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abstract: In the present work, the authors used the Laplace transform - pertur-
bation method to solve certain linear and non-linear systems of fractional differential
and difference equations with constant coefficients with the fractional derivatives in
the Caputo sense. We also considered the problems of string vibrations in different
cases with fractional damping. Another purpose of this article is to evaluate certain
integrals. Illustrative examples are also provided.

Key Words: Laplace transform, Integral representation, Caputo fractional
derivative, Fractional differential equations, Perturbation method, Fractional dif-
ference equation.

Contents

1 Introduction and Definitions 83

2 Perturbation-Laplace Transform Method

for Solving Fractional Order System 86

3 Computation of Certain Integrals and

Inverse Laplace Transform of the

Object Functions by Means of Integral Representation 89

4 Evaluation of Integrals 91

5 Fractional Oscillations and Fractional Delay Systems 95

6 Conclusion 103

1. Introduction and Definitions

In the present study, the fractional derivatives are understood in the Caputo
sense. The reason for adopting the Caputo definition is as follows: There are several
approaches to the generalization of the notion of differentiation to fractional or-
ders e.g. Riemann-Liouville, Grnwald-Letnikov, Caputo and generalized functions
approach [12]. Riemann-Liouville fractional derivative is mostly used by mathe-
maticians but this approach is not suitable for real world physical problems since
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it requires the definition of fractional order initial conditions, which have no phys-
ically meaningful explanation yet. Caputo introduced an alternative definition,
which has the advantage of defining integer order initial conditions for fractional
order differential equations [4].

By aI
α
t f(t) we denote the fractional integral of f with order α > 0 on [0, t]

defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a

f(x)

(t− x)1−α
dx.

This integral is sometimes called the left-sided fractional integral. For the con-
cept of fractional derivative we will adopt Caputo’s definition which is a modifica-
tion of the Riemann-Liouville definition and has the advantage of dealing properly
with initial value problems in which the initial conditions are given in terms of the
field variables and their integer order which in the case in most physical processes.
The Caputo fractional derivative is more suited than the usual Riemann-Liouville
derivative for the applications in several engineering problems due to the fact that
it has better relations with the Laplace transform and because the differentiation
appears inside instead than outside, the integral, so to alleviate the effects of noise
and numerical differentiation.

For an arbitrary real number α > 0 (n− 1 ≤ α < n, n ∈ N) Caputo fractional
derivative is given as

C
a D

α
t f(t) = aI

n−α
t f (n)(t) =

1

Γ(n− α)

∫ t

a

f (n)(x)

(t− x)α−n+1
dx.

The direct Laplace transform of a function f(t) defined for 0 ≤ t < ∞ is the
ordinary calculus integration problem

L{f(t) } =

∫ ∞

0

e−stf(t)dt := F (s).

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
etsF (s)ds (t > 0),

where F (s) is analytic in the region Re(s) > c and f(t) = 0 for t < 0. This
result is called complex inversion formula. It is also known as Bromwich’s integral
formula. The one-dimensional convolution theorem of f(x) and g(x) is given by

f(x) ∗ g(x) =
∫ x

0

f(x− w)g(w)dw.

Two-parameter function of the Mittag-Leffler type is defined by the series ex-
pansion

Eα,β(z) =

∞
∑

n=0

zn

Γ(αn+ β)
.
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Theorem 1.1. When n− 1 ≤ α < n, we have

L{C0 Dα
t f(t)} = sαF (s)−

n−1
∑

k=0

sα−k−1f (k)(0).

Proof: See [11]. ✷

Theorem 1.2. Let f(t) be continues, positive, and increasing for 0 < t < +∞.

Then the following complex integral relationships hold true,

a) f(
t

a
) =

1

2πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

exp(−asf−1(ε))dε

)

ds,

b) cosh−1 t

a
=

1

2πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

exp(−as cosh t)dε

)

ds,

c) f(
1

t
) =

1

2πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

exp(− s

f−1(ε)
)dε

)

ds,

d) g(f(t))− g(0) =
1

2πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

g′(ε) exp(−sf−1(ε))dε

)

ds.

Proof: a) Let us consider the following integral

1

2 πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

exp(−asf−1(ε))dε

)

ds

changing the order of integration which is permissible yields

=

∫ ∞

0

(

1

2πi

∫ c+i∞

c−i∞

ets

s
e−asf−1(ε)ds

)

dε =

∫ ∞

0

L−1

{

1

s
e−asf−1(ε)ds

}

dε

=

∫ ∞

0

h(t− af−1(ε))dε =

∫ f( t
a
)

0

dε = f(
t

a
).

where h is Heaviside’s unit step function.
b, c) The proofs are straight forward. Note that (b) is a particular example of

(a).
d) Let us consider the following integral

1

2πi

∫ c+i∞

c−i∞

ets

s

(
∫ ∞

0

g′(ε) exp(−sf−1(ε))dε

)

ds

changing the order of integration which is permissible yields
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=

∫ ∞

0

(

1

2πi

∫ c+i∞

c−i∞

ets

s
g′(ε) exp(−sf−1(ε))ds

)

dε

=

∫ ∞

0

g′(ε)L−1

{

1

s
exp(−sf−1(ε))ds

}

dε

at this point, by using the table of Laplace transform and elementary properties
of Heaviside’s unit step function, we get

=

∫ ∞

0

g′(ε)h(t− f−1(ε))dε =

∫ f(t)

0

g′(ε)dε = g(f(t))− g(0).

✷

2. Perturbation-Laplace Transform Method for Solving Fractional
Order System

Most scientific problems and physical phenomena occur nonlinearly. Except in
a limited number of these problems, finding the exact analytical solutions of such
problems are rather difficult. Therefore, there have been attempts to develop new
techniques for obtaining analytical solutions which reasonably approximate the ex-
act solutions. In recent years, several such techniques have drawn special attention,
such as Hirota’s bilinear method, the homogeneous balance method, inverse scat-
tering method, Adomian’s decomposition method -ADM-, the variational iteration
method -VIM-, and homotopy analysis method -HAM- as well as homotopy per-
turbation method -HPM-. The method has been used by many authors to handle
a wide variety of scientific and engineering applications to solve various functional
fractional equations. In this method, the solution is considered as the sum of an in-
finite series, which converges rapidly to accurate solutions. Recently, considerable
research work has been conducted in applying this method to the fractional linear
and nonlinear equations. The concept of He’s homotopy perturbation method is
introduced briefly for applying this method for problem solving. The results of
HPM as an analytical solution are then compared with those derived from Ado-
mian’s decomposition method -ADM- and the variational iteration method -VIM-.
The results reveal that the HPM is very effective and convenient in predicting the
solution of such problems, and it is predicted that HPM can find a wide applica-
tion in new engineering problems [5]. Convergence of the homotopy perturbation
method can be found in [20]. In following, we solve fractional Chen’s system with
perturbation-Laplace transform method. Li and Peng found that chaos does ex-
ist in ChenÆs system with a fractional order. Deng, Li and Lu [24] studied the
stability of n-dimensional linear fractional differential equation with time delays.
By using the Laplace transform, they introduced a characteristic equation for the
above system with multiple time delays. they discovered that if all roots of the
characteristic equation have negative parts, then the equilibrium of the above lin-
ear system with fractional order is Lyapunov globally asymptotical stable if the
equilibrium exist that is almost the same as that of classical differential equations.
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Problem 2.1. We consider generalized fractional Chen’s system























C
0 D

α1
t x(t) = ay(t)− bx(t) + f1(t)

C
0 D

α2
t y(t) = cx(t)− x(t)z(t) + dy(t) + f2(t)

C
0 D

α3
t z(t) = x(t)y(t)− ez(t) + f3(t)

,

where x(0) = y(0) = z(0) = 0 and 0 < αi ≤ 1 for i = 1, 2, 3.
Solution. According to perturbation method, we replace the previous system

by























C
0 D

α1
t xε(t) = ayε(t)− bxε(t) + εf1(t)

C
0 D

α2
t yε(t) = c xε(t)− xε(t)zε(t) + dyε(t) + εf2(t)

C
0 D

α3
t zε(t) = xε(t)yε(t)− ezε(t) + εf3(t)

,

when

xε(t) =

∞
∑

n=1

εnxn(t) , yε(t) =

∞
∑

n=1

εnyn(t) , zε(t) =

∞
∑

n=1

εnzn(t).

By setting the above representations of xε, yε and zε in the above system, we
get























εC0 D
α1
t x1 + ε2C0 D

α1
t x2 + · · · = ε{f1 + ay1 − bx1}+ ε2{ay2 − bx2}+ · · ·

εC0 D
α2
t y1 + ε2C0 D

α2
t y2 + · · · = ε{f2 + cx1 + dy1} − ε2x1z1 + · · ·

εC0 D
α3
t z1 + ε2C0 D

α3
t z2 + · · · = ε{f3 − ez1}+ ε2x1y1 + · · ·

.

If we set equal all the coefficients of the same exponents of ε on both sides, we
get























C
0 D

α1
t x1 = f1 + ay1 − bx1

C
0 D

α2
t y1 = f2 + cx1 + dy1

C
0 D

α3
t z1 = f3 − ez1

,























C
0 D

α1
t x2 = ay2 − bx2

C
0 D

α2
t y2 = −x1z1

C
0 D

α3
t z2 = x1y1

, . . . ..

The Laplace transform of the first system gives

Z1(s) =
F3(s)

sα3 + e
,

X1(s) =
aF2(s) + (sα2 − d)F1(s)

sα1+α2 + bsα2 − dsα1 − (ac+ bd)
,
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Y1(s) =
1

sα2 − d
(F2(s) + cX1(s)).

where Fi(s) = L−1{fi(t)} for i = 1, 2, 3. At first, we obtain

L−1

{

1

sα1+α2 + bsα2 − dsα1 − (ac+ bd)

}

=
∞
∑

n=0

n
∑

k=0

(

n

k

)

dk(ac+ bd)n−k

n!
tα1n+(n+1)α2−α1(k−1)−1E

(n)
α1,(n+1)α2−α1(k−1)(−btα1).

Therefore

x1(t) = L−1{X1(s)} =

∞
∑

n=0

n
∑

k=0

(

n

k

)

adk(ac+ bd)n−k

n!

×
{

tα1n+(n+1)α2−α1(k−1)−1E
(n)
α1,(n+1)α2−α1(k−1)(−btα1) ∗ f2(t)

+ tα1n+nα2−α1(k−1)−1E
(n)
α1,nα2−α1(k−1)(−btα1) ∗ f1(t)

− tα1n+(n+1)α2−α1(k−1)−1E
(n)
α1,(n+1)α2−α1(k−1)(−btα1) ∗ f1(t)

}

,

and

y1(t) = L−1{Y1(s)}

=

∫ t

0

(f2(t− z) + cx1(t− z))zα2−1Eα2,α2(dz
α2)dz,

and lastly

z1(t) =

∫ t

0

f3(t− z)zα3−1Eα3,α3(−ezα3)dz.

By application of the previous method successively, we get all x2, y2, z2, . . . .
A special case: α1 = α2 = α3 = 1

2 , d = 0, a = b = c = e = 1, f1 = f2 = f3 =
1. Then we will have

Z1(s) =
1

s

1√
s+ 1

, X1(s) = (
1

s
+

1√
s
)

1

s+
√
s− 1

, Y1(s) =
1√
s
(
1

s
+X1(s)).

Applying the Laplace transform inversion, we get

L−1{ 1√
s+ 1

} =
1√
πt

− eterfc(
√
t),
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L−1{ 1

s+
√
s− 1

} =
1√
3

(

αetα
2

erfc(−α
√
t) + βetβ

2

erfc(β
√
t)
)

,

where α =
√
3−1
2 and β =

√
3+1
2 . Therefore

z1(t) =

∫ t

0

(

1√
πy

− eyerfc(
√
y)

)

dy = 2

√

t

π
−
∫ t

0

eyerfc(
√
y)dy,

x1(t) =
1√
3

∫ t

0

(

1 +
1

√

π(t− z)

)

(

αezα
2

erfc(−α
√
z) + βezβ

2

erfc(β
√
z)
)

dz,

y1(t) = 2

√

t

π
+

1√
π

∫ t

0

x1(z)√
t− z

dz.

Fractional order systems, or systems containing fractional derivatives and in-
tegrals, have been studied by many authors in the engineering area. Additionally,
very readable discussions, devoted specifically to the subject, are presented by Old-
ham and Spanier (1974) and Miller and Ross (1993) and Podlubny (1999). It should
be noted that there are a growing number of physical systems whose behavior can
be compactly described using fractional system theory.

3. Computation of Certain Integrals and Inverse Laplace Transform of
the Object Functions by Means of Integral Representation

An interesting application of Laplace transforms involves the evaluation of in-
tegrals. In this section, we have implemented integral representation method to
evaluate certain integrals and inverse Laplace transform of the object functions.

Lemma 3.1. By using the integral representation, we may show that

∫ ∞

0

Jv(
a

x
)Jv(bx)dx =

1

b
J2ν(2

√
ab),

where Jν is Bessel function.

Proof: It is well-known that

(
2

z
)νJν(z) =

1

2πi

∫

C

eεe−
z2

4ε

εv+1
dε.

Then, the left hand side of the above integral relation can be written as following
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∫ ∞

0

Jv(
a

x
)Jv(bx)dx =

(ab2 )
ν

(2πi)2

∫

C2

∫

C1

eη+ξ

(ηξ)ν+1

(
∫ ∞

0

e
− b2

4η x2− a2

4ξx2 dx

)

dξdη

=

√
πaνbν−1

22ν
1

(2πi)2

∫

C2

∫

C1

eη+ξ

(ηξ)ν+1
e
− ab

2
√

ξη dξdη

=

√
πaνbν−1

22ν
1

2πi

∫

C2

(

1

2πi

∫

C1

eξ

ξν+1 e
− ab

2
√

η
√

ξ dξ

)

eη

ην+
1
2

dη

=

√
πaνbν−1

22ν
1

2πi

∫

C2

L−1

{

e
− ab

2
√

η
√

ξ

ξν+1 , ξ → x

}

∣

∣

∣

∣ x = 1

eη

ην+
1
2

dη

=

√
πaνbν−1

22ν
1

2πi

∫

C2

( ∞
∑

n=0

(−ab
2 )

n

n!Γ(n2 + ν + 1)η
n
2

)

eη

ην+
1
2

dη

=

√
πaνbν−1

22ν

∞
∑

n=0

(−ab
2 )

n

n!Γ(n2 + ν + 1)

(

1

2πi

∫

C2

eη

η
n
2 +ν+ 1

2

dη

)

=

√
πaνbν−1

22ν

∞
∑

n=0

(−ab
2 )

n

n!Γ(n2 + ν + 1)

(

L−1

{

1

η
n
2 +ν+ 1

2

} ∣

∣

∣

∣ y = 1

)

=

√
πb

22ν

∞
∑

n=0

(−1)n(ab)n+ν

2nn!Γ(n2 + ν + 1)Γ(n2 + ν + 1
2 )

.

Note that
∫

C1
and

∫

C2
are contour integration. On the other hand

22x−1Γ(x)Γ(x +
1

2
) =

√
πΓ(2x),

and by setting x = n
2 + ν + 1

2 in the above relation, we get

Γ(
n

2
+ ν + 1)Γ(

n

2
+ ν +

1

2
) =

√
π

2n+2ν
Γ(n+ 2ν + 1).

Finally, final solution is obtained

∫ ∞

0

Jv(
a

x
)Jv(bx)dx =

1

b

∞
∑

n=0

(−1)n(ab)n+ν

n!Γ(2ν + n+ 1)
=

1

b
J2ν(2

√
ab).

✷

Lemma 3.2. By applying the integral representation, show that

∫ ∞

0

sin(t
√
x2 − a2)√

x2 − a2
cos(bx)dx =

π

2
I0

(

|a|
√

t2 − b2
)

h(1− |b
t
|),
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where I0 is modified Bessel function of zero order and h is Heaviside’s unit step

function.

Proof: It is shown that

sin(t
√
x2 − a2)√

x2 − a2
=

√
πt

2
L−1

{

e−
x2

−a2

4z t2

z
3
2

, z → ε

}

∣

∣

∣

∣ ε = 1

=

√
πt

2

1

2πi

∫

C

ez
e−

x2
−a2

4z t2

z
3
2

dz.

Hence

∫ ∞

0

sin(t
√
x2 − a2)√

x2 − a2
cos(bx)dx =

∫ ∞

0

(√
πt

2

1

2πi

∫

C

ez
e−

x2
−a2

4z t2

z
3
2

dz

)

cos(bx)dx

=

√
πt

2

1

2πi

∫

C

eze
a2

4z t2

z
3
2

(
∫ ∞

0

e−
t2

4z x
2

cos(bx)dx

)

dz

=

√
πt

2

1

2πi

∫

C

eze
a2

4z t2

z
3
2

(√
πz

t

)

e−
b2

t2
zdz

=
π

2

1

2πi

∫

C

e(1−
b2

t2
)ze

a2

4z t2

z
dz

=
π

2
L−1

{

e
a2

4z t2

z
, z → ε

}

∣

∣

∣

∣ ε = 1− b2

t2
.

According to definition of Laplace transform, we must have ε > 0 or | bt | ≤ 1.
Then

∫ ∞

0

sin(t
√
x2 − a2)√

x2 − a2
cos(bx)dx =

π

2
I0

(

|a|
√

t2 − b2
)

h(1− |b
t
|).

✷

4. Evaluation of Integrals

In applied mathematics, the Kelvin functions berν(x) and beiν(x) are the
real and imaginary parts, respectively, of Jν(xe

3πi/4) where x is real, and Jν(z), is
the ν-th order Bessel function of the first kind. Similarly, the functions Kerν(x)
and Keiν(x) are the real and imaginary parts, respectively, of Kν(xe

πi/4), where
Kν(z) is the ν-th order modified Bessel function of the second kind. The Kelvin
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functions were investigated because they are involved in solutions of various en-
gineering problems occurring in the theory of electrical currents, elasticity and in
fluid mechanics. One of the main applications of Laplace transform is evaluating
the integrals as discussed in the following.

Lemma 4.1. The following integral relationship holds true

2

π

∫ ∞

0

λbei(
√
2λ)dλ

λ2 − ξ2
= ber(2

√

ξ).

Proof: Let us define the following function

I(t) =
2

π

∫ ∞

0

λbei(
√
2tλ)dλ

λ2 − ξ2
.

Laplace transform of I(t) yields

L{I(t)} =

∫ ∞

0

e−st

(

2

π

∫ ∞

0

λbei(
√
2tλ)dλ

λ2 − ξ2

)

dt.

Changing the order of integration, which is permissible, leads to

L{I(t)} =
2

π

∫ ∞

0

1

λ2 − ξ2

(
∫ ∞

0

e−stbei(
√
2λt)dt

)

dλ,

or,

L{I(t)} =
2

π

∫ ∞

0

1

λ2 − ξ2
(
1

s
sin

λ

2s
)dλ.

After simplifying, we get

L{I(t)} =
2

πs

∫ ∞

0

sin λ
2s

λ2 − ξ2
dλ.

At this point, by using table of integrals or residue theorem, we have the fol-
lowing

L{I(t)} =
2

πs
{π
2
cos

ξ

s
} =

1

s
cos

ξ

s
.

Taking inverse Laplace transform of the above relationship, we arrive at

I(t) = L−1{1
s
cos

ξ

s
} = ber(2

√

ξt).

Letting t = 1, we get

2

π

∫ ∞

0

λbei(
√
2λ)dλ

λ2 − ξ2
= ber(2

√

ξ).

✷
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Problem 4.2. With the aid of integral representation, we can find inverse
Laplace transform of the following object functions

f1(t) = L−1

{

e−
√
s2+a2

√
s2 + a2

}

,

f2(t) = L−1

{

sinh
√
s2 + a2√

s2 + a2

}

, (a > 0)

f3(t) = L−1

{

1√
s2 + a2(s+

√
s2 + a2)n+

1
2

}

, (Re(s) > |Im(a)|)

Solution. Using the Sonine integral relation, we have

∫ ∞

0

Kµ(s
√
x2 + z2)

(x2 + z2)
µ
2

xν+1Jν(ax)dx =
aν

sν
(s2 + a2)

µ−ν−1
2

zµ−ν−1
Kµ−ν−1(z

√

s2 + a2)

s > 0, a > 0, Re(ν) > −1, | arg(z)| < π

2

where Kµ is modified Bessel function.
For the proof, we may use the following integral representation for modified

Bessel function

Kµ(w) =
1

2
(
w

2
)µ
∫ ∞

0

e−τe−
w2

4τ
dτ

τµ+1
.

So that

∫ ∞

0

Kµ(s
√
x2 + z2)

(x2 + z2)
µ
2

xν+1Jν(ax)dx

=
sµ

2µ+1

∫ ∞

0

(
∫ ∞

0

e−τe−
s2(x2+z2)

4τ
dτ

τµ+1

)

xν+1Jν(ax)dx

=
sµ

2µ+1

∫ ∞

0

e−τe−
s2z2

4τ

(
∫ ∞

0

e−
s2x2

4τ xν+1Jν(ax)dx

)

dτ

τµ+1

=
sµ

2µ+1

∫ ∞

0

e−τe−
s2z2

4τ

(

2ν+1s−2ν−2τν+1aνe−
a2τ

s2

) dτ

τµ+1

=
aν

2µ−νs2ν+2−µ

∫ ∞

0

e−( s2+a2

s2
)τe−

s2z2

4τ
dτ

τµ−ν
.

With the change of variable s2+a2

s2 τ = t, we obtain

∫ ∞

0

Kµ(s
√
x2 + z2)

(x2 + z2)
µ
2

xν+1Jν(ax) dx
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=
aν(s2 + a2)

µ−ν−1
2

sνzµ−ν−1

1

2
(
z
√
s2 + a2

2
)µ−ν−1

∫ ∞

0

e−te−
z2(s2+a2)

4t
dτ

t(µ−ν−1)+1

=
aν(s2 + a2)

µ−ν−1
2

sνzµ−ν−1
Kµ−ν−1(z

√

s2 + a2).

By replacing ν = 0 and µ = 0.5, we get

∫ ∞

0

e−s
√

x2+z2

(x2 + z2)
1
2

xJ0(ax)dx =
e−z

√
s2+a2

√
s2 + a2

.

So that

L−1

{

e−z
√
s2+a2

√
s2 + a2

}

=

∫ ∞

0

xJ0(ax)

(x2 + z2)
1
2

L−1
{

e−s
√
x2+z2

}

dx

=

∫ ∞

0

δ(t−
√
x2 + z2)√

x2 + z2
xJ0(ax)dx.

By replacing u =
√
x2 + z2, we obtain

L−1

{

e−z
√
s2+a2

√
s2 + a2

}

=

∫ ∞

z

δ(t− u)J0(a
√

u2 − z2)du = J0(a
√

t2 − z2).

Also,

L−1

{

sinh
√
s2 + a2√

s2 + a2

}

=
1

2

∫ 1

−1

L−1
{

e−xs
}

I0(a
√

1− x2)dx

=
1

2

∫ 1

−1

δ(t− x)I0(a
√

1− x2)dx =
1

2
I0(a

√

1− t2),

L−1

{

1√
s2 + a2(s+

√
s2 + a2)n+

1
2

}

=
(−1)n

an+
1
2

∫ ∞

0

L−1{e−xs}H−n− 1
2
(ax)dx

=
(−1)n

an+
1
2

H−n− 1
2
(at),

where H is Struve’s function [22].



Perturbation Method for Linear and Non-Linear Fractional 95

5. Fractional Oscillations and Fractional Delay Systems

In this section, the authors considered certain time fractional differential equa-
tions which are a generalization to the problems of harmonic oscillators studied
earlier by many researchers in the literature. In this work, only the Laplace trans-
formation is considered as it is easily understood and being popular among engi-
neers and scientists. The basic goal of this work has been to employ the Laplace
transform method for studying the above mentioned problem. The goal has been
achieved by formally deriving exact analytical solution. The transform method in-
troduces a significant improvement in this field over existing techniques. The study
on fractional calculus equations, i.e., fractional-order differential equation (FODE)
and fractional-order integral equation (FOIE) which can describe more accurate
behaviors of real physical phenomenon and systems have become a hot topic in
the last decades. Fractional derivative provides a perfect tool when it is used to
describe the memory and hereditary properties of various materials and processes,
this is the main reason that fractional differential equations are being used in mod-
eling mechanical and electrical properties of real materials, rheological properties
of rocks, and many other fields. As an important application field of fractional
calculus, the topic about fractional-order control and system has attracted many
researchers to work on.

Problem 5.1. Solve the following Fractional differential equation

C
0 D

2α
t y(t) + ky(t) = −λC

0 D
β
t y(t) : y(0) = y0, y

′(0) = v0

where 0.5 < α ≤ 1 and 0 < β ≤ 1.
Solution. Applying the Laplace transform term wise to the above fractional

differential equation, we get

s2αY − v0s
2α−2 − y0s

2α−1 + kY = −λ(sβY − sβ−1 y0).

Therefore

Y = λy0
sβ−1

s2α + λsβ + k
+ v0

s2α−2

s2α + λsβ + k
+ y0

s2α−1

s2α + λsβ + k
.

The Laplace transform inversion yields

y(t) =

∞
∑

n=0

(−1)n

n!

(

λy0t
βn−2αnE

(n)
β,1−2αn(−

k

λ
tβ)

+ v0t
β(n+1)+1−2α(n+1)E

(n)
β,β+2−2α(n+1)(−

k

λ
tβ)

+ y0t
β(n+1)−2α(n+1)E

(n)
β,β+1−2α(n+1)(−

k

λ
tβ)

)

In special case, when α = β , v0 = 1 and y0 = 0, we get
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Y (s) =
s2α−2

s2α + sα + 1
=

s2α−2

(sα − e
2π
3 i)(sα − e−

2π
3 i)

=
1√
3i
(

s2α−2

sα − e
2π
3 i

− s2α−2

sα − e−
2π
3 i

)

= L

(

t1−α

√
3i

∞
∑

n=0

e
2nπ
3 i − e−

2nπ
3 i

Γ(αn+ 2− α)
tαn

)

= L

(

2√
3

∞
∑

n=0

sin(2nπ3 )

Γ(αn+ 2− α)
tαn+1−α

)

that leads to

y(t) =
2√
3

∞
∑

n=0

sin(2nπ3 )

Γ(αn+ 2− α)
tαn+1−α.

We plot y(t) for v0 = k = λ = 1, y0 = 0 and different values of α and β.

Problem 5.2. The vibrations of the mechanical system of two masses attached
to three springs with fixed ends are governed by the following fractional differential
equations with different orders







C
0 D

2α
t x+ k1x = −k(x− y)

C
0 D

2β
t y + k2y = k(x− y)

,
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0.5 < α, β ≤ 1, y′(0) = −x′(0) = −
√
3k

where k, k1 and k2 are the springs modulus of each of the three springs and x(t)
, y(t) are the displacements of the masses from their position of static equilibrium.
The masses of springs and the damping are neglected.

Let us assume that L{x(t)} = X(s), L{y(t)} = Y (s). Using the Laplace trans-
form,

(s2α + k1 + k)X − s2α−2x′(0)− s2α−1x(0) = kY,

(s2β + k2 + k)Y − s2β−2y′(0)− s2β−1y(0) = kX.

Then

X =
s2α+2β−2 + (k + k2)s

2α−2

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
x′(0)

+
s2α+2β−1 + (k + k2)s

2α−1

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
x(0)

− ks2β−2

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
y′(0)

− ks2β−1

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
y(0),

Y =
s2α+2β−2 + (k + k1)s

2β−2

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
y′(0)

+
s2α+2β−1 + (k + k1)s

2β−1

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
y(0)

− ks2α−2

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
x′(0)

− ks2α−1

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2
x(0).

We may obtain

L−1

{

1

s2α+2β + (k + k2)s2α + (k + k1)s2β + k(k1 + k2) + k1k2

}

=

∞
∑

n=0

n
∑

m=0

(

n

m

)

(−1)n(k + k1)
m(k(k1 + k2) + k1k2)

n−m

n!
t2β(1−m)+2α(n+1)
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×E
(n)
2β,2α(n+1)+2β(1−m)(−(k + k2)t

2β).

Therefore, applying the Laplace transform inversion, we get

x(t) =

∞
∑

n=0

n
∑

m=0

(

n

m

)

(−1)n(k + k1)
m(k(k1 + k2) + k1k2)

n−m

n!

×
{(

t2β(n−m)+2αn+1E
(n)
2β,2αn−2βm+2(−(k + k2)t

2β)

+ (k + k2)t
2β(n−m+1)+2αn+1E

(n)
2β,2αn+2β(1−m)+2(−(k + k2)t

2β)
)

x′(0)

+
(

t2β(n−m)+2αmE
(n)
2α,2αn−2βm+1(−(k + k2)t

2β)

+ (k + k2)t
2β(n−m+1)+2αnE

(n)
2β,2αn+2β(1−m)+1(−(k + k2)t

2β)
)

x(0)

−
(

kt2β(n−m)+2α(n+1)+1E
(n)
2β,2α(n+1)−2βm+2(−(k + k2)t

2β)
)

y′(0)

−
(

kt2β(n−m)+2α(n+1)E
(n)
2β,2α(n+1)−2βm+1(−(k + k2)t

2β)
)

y(0)
}

,

y(t) =
∞
∑

n=0

n
∑

m=0

(

n

m

)

(−1)n(k + k1)
m(k(k1 + k2) + k1k2)

n−m

n!

×
{(

t2β(n−m)+2αn+1E
(n)
2β,2αn−2βm+2(−(k + k2)t

2β)

+ (k + k1)t
2β(n−m)+2α(n+1)+1E

(n)
2β,2α(n+1)−2βm+2(−(k + k2)t

2β)
)

y′(0)

+
(

t2β(n−m)+2αmE
(n)
2α,2αn−2βm+1(−(k + k2)t

2β)

+ (k + k1)t
2β(n−m)+2α(n+1)E

(n)
2β,2α(n+1)−2βm+1(−(k + k2)t

2β)
)

y(0)

−
(

kt2β(n−m+1)+2αn+1E
(n)
2β,2αn+2β(1−m)+2(−(k + k2)t

2β)
)

y′(0)

−
(

kt2β(n−m+1)+2αnE
(n)
2β,2αn+2β(1−m)+1(−(k + k2)t

2β)
)

y(0)
}

.

Problem 5.3.A) Consider the following time fractional delay differential equa-
tion

C
0 D

α
t y + ky(t− λ) = 1 : 0 < α ≤ 1, λ ≥ 0
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with the initial condition

y(t) = 0 : −λ ≤ t ≤ 0.

Solution. We apply Laplace transform to obtain

sαY (s ) + k e−λsY (s) =
1

s
,

that leads to

Y (s) =
1

s

1

sα + k e−λs
.

Then

y(t) = L−1{Y (s)} = L−1

{

1

s

1

sα + ke−λs

}

= L−1

{

1

sα+1

1

1 + k e−λs

sα

}

=
∞
∑

n=0

(−k)nL−1

{

e−λns

snα+α+1

}

=

[ t
λ ]
∑

n=0

(−k)n
(t− λn)nα+α

Γ(nα+ α+ 1)
.

Note. We use the fact that

L−1{e
−as

sν
} =











(t−a)ν−1

Γ(ν) : t ≥ a

0 : t < a

.

In case of λ = k = 1, we have the following figure for different values of α.
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5.3.B) Let us consider the following fractional difference equation

C
0 D

α
t y + k1y(t− λ1) + k2y(t− λ2) = 1 : 0 < α ≤ 1, λi ≥ 0

with the initial condition

y(t) = 0 : −max(λi) ≤ t ≤ 0.

Solution. By using Laplace transform, we have

Y (s) =
1

s

1

sα + k1e−λ1s + k2e−λ2s
.

Hence

y(t) = L−1{Y (s)} = L−1

{

1

s

1

sα + k1e−λ1s + k2e−λ2s

}

= L−1

{

1

sα+1

1

1 + k1e−λ1s+k2e−λ2s

sα

}

=

∞
∑

n=0

(−1)nL−1

{

(k1e
−λ1s + k2e

−λ2s)n

snα+α+1

}

.

Without loss of generality, assume that λ1 < λ2. Then

y(t) =

∞
∑

n=0

(−1)nkn1L
−1

{

e−nλ1s(1 + k2

k1
e−(λ2−λ1)s)n

snα+α+1

}

=

∞
∑

n=0

(−1)nkn1L
−1

{

e−nλ1s

snα+α+1

n
∑

m=0

(

n

m

)

(
k2

k1
)me−m(λ2−λ1)s

}

=

∞
∑

n=0

n
∑

m=0

(−1)n
(

n

m

)

kn−m
1 km2 L−1

{

e−((n−m)λ1+mλ2)s

snα+α+1

}

=

[

t
λ1

]

∑

n=0

[

t−nλ1
λ2−λ1

]

∑

m=0

(−1)n
(

n

m

)

kn−m
1 km2

(t− nλ1 −m(λ2 − λ1))
nα+α

Γ(nα+ α+ 1)
.

For the special case λ1 = k1 = k2 = 1 and λ2 = 2, we plot y(t).
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Problem 5.4. Let us solve the following system of fractional delay differential
equation







C
0 D

α
t y − z(t− T ) = 1

C
0 D

α
t z + y(t− T ) = 1

,

where t > 0, 0 < α ≤ 1, T > 0 and y = z ≡ 0 (−T ≤ t ≤ 0).
Solution. Setting w = y + iz, one has

C
0 D

α
t w(t) + iw(t− T ) = 1 + i.

Applying the Laplace transform term wise on both sides of the above relation
and using boundary conditions, we obtain

sαW (s) + e−TsiW (s) =
1 + i

s
,

which gives

W (s) =
1

s

1 + i

sα + ie−Ts
= (1 + i)

∞
∑

n=0

(−1)nine−nTs

snα+α+1
.

By the convolution theorem, we have

w(t) = L−1{W (s)} = (1 + i)

∞
∑

n=0

(−1)ninL−1

(

e−nTs

snα+α+1

)

= (1 + i)
∞
∑

n=0

(−1)nin

Γ(nα+ α+ 1)
(t− nT )nα+α.
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Thus

w(t) =
√
2

[ t
T ]
∑

n=0

(−1)ne(
nπ
2 +π

4 )i

Γ(nα+ α+ 1)
(t− nT )nα+α,

that leads to

y(t) =
√
2

[ t
T ]
∑

n=0

(−1)n cos(nπ2 + π
4 )

Γ(nα+ α+ 1)
(t− nT )nα+α,

z(t) =
√
2

[ t
T ]
∑

n=0

(−1)n sin(nπ2 + π
4 )

Γ(nα+ α+ 1)
(t− nT )nα+α.

We have shown y(t) and z(t) when T = 1.
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6. Conclusion

In recent years, integral transforms have become essential working tools of every
engineer and applied scientists. The Laplace transform, which undoubtedly is the
most familiar example, is basic to the solution of initial value problems. In this
article, the authors used the Hybrid perturbation-Laplace transform method to
solve certain linear and non-linear systems of fractional differential and difference
equations with constant coefficients. We also considered the problems of string
vibrations in different cases with fractional damping. Constructive examples are
also provided.
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