ-µ∗ - component of X containing
x.

Theorem 3.19. Each µ-µ∗ - component of a GTSH (X,µ,H) is a maximal µ-µ∗

- connected set of X.

Theorem 3.20. The set of all distinct µ-µ∗-component forms a partition of X.

Theorem 3.21. Each µ-µ∗ - component of a GTSH is µ - closed in X.

Proof: Suppose A is a µ-µ∗ - component in X . Again cµ(A) is also a µ-µ∗ -
connected set in X . So A = cµ(A), therefore A is µ-closed. ✷
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4. Images and preimages of µ-connected sets

Let f : (X,µ) → (Y, µ′) be a function. We say that f is (µ, µ′) - continuous [1]
if and only if f−1(A) is µ-open whenever A is µ′-open.

Lemma 4.1. If f is (µ, µ′) - continuous and U ′, V ′ ⊂ X ′ are µ-µ∗ - separated in
X ′, then f−1(U ′), f−1(V ′) are µ-µ∗ - separated in X.

Proof: By Lemma 3.6, there exists µ′ - open sets GU ′ , GV ′ such that U ′ ⊂ GU ′ ⊂
X ′ − V ′ and V ′ ⊂ GV ′ ⊂ X ′ − U ′. Then f−1(U ′) ⊂ f−1(GU ′) ⊂ X − f−1(V ′)
and f−1(V ′) ⊂ f−1(GV ′) ⊂ X − f−1(U ′), with µ-open sets f−1(GU ′ ), f−1(GV ′).
Hence by Theorem 3.5, f−1(U ′) and f−1(V ′) are µ-µ∗ - separated. ✷

Theorem 4.2. If S ⊂ X if µ-µ∗ - connected and f is (µ, µ′) - continuous, then
f(S) is µ-µ∗ - connected in Y .

Proof: Suppose f(S) = U ′∪V ′ with µ-µ∗ - separated sets U ′, V ′. Then by Lemma
4.1, we have S ⊂ f−1(U ′) ∪ f−1(V ′) and f−1(U ′), f−1(V ′) are µ-µ∗ - separated
so that, by Lemma 3.11, either S ⊂ f−1(U ′) or S ⊂ f−1(V ′), i.e. f(S) ⊂ U ′ or
f(S) ⊂ V ′ and V ′ = ∅ or U ′ = ∅.

Recall that f is (µ, µ′) - open if f(S) is µ′ - open, for each µ - open set S [2].✷

Theorem 4.3. If f is (µ, µ′) - open and injective, U, V ⊂ X are µ−µ∗ - separated
then f(U), f(V ) are µ-µ∗ - separated in Y .

Proof: By Lemma 3.6, there exists µ - open sets GU , GV such that U ⊂ GU ⊂
X − V and V ⊂ GV ⊂ X − U . Then we have f(U) ⊂ f(GU ) ⊂ f(X − V ) and
f(V ) ⊂ f(GV ) ⊂ f(X − U) for the µ′ - open sets f(GU ), f(GV ). By hypothesis
f(X −U) ⊂ X ′ − f(U) and f(X − V ) ⊂ X ′ − f(V ) so that Lemma 3.6 shows that
µ-µ∗ - separated property of f(U) and f(V ). ✷

Conclusion

If µ and H in GTSH (X,µ,H) are replaced by the topology τ and the ideal I
in an ideal topological space (X, τ , I), then we obtain the following:
(1) µ-µ∗ - separated coincides with ∗ - separated in [7].
(2) µ-µ∗ - connectedness coincides with ∗s - connectedness in [7].
(3) µ-µ∗ - component coincides with ∗ - component in [7].
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