

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 33** 1 (2015): 41–48. ISSN-00378712 in press doi:10.5269/bspm.v33i1.21383

μ - μ * Connectedness via Hereditary Classes

Shyamapada Modak

ABSTRACT: This paper is an attempt to study and introduce the notion of $\mu\text{-}\mu^*$ -connected set in generalized topological spaces with a hereditary class. We have also investigate the relationships between *-separated sets, $*_s$ -connected sets, c_{μ^*} -I-connected sets, c_{μ^*} -I-connected sets, c_{μ^*} -I-connected sets, r_I -connected sets, ruther we give some representations of the above connected sets via $(\mu\text{-}\mu')$ -continuity and $(\mu\text{-}\mu')$ - openness.

Key Words: $(\mu$ - $\mu')$ - continuous, $(\mu$ - $\mu')$ - open, μ - μ^* - connected, μ - μ^* - separated

Contents

1	Introduction	41
2	Preliminaries	41
3	$\mu - \mu^*$ -connectedness	42
4	Images and preimages of μ -connected sets	47

1. Introduction

The notion of ideal topological spaces was studied by Kuratowski [10] and Vaidyanathswamy [15]. The notion was further investigated by Jankovic and Hamlett [8]. Recently, the nation of *-connected ideal topological spaces has been introduced and studied in [7], [13], [14], [12] and [10].

Csaszar [6] introduced the notion of generalized topological space with hereditary class. This is a generalization of an ideal topological space. In this paper, we introduce a new type of connected set on a generalized topological space with a hereditary class and investigate properties of this connectedness. We interrelate this connected set with many types of connected set which have been defined by Modak and Noiri in [11].

2. Preliminaries

Let X be a nonempty set and P(X) the power set of X. A subset μ of P(X) is called a generalized topology (GT) [1,3,4,5] if $\emptyset \in \mu$ and the arbitrary union of members of μ is in μ . A generalized topology μ is called a quasi-topology [5] on X if U, $V \in \mu$ implies $U \cap V \in \mu$. A nonempty subset \mathcal{H} of P(X) is called a hereditary class [6] of X if $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$. For each subset A of

 $2000\ Mathematics\ Subject\ Classification:\ 54A05,\ 54C05,\ 54D05$

X, a subset $A^*(\mathcal{H})$ (briefly A^*) of X is defined in [6] as follows: $A^*(\mathcal{H}) = \{x \in X : U \cap A \notin \mathcal{H} \text{ for every } U \in \mu \text{ containing } x\}$. If $c_{\mu^*}(A) = A \cup A^*$ for each subset A of X, then $\mu^* = \{A \subset X : c_{\mu^*}(X - A) = X - A\}$ is a generalized topology on X finear than μ [6].

Let us recall some properties established in [6] and [11].

Lemma 2.1. [6]. For a subset A of X, the following properties hold:

- (1) $A \subset B$ implies $A^* \subset B^*$,
- (2) A^* is a μ -closed, that is, $X A^* \in \mu$,
- (3) $A^* \subset c_{\mu}(A)$, where $c_{\mu}(A) = \bigcap \{ F \subset X : A \subset F, X F \in \mu \}$.

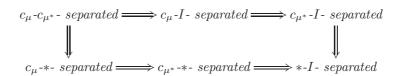
Lemma 2.2. [6]. The family $\mathcal{B} = \{M - H : M \in \mu, H \in \mathcal{H}\}$ is a base for μ^* .

In the sequel, a generalized topological space (X, μ) with a hereditary class \mathcal{H} is dented by (X, μ, \mathcal{H}) and is called a GTSH. Let (X, μ, \mathcal{H}) be a GTSH. The closure of a subset A of X in (X, μ^*) is denoted by $c_{\mu^*}(A)$.

Definition 2.3. [11]. Let (X, μ, \mathcal{H}) be a generalized topology with a hereditary class \mathcal{H} . Nonempty disjoint subsets A, B of (X, μ, \mathcal{H}) are said to be

- (1) c_{μ} - c_{μ^*} -separated if $c_{\mu}(A) \cap c_{\mu^*}(B) = \emptyset = c_{\mu^*}(A) \cap c_{\mu}(B)$,
- (2) c_u -I-separated if $c_u(A) \cap B = \emptyset = A \cap c_u(B)$,
- (3) c_{μ^*} -I-separated if $c_{\mu^*}(A) \cap B = \emptyset = A \cap c_{\mu^*}(B)$,
- (4) c_{μ} -*-separated if $c_{\mu}(A) \cap B^* = \emptyset = A^* \cap c_{\mu}(B)$,
- (5) c_{μ^*} -*-separated if $c_{\mu^*}(A) \cap B^* = \emptyset = A^* \cap c_{\mu^*}(B)$,
- (6) *-I-separated if $A^* \cap B = \emptyset = A \cap B^*$.

Theorem 2.4. [11]. For a subset of (X, μ, \mathcal{H}) , the following implications hold:



The authors Modak and Noiri in [11] have shown that the converses of the above implications need not hold in general.

3. $\mu - \mu^*$ -connectedness

Definition 3.1. Nonempty disjoint subsets A, B of a GTSH (X, μ, \mathcal{H}) are called $\mu - \mu^*$ - separated if $c_{\mu}(A) \cap B = \emptyset = A \cap c_{\mu^*}(B)$.

If $c_{\mu}(A) \cap B = \emptyset$ implies $c_{\mu^*}(A) \cap B = \emptyset$. Then every μ - μ^* - separated sets are c_{μ^*} -I - separated sets [11]. Again $A \cap c_{\mu^*}(B) = \emptyset$ does not necessarily imply $A \cap c_{\mu}(B) = \emptyset$. So they are not separated sets in (X, μ^*) .

Theorem 3.2. Let (X, μ, \mathcal{H}) be a GTSH. Then

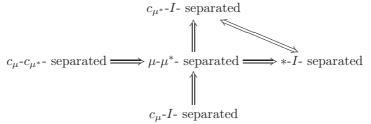
- (1) every μ - μ * separated sets is *-I separated.
- (2) every c_{μ} - c_{μ^*} separated sets is μ - μ^* separated.

- (3) every c_{μ} -I separated sets is $\mu \mu^*$ separated.
- (4) every μ - μ * separated sets is c_{μ} *-I separated.

Proof: The proof is obvious from the following fact.

- (1) $A^* \cap B \subset c_{\mu}(A) \cap B$ and $A \cap B^* \subset A \cap c_{\mu^*}(B)$.
- (2) $c_{\mu}(A) \cap B \subset c_{\mu}(A) \cap c_{\mu^*}(B)$ and $A \cap c_{\mu^*}(B) \subset c_{\mu}(A) \cap c_{\mu^*}(B)$.
- (3) $A \cap c_{\mu^*}(B) \subset A \cap c_{\mu}(B)$.
- (4) $c_{\mu^*}(A) \cap B \subset c_{\mu}(A) \cap B$.

From this Theorem and the Theorem 3.2 of [11] we get following diagram:



It is obvious that every c_{μ^*} -I - separated set is a *-I - separated set. Again if A and B are *-I - separated sets, then $A^* \cap B = \emptyset = A \cap B^*$. Now $(A \cup A^*) \cap B = (A \cap B) \cup (A \cap B) = \emptyset$. Similarly $c_{\mu^*} \cap A = \emptyset$.

Converse implications are not true in general.

Example 3.3. (1) Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$. Then $(\{a\})^* = \emptyset$ and $(\{b, c, d\})^* = \{c, d\}$. Now $c_{\mu^*}(\{a\}) \cap (\{b, c, d\}) = \emptyset = (\{a\}) \cap c_{\mu^*}(\{b, c, d\})$. So $\{b, c, d\}$ and $\{a\}$ are c_{μ^*} -I - separated but not μ - μ^* - separated, because $c_{\mu}(\{a\}) = X$.

(2) $X = \{a, b\}, \ \mu = \{\emptyset, \{a\}, X\} \ and \ \mathcal{H} = \{\emptyset, \{a\}\}. \ Here \ \mu^* = \{\emptyset, \{a\}, \{b\}, X\}, (\{a\})^* = \emptyset \ and \ (\{b\})^* = \{b\}. \ Therefore \ \{b\} \ and \ \{a\} \ are \ \mu - \mu^* - separated \ sets \ but they are not \ c_{\mu} - I - separated, \ because \ c_{\mu}(\{a\}) = X. \ Again \ c_{\mu^*}(\{b\}) \cap c_{\mu}(\{a\}) \neq \emptyset.$ Therefore \{b\} \ and \{a\} \ are not \ c_{\mu} - c_{\mu^*} - separated \ sets.

Theorem 3.4. Let A and B are two μ - μ^* - separated If $C \subset A$ and $D \subset B$ then C and D are also μ - μ^* - separated.

Proof: Proof is obvious from the fact $c_{\mu}(C) \subset c_{\mu}(A)$ and $c_{\mu^*}(D) \subset c_{\mu^*}(B)$.

Theorem 3.5. Let (X, μ, \mathcal{H}) be a GTSH. If A and B are nonempty disjoint μ -open sets, then A and B are $\mu - \mu^*$ - separated.

Proof: Proof is obvious from the fact that $c_{\mu}(A) \subset c_{\mu}(X-B) = (X-B)$ and $c_{\mu}(A) \cap B = \emptyset$ and $c_{\mu^*}(B) \subset c_{\mu^*}(X-A) = (X-A)$ and $c_{\mu^*}(B) \cap A = \emptyset$.

Lemma 3.6. For $U, V \subset X$, the following statements are equivalent:

- (a) U and V are μ - μ^* separated;
- (b) There are μ closed sets F_U and F_V such that $U \subset F_U \subset X V$ and

 $V \subset F_V \subset X - U$;

(c) There are μ - open sets G_U and G_V such that $U \subset G_U \subset X - V$ and $V \subset G_V \subset X - U$.

Proof: (a) \Rightarrow (b). Put $F_U = c_{\mu}(U)$, $F_V = c_{\mu^*}(V)$. Then F_U and F_V are μ -closed sets and $U \subset F_U \subset X - V$ (since $c_{\mu}(U) \cap V = \emptyset$), $V \subset F_V \subset X - U$ (since $c_{\mu^*}(V) \cap U = \emptyset$).

(b) \Rightarrow (c). Put $G_U = X - F_V$, $G_V = X - F_U$. Now from complement, we have $V \subset X - F_U \subset X - U$ and $U \subset X - F_V \subset X - V$. Therefore, $V \subset G_V \subset X - U$ and $U \subset G_U \subset X - V$.

(c) \Rightarrow (b). Put $F_U = X - G_V$, $F_V = X - G_U$. Then $X - F_U = G_V$ i.e. $V \subset F_U \subset X - V$. Similarly $V \subset F_V \subset X - U$.

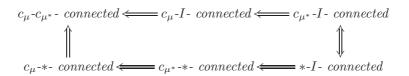
(b) \Rightarrow (a). Clearly $c_{\mu}(U) \subset F_U$ and $c_{\mu^*}(V) \subset F_V$. Then $c_{\mu}(U) \cap V \subset (X-V) \cap V = \emptyset$ and similarly $c_{\mu^*}(V) \cap U = \emptyset$.

Now we recall the following definition and a theorem from [11].

Definition 3.7. [11]. A subset A of a GTSH (X, μ, \mathcal{H}) is said to be P-Q-connected if A is not the union of two P-Q-separated sets in (X, μ, \mathcal{H}) , where P and Q denote the operations in Definition 3.1.

For example, in case $P = c_{\mu^*}$ and $Q = *, (X, \mu, \mathcal{H})$ is said to be c_{μ^*} -*-connected if X cannot be written as the disjoint union of two nonempty c_{μ^*} -*- separated sets.

Theorem 3.8. [11]. For a subset of (X, μ, \mathcal{H}) , the following implications hold:



Definition 3.9. A subset A of a GTSH (X, μ, \mathcal{H}) is called μ - μ^* -connected if A is not the union of two μ - μ^* - separated sets in (X, μ, \mathcal{H}) .

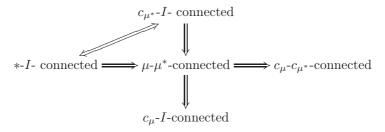
 μ - μ^* - connectedness neither a c_μ - c_{μ^*} - connectedness nor a connectedness of (X,μ^*) .

Theorem 3.10. Let (X, μ, \mathcal{H}) be a GTSH. Then

- (1) every *-I connected set is μ - μ * connected.
- (2) every μ - μ^* connected set is c_{μ} - c_{μ^*} connected.
- (3) every μ - μ^* connected set is c_{μ} -I connected.
- (4) every c_{μ^*} -I connected set is μ - μ^* connected.

Proof: Proof is obvious from Theorem 3.2.

From this theorem and the Theorem 3.8, we get following diagram:



From Example 3.3(1), we have X is not a c_{μ^*} -I - connected set but it is μ - μ^* - connected. Again from Example 3.3(2), we get X is c_{μ} -I - connected but not μ - μ^* - connected although it is c_{μ} - c_{μ^*} - connected.

Lemma 3.11. Let (X, μ, \mathcal{H}) be a GTSH. If A is a $\mu - \mu^*$ -connected of X and H, G are μ - μ^* - separated subsets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof: Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $c_{\mu}(A \cap G) \cap (A \cap H) \subset c_{\mu}(G) \cap H = \emptyset$. By similar way, we have $c_{\mu^*}(A \cap H) \cap (A \cap G) = \emptyset$. Suppose $A \cap H$ and $A \cap G$ are nonempty. Then A is not a μ - μ^* - connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subset H$ or $A \subset G$.

Theorem 3.12. Let (X, μ, \mathcal{H}) be a QTSH. If A and B are μ - μ^* - separated of X and $A \cup B \in \mu$, then $A, B \in \mu^*$.

Proof: Since A and B are μ - μ^* - separated, then $B = (A \cup B) \cap (X - c_{\mu}(A))$. Since $A \cup B \in \mu$ and $c_{\mu}(A)$ is μ -closed in X, then B is μ -open. By the similar way A is μ^* -open.

Theorem 3.13. If A and B are μ - μ *-connected sets of a GTSH such that none of them is μ - μ * - separated, then $A \cup B$ is μ - μ * - connected.

Proof: Let A and B be μ - μ^* - connected in X. Suppose $A \cup B$ is not μ - μ^* - connected. Then, there exist two nonempty disjoint μ - μ^* - separated sets G and H such that $A \cup B = G \cup H$. Since A and B are μ - μ^* - connected, by Lemma 3.11, either $A \subset G$ and $B \subset H$ or $B \subset G$ and $A \subset H$. Now if $A \subset G$ and $B \subset H$, then $A \cap H = B \cap G = \emptyset$. Therefore, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = (A \cap G) \cup \emptyset = A \cap G = A$. Also, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = B \cap H = B$. Now, $c_{\mu}((A \cup B) \cap H) \cap ((A \cup B) \cap G) \subset c_{\mu}(A \cup B) \cap c_{\mu}(H) \cap (A \cup B) \cap G = (A \cup B) \cap c_{\mu}(H) \cap G = \emptyset$ and $((A \cup B) \cap H) \cap c_{\mu^*}((A \cup B) \cap G) \subset (A \cup B) \cap (H) \cap c_{\mu^*}(A \cup B) \cap c_{\mu^*}(G) = (A \cup B) \cap H \cap c_{\mu^*}(G) = \emptyset$. Therefore $(A \cup B) \cap G$ and $(A \cup B) \cap H$ are μ - μ^* - separated sets. Thus, A and B are μ - μ^* -separated, which is a contradiction. Hence, $A \cup B$ is μ - μ^* - connected.

Theorem 3.14. If $\{M_i : i \in I\}$ is a nonempty family of μ - μ^* - connected sets of a GTSH, then $\bigcup_{i \in I} M_i$ is $\mu - \mu^*$ - connected.

Proof: Suppose $\bigcup_{i\in I} M_i$ is not μ - μ^* - connected. Then we have $\bigcup_{i\in I} M_i = H \cup G$, where H and G are μ - μ^* - separated sets in X. Since $\bigcap_{i\in I} M_i \neq \emptyset$, we have a point $x\in \bigcap_{i\in I} M_i$. Since $x\in \bigcup_{i\in I} M_i$, either $x\in H$ or $x\in G$. Suppose that $x\in H$. Since $x\in M_i$ for each $i\in I$, then M_i and H intersect for each $i\in I$. By Lemma 3.11, $M_i\subset H$ or $M_i\subset G$. Since H and G are disjoint, $M_i\subset H$ for all $i\in I$ and hence $\bigcup_{i\in I} M_i\subset H$. This implies that G is empty. This is a contradiction. Suppose that $x\in G$. By the similar way, we have that H is empty. This is a contradiction. Thus, $\bigcup_{i\in I} M_i$ is μ - μ^* - connected.

Theorem 3.15. Let (X, μ) be a GTS, $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of $\mu - \mu^*$ -connected. If $A \cap A_{\alpha} \neq \emptyset$ for every α , then $A \cup (\cup A_{\alpha})$ is μ - μ^* - connected.

Proof: Since $A \cap A_{\alpha} \neq \emptyset$ for each $\alpha \in \Delta$, by Theorem 3.14, $A \cup A_{\alpha}$ is $\mu - \mu^*$ -connected for each $\alpha \in \Delta$. Moreover, $A \cup (\cup A_{\alpha}) = \cup (A \cup A_{\alpha})$ and $\cap (A \cup A_{\alpha}) \supset A \neq \emptyset$. Thus by Theorem 3.14, $A \cup (\cup A_{\alpha})$ is μ - μ^* -connected.

Theorem 3.16. If A is a μ - μ * - connected subset of (X, μ, \mathcal{H}) and $A \subset B \subset c_{\mu}(A)$, then B is also a μ - μ * - connected.

Proof: Suppose B is not a μ - μ * - connected subset of (X, μ, \mathcal{H}) then there exist μ - μ * - separated sets H and G such that $B = H \cup G$. This implies that H and G are nonempty and $c_{\mu}(G) \cap H = \emptyset = G \cap c_{\mu}{}^{*}(H)$. By Lemma 3.11, we have that either $A \subset H$ or $A \subset G$. Suppose that $A \subset H$. Then $c_{\mu}(A) \subset c_{\mu}(H)$ and $G \cap c_{\mu}(A) = \emptyset$ (from above). This implies that $G \subset B \subset c_{\mu}(A)$ and $G = c_{\mu}(A) \cap G = \emptyset$. Thus G is an empty set. Since G is nonempty, this is a contradiction. Hence, G is G is nonempty.

Corollary 3.17. If A is a μ - μ * - connected subset of (X, μ, \mathcal{H}) then $c_{\mu}(A)$ is also a μ - μ * - connected subset of X.

Definition 3.18. Let (X, μ, \mathcal{H}) be a GTSH and $x \in X$. Then union of all μ - μ * - connected subsets of X containing x is called the μ - μ * - component of X containing x.

Theorem 3.19. Each μ - μ^* - component of a GTSH (X, μ, \mathcal{H}) is a maximal μ - μ^* - connected set of X.

Theorem 3.20. The set of all distinct μ - μ *-component forms a partition of X.

Theorem 3.21. Each μ - μ * - component of a GTSH is μ - closed in X.

Proof: Suppose A is a μ - μ^* - component in X. Again $c_{\mu}(A)$ is also a μ - μ^* - connected set in X. So $A = c_{\mu}(A)$, therefore A is μ -closed.

4. Images and preimages of μ -connected sets

Let $f:(X,\mu)\to (Y,\mu')$ be a function. We say that f is (μ,μ') - continuous [1] if and only if $f^{-1}(A)$ is μ -open whenever A is μ' -open.

Lemma 4.1. If f is (μ, μ') - continuous and U', $V' \subset X'$ are μ - μ^* - separated in X', then $f^{-1}(U')$, $f^{-1}(V')$ are μ - μ^* - separated in X.

Proof: By Lemma 3.6, there exists μ' - open sets $G_{U'}$, $G_{V'}$ such that $U' \subset G_{U'} \subset X' - V'$ and $V' \subset G_{V'} \subset X' - U'$. Then $f^{-1}(U') \subset f^{-1}(G_{U'}) \subset X - f^{-1}(V')$ and $f^{-1}(V') \subset f^{-1}(G_{V'}) \subset X - f^{-1}(U')$, with μ -open sets $f^{-1}(G_{U'})$, $f^{-1}(G_{V'})$. Hence by Theorem 3.5, $f^{-1}(U')$ and $f^{-1}(V')$ are μ - μ * - separated.

Theorem 4.2. If $S \subset X$ if μ - μ^* - connected and f is (μ, μ') - continuous, then f(S) is μ - μ^* - connected in Y.

Proof: Suppose $f(S) = U' \cup V'$ with $\mu - \mu^*$ - separated sets U', V'. Then by Lemma 4.1, we have $S \subset f^{-1}(U') \cup f^{-1}(V')$ and $f^{-1}(U')$, $f^{-1}(V')$ are $\mu - \mu^*$ - separated so that, by Lemma 3.11, either $S \subset f^{-1}(U')$ or $S \subset f^{-1}(V')$, i.e. $f(S) \subset U'$ or $f(S) \subset V'$ and $V' = \emptyset$ or $U' = \emptyset$.

Recall that f is (μ, μ') - open if f(S) is μ' - open, for each μ - open set S [2].

Theorem 4.3. If f is (μ, μ') - open and injective, U, $V \subset X$ are $\mu - \mu^*$ - separated then f(U), f(V) are $\mu - \mu^*$ - separated in Y.

Proof: By Lemma 3.6, there exists μ - open sets G_U , G_V such that $U \subset G_U \subset X - V$ and $V \subset G_V \subset X - U$. Then we have $f(U) \subset f(G_U) \subset f(X - V)$ and $f(V) \subset f(G_V) \subset f(X - U)$ for the μ' - open sets $f(G_U)$, $f(G_V)$. By hypothesis $f(X - U) \subset X' - f(U)$ and $f(X - V) \subset X' - f(V)$ so that Lemma 3.6 shows that μ - μ * - separated property of f(U) and f(V).

Conclusion

If μ and \mathcal{H} in GTSH (X, μ, \mathcal{H}) are replaced by the topology τ and the ideal I in an ideal topological space (X, τ, I) , then we obtain the following:

- (1) μ - μ * separated coincides with * separated in [7].
- (2) μ - μ * connectedness coincides with $*_s$ connectedness in [7].
- (3) μ - μ * component coincides with * component in [7].

References

- A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar.,96 (4) (2002), 351 - 357.
- 2. A. Csaszar, γ connected sets, Acta Math. Hungar **101(4)** (2003), 273 279.
- A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53 - 66.

- 4. A. Csaszar, Futher remarks on the formula for γ -interior, Acta Math. Hungar., **113** (2006), 325 332.
- A. Csaszar, Remarks on quasi topologies, continuity, Acta Math. Hungar., 119 (2008), 197 -200.
- A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (1-2) (2008), 197 - 200.
- E. Ekici and T. Noiri, Connectedness in ideal topological spaces, Novi Sad J. Math. 38 (2) (2008), 65 - 70.
- 8. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295 310.
- 9. Y. K. Kim and W. K. Min, On operations induced by heredutary classes on generalized topological spaces, Acta Math. Hungar., 137 (1-2) (2012), 130 138.
- 10. K. Kuratowski, Topology, Vol I, Academic Press, New York, 1966.
- 11. S. Modak and T. Noiri, Mixed connectedness in GTS via hereditary classes, (submitted).
- 12. V. Renukadevi and K. Karuppayi, On modifications of generalized topologies via hereditary, J. Adv. Res. Pure Math., **2(2)** (2010), 14 20.
- V. Renukadevi and P. Vimaladevi, Note on generalized topological spaces with hereditary calsses, Bol. Soc. Paran. Mat., 3s 32 (2014), 89 - 97.
- 14. N. Sathiyasundari and V. Renukadevi, Note on *-connected ideal spaces, Novi Sad J. Math. 42 (1) (2012), 15 20.
- 15. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.

Shyamapada Modak
Department of Mathematics,
University of Gour Banga, P.O. Mokdumpur,
Malda - 732103, India
E-mail address: spmodak2000@yahoo.co.in