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Numerical solution of Burger’s equation based on cubic B-splines

quasi-interpolants and matrix arguments

Omar Chakrone, Okacha Diyer and Driss Sbibih

abstract: In this paper, we give an efficient method for solving Burger’s equation.
The numerical scheme equation is based on cubic B-spline quasi-interpolants and
some techniques of matrix arguments. We find an iterative expression which is easy
to implement and we give also the error iterative scheme. Then we compare the
obtained approximate solution with that given by the methods introduced in [22]
and [7].

Key Words: Burger’s equation, numerical solution, B-spline, quasi- interpo-
lation.

Contents

1 Introduction 111

2 A brief introduction of cubic B-spline quasi-interpolation 112

3 Description of the method 114

4 Error analysis 116

5 Numericals examples 117

5.1 Comparison of a numericals results . . . . . . . . . . . . . . . . . . . 117
5.2 Examples of passages states of the numerical solution to obtain the

final solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusion 120

1. Introduction

We consider the following Burger’s equation

Ut + UUx = νUxx, (1.1)

where ν > 0 is the kinematic viscosity of a liquid, and the subscripts x and t denote
differentiation. The initial and the boundary conditions are

U(x, 0) = f(x), 0 ≤ x ≤ 1 (1.2)

U(0, t) = β1, U(1, t) = β2, 0 ≤ t. (1.3)
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This model arises in many physical applications such as gas dynamics, heat con-
duction, propagation of waves in shallow water or in elastic tube filled with a
viscous fluid [11]. Burger’s equation is solved exactly for an arbitrary initial and
boundary conditions in [2,13]. The exact solutions are impractical for the small
values of viscosity constant due to slow convergence of serious solutions. Many
researchers have proposed various kinds of numerical methods for solving Burger’s
equation for small values of viscosity constant which corresponds to steep front
in the propagation of dynamic wave forms, we cite for example meshfree method
which is called element-free characteristic Galerkin method [21], in general there
are many methods that belong to one of the following categories: finite difference
method [10,12,16,18], finite element method [1,8,17], boundary element method
[5], spectral methods [9]. S. Haq, SU M. Uddin and Islam have given in [11], a
method that uses radial basis functions to approximate the solution of Burger’s
equation. For solving Burger’s equation more researchers have been attracted by
this meshless scattered data approximation scheme. Hon and Wu [15], Chen and
Wu [4,20] provided the methods using multiquadric (MQ) quasi-interpolation for
solving differential equations. Moreover, Hon and Mao [14] developed an efficient
numerical scheme for Burger’s equation applying the MQ as a spatial approxima-
tion scheme and a low order explicit finite difference approximation to the time
derivative. Chen and Wu [3] presented the numerical scheme for solving Burger’s
equation, by using the derivative of the quasi-interpolant to approximate the spatial
derivative of the dependent variable and a low order forward difference to approx-
imate the time derivative of the dependent variable. C.G. Zhu and R.H. Wang
[22] have used quasi-interpolants based on B-splines but they have introduced a
function to dump dispersion of scheme. In this article, we present a numerical
scheme for solving Burger’s equation based on some techniques using matrix argu-
ments and a cubic B-spline quasi-interpolant. We apply the derivative of the cubic
B-spline quasi-interpolant to approximate the spacial derivative of the differential
equations and employ a first order accurate forward difference for the approach of
the temporal derivative [3,14]. So we do not have a system where we have to invert
a matrix but an iterative relationship easy to implement.
This paper is organized as follows. In Section 2, we give a brief introduction of
cubic B-spline quasi-interpolation. In Section 3, we develop the numerical tech-
niques using matrix arguments and cubic B-spline quasi-interpolation (MBSQI) to
solve Burger’s equation. In Section 4, we study the error analysis. In Section 5, we
give the numerical examples, the results obtained by MBSQI, are compared with
those using a cubic B-spline quasi-interpolation (BSQI) [22] and Dag [7]. Finally,
in Section 6, we derive a conclusion.

2. A brief introduction of cubic B-spline quasi-interpolation

In this section, we give a construction of a cubic B-spline quasi-interpolation.
Univariate spline quasi-interpolants (abbr. QIs) can be defined as operators of the
form

Qdf =
∑

j∈J

µj(f)Bj ,
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where {Bj , j ∈ J} is the B-spline basis of some space of splines Sd(Xn) of degree
d and Cd−1 on a bounded interval I = [a, b], endowed with the uniform partition
Xn = {xi = a + ih, i = 0, ..., n} with meshlength h = b−a

n
, where n is a strictly

positive integer and a,b are real numbers. Let yi = f(xi), i = 0, 1, ..., n. A quasi-
interpolant based on cubic B-splines is given by

Q3(f) =
n+3
∑

j=1

µj(f)Bj ,

where the coefficients µj(f) are defined as follows, see [22],

µ1(f) = y0, µ2(f) =
1

18
(7y0 + 18y1 − 9y2 + 2y3),

µj(f) =
1

6
(−yj−3 + 8yj−2 − yj−1), j = 3, ..., n+ 1,

µn+2(f) =
1

18
(2yn−3 − 9yn−2 + 18yn−1 + 7yn),

µn+3(f) = yn.

For f ∈ C4(I), we have the error estimate, see [19],

‖f −Q3f‖∞ = O(h4).

Let

Y = (y0, y1, ..., yn)
T , Y ′ = (y′0, y

′
1, ..., y

′
n)

T , Y ′′ = (y′′0 , y
′′
1 , ..., y

′′
n)

T ,

where

y′j = (Q3f)
′(xj) and y′′j = (Q3f)

′′(xj), j = 0, ..., n,

with

(Q3(f))
′ =

n+3
∑

j=1

µj(f)B
′
j and (Q3(f))

′′ =

n+3
∑

j=1

µj(f)B
′′
j .

According to the differentiel formulas for cubic B-splines, Y ′ and Y ′′ can be ex-
pressed in terms of Y as follows

Y ′ =
1

h
D1Y and Y ′′ =

1

h2
D2Y,
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where D1 and D2 are matrices of order n+ 1. There expressions are given in [22],
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3. Description of the method

In this section, we present the numerical scheme for solving Burger’s equa-
tion based on the techniques using matrix arguments and cubic B-spline quasi-
interpolant.
We have

Ut = −UUx + νUxx.

The solution domain [0, 1] × [t > 0] is divided into mesh with the spatial step
size h = 1

n
in x-direction and the time step size τ > 0 in t-direction respectively,

where n is strictly positive integer. Grid points are defined by (xj , tk) = (jh, kτ),
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j = 0, 1, 2, ..., n and k = 0, 1, 2, .... So for all j = 0, 1, ..., n, for all non-negative
integer k,

Ut(xj , tk) = −U(xj , tk)Ux(xj , tk) + νUxx(xj , tk), (3.1)

In order to discretize Burger’s equation (1.1) in time with meshlength τ , we use a
first order accurate forward difference for the approach of the temporal derivative,

U(xj , tk+1) = U(xj , tk) + τUt(xj , tk) +O(τ2).

Thus
U(xj , tk+1)− U(xj , tk)

τ
= Ut(xj , tk) +O(τ ). (3.2)

According to (3.1) and (3.2), we have

U(xj , tk+1) = U(xj , tk)− τU(xj , tk)Ux(xj , tk) + ντUxx(xj , tk) +O(τ 2). (3.3)

We approximate the exact solution, its first and second derivatives by using quasi-
interpolant based on cubic B-splines, so we put Q3U(xj , tk) = Uk

j , (Q3U)′(xj , tk) =

(Ux)
k
j and (Q3U)′′(xj , tk) = (Uxx)

k
j . We have the following estimates, see [23],

max
x∈Xn

|U(x)−Q3U(x)| = O(h4) (3.4)

max
x∈Xn

|U ′(x) − (Q3U)′(x)| = O(h3) (3.5)

max
x∈Xn

|U ′′(x) − (Q3U)′′(x)| = O(h2) (3.6)

Using (3.3), we find the scheme

Uk+1

j = Uk
j − τUk

j (Ux)
k
j + τν(Uxx)

k
j +O(τ 2). (3.7)

We put respectively

Uk = (Uk
0 , U

k
1 , ...U

k
n)

T ,

Uk+1
x = ((Ux)

k
0 , (Ux)

k
1 , ..., (Ux)

k
n),

Uk+1

xx = ((Uxx)
k
0 , (Uxx)

k
1 , ..., (Uxx)

k
n)

T ,

so
Uk+1

x =
1

h
D1U

k,Uk+1

xx =
1

h2
D2U

k.

Thus

Uk+1 = Uk − τUk ∗ Uk+1

x + τνUk+1

xx , (3.8)

where ∗ is defined as follows: letM = (M0,M1, ...,Mn)
T andN = (N0, N1, ..., Nn)

T

be two vectors in R
n+1, then M ∗N = (M0N0,M1N1, ...,MnNn)

T .
Thus

Uk+1 = Uk −
τ

h
Uk ∗D1U

k +
τ

h2
νD2U

k.
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Let Ak be the diagonal matrix whose diagonal is formed by the coordinates of the
vector Uk.
So

Uk ∗D1U
k = Ak(D1U

k) = (AkD1)U
k.

Hence
Uk+1 = Uk −

τ

h
AkD1U

k +
τ

h2
νD2U

k.

Finally, we deduce an iterative formula

Uk+1 = (In+1 −
τ

h
AkD1 +

τ

h2
νD2)U

k.

4. Error analysis

We cite the work of Ziwu Ziang et al. [23], where they gave their numerical
scheme by introducing a dispersion function, and they are interested only in time
approximation without considering the spatial approximation. In this section, we
give the error of the iterative scheme (3.7), in which we introduce the spatial and
temporal error.

Theorem 4.1. For all j = 0, 1, ..., n, for all non-negative integer k, let

ϕj,k(h, τ) =
(

U(xj , tk+1)− Uk+1

j

)

−
(

U(xj , tk)− Uk
j

)

+ τ
(

U(xj , tk)Ux(xj , tk)− Uk
j (Ux)

k
j

)

− ντ
(

Uxx(xj , tk)− (Uxx)
k
j

)

,

we have

ϕj,k(h, τ ) = O(h4 + τh2 + τ2).

Proof: According to (3.4)-(3.6), we deduce that for all j = 0, 1, ..., n, for all non-
negative integer k, we have the following approximations:

U(xj , tk+1)− Uk+1

j = O(h4), (4.1)

U(xj , tk)− Uk
j = O(h4), (4.2)

Uxx(xj , tk)− (Uxx)
k
j = O(h2). (4.3)

On the other hand, we put ψj,k(h) = U(xj , tk)Ux(xj , tk)− Uk
j (Ux)

k
j ,

then

ψj,k(h) =U(xj , tk)Ux(xj , tk)− U(xj , tk)(Ux)
k
j + U(xj , tk)(Ux)

k
j − Uk

j (Ux)
k
j

=U(xj , tk)(Ux(xj , tk)− (Ux)
k
j ) + (U(xj , tk)− Uk

j )(Ux)
k
j

=U(xj , tk)(Ux(xj , tk)− (Ux)
k
j ) + (U(xj , tk)− Uk

j )((Ux)
k
j − Ux(xj , tk)

+ Ux(xj , tk))

=U(xj , tk)(Ux(xj , tk)− (Ux)
k
j ) + (U(xj , tk)− Uk

j )((Ux)
k
j − Ux(xj , tk))

+ (U(xj , tk)− Uk
j )Ux(xj , tk).
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According to the approximations (4.1)-(4.3), we have

ψj,k(h) = O(h3) +O(h7) +O(h4) = O(h3). (4.4)

So, it’s easy to find that

ϕj,k(h, τ) = O(h4) +O(τh3) +O(τh2) +O(τ2).

Finally
ϕj,k(h, τ ) = O(h4 + τh2 + τ2).

✷

5. Numericals examples

5.1. Comparison of a numericals results

In order to compare our results with that given in [22] and [7], we take the
same data:
U(x, 0) = f(x) = sinπx, ∀ 0 ≤ x ≤ 1,
U(0, t) = U(1, t) = 0 ∀ t > 0.
We denote the present scheme by MBSQI, that given in [22] by BSQI and the

scheme in [7] by Dag. We note re = | numerical solution - exact solution|

| exact solution |
, the

relative error.
The exact solution was determined in terms of the infinite serie by Cole in [6] as

U(x, t) = 2πν

∑∞
j=1

jaj sin(jπx)exp(−j
2π2νt)

a0 + 2
∑∞

j=1
aj cos(jπx)exp(−j2π2νt)

,

where

aj =

∫ 1

0

exp[−(2πν)−1(1 − cos(πx))] cos(jπx)dx, for all j = 0... .

Firstly, we compare the numerical results using MBSQI with exact solution and
BSQI with ν = 1, τ = 0.00001 and various meshlength h at time t = 0.1, see Ta-
bles 1-3. Moreover a comparison of MBSQI with exact solutions, BSQI and Dag’s
method [7] when t = 0.1 for ν = 1, τ = 0.00001 and h = 0.0125 are given in Table
4. We will be interested also to the behavior of the relative error with respect to
the decreasing of mesh length.

According to Tables 1-3, we remark that the numerical solution obtained by MBSQI
provides better accuracy than the method given by BSQI, with various meshlength
h = 0.1, 0.05, 0.025. In table 4, we find that the numerical solution obtained by
MBSQI provides also better accuracy than those given by BSQI and Dag, for the
meshlength h = 0.0125. On the other hand, when h → 0, there is a significant
improvement of the relative error.
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Table 1: Comparison of results at t = 0.1 for ν = 1, τ = 0.00001 and h = 0.1.

x BSQI MBSQI Exact re∗102(BSQI) re∗102(MBSQI)
0.10 0.10831 0.1089868754 0.10954 1.122877488 0.5049521636
0.20 0.20724 0.2086239100 0.20979 1.215501215 0.5558367891
0.30 0.28799 0.2901321890 0.29190 1.339499829 0.6056221309
0.40 0.34273 0.3456451643 0.34792 1.491722235 0.6538387274
0.50 0.36531 0.3689505210 0.37158 1.687388987 0.7076481510
0.60 0.35223 0.3563399372 0.35905 1.899456900 0.7547870214
0.70 0.30400 0.3074800502 0.30991 1.907005260 0.7840824110
0.80 0.22358 0.2260611718 0.22782 1.861118427 0.7720253709
0.90 0.11860 0.1198889655 0.12069 1.731709338 0.6637124037

Table 2: Comparison of results at t = 0.1 for ν = 1, τ = 0.00001 and h = 0.05.

x BSQI MBSQI Exact re∗103(BSQI) re∗103(MBSQI)
0.10 0.10920 0.1093742235 0.10954 3.103888990 1.513387804
0.20 0.20912 0.2094618772 0.20979 3.193669860 1.564053577
0.30 0.29088 0.2914044197 0.29190 3.494347379 1.697774238
0.40 0.34658 0.3472874457 0.34792 3.851460106 1.818102725
0.50 0.36997 0.3708352747 0.37158 4.332848915 2.004212551
0.60 0.35740 0.3582647982 0.35905 4.595460243 2.186887063
0.70 0.30847 0.3091798822 0.30991 4.646510277 2.355902681
0.80 0.22676 0.2272558006 0.22782 4.652796067 2.476513915
0.90 0.12012 0.1203848204 0.12069 4.722843649 2.528623747

Table 3: Comparison of results at t = 0.1 for ν = 1, τ = 0.00001 and h = 0.025.

x BSQI MBSQI Exact re∗104(BSQI) re∗104(MBSQI)
0.10 0.10947 0.1094923708 0.10954 6.390359686 4.348110280
0.20 0.20965 0.2097008148 0.20979 6.673340006 4.251165451
0.30 0.29168 0.2917611570 0.29190 7.536827681 4.756526208
0.40 0.34764 0.3477498979 0.34792 8.047827088 4.889115315
0.50 0.37125 0.3713753480 0.37158 8.880994670 5.507616125
0.60 0.35871 0.3588333942 0.35905 9.469433228 6.032747529
0.70 0.30961 0.3097078378 0.30991 9.680229744 6.523255139
0.80 0.22759 0.2276638962 0.22782 10.09568958 6.852067422
0.90 0.12057 0.1206025191 0.12069 9.942828734 7.248396719
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Table 4: Comparison of results at t = 0.1 for ν = 1, τ = 0.00001 and h = 0.0125.

x BSQI Dag MBSQI Exact re∗104(BSQI) re∗104(Dag) re∗104(MBSQI)
0.10 0.10951 0.10952 0.1095226593 0.10954 2.738725580 1.825817053 1.583047289
0.20 0.20974 0.20975 0.2097615923 0.20979 2.383335716 1.906668573 1.354101721
0.30 0.29128 0.29184 0.2918518334 0.29190 2.124015074 2.055498458 1.650106201
0.40 0.34783 0.34785 0.3478676576 0.34792 2.586801564 2.011956772 1.504437802
0.50 0.37147 0.37149 0.3715133440 0.37158 2.960331557 2.422089455 1.793853275
0.60 0.35894 0.35896 0.3589793938 0.35905 3.063640162 2.506614678 1.966472636
0.70 0.30981 0.30983 0.3098443508 0.30991 3.226743248 2.581394598 2.118331128
0.80 0.22775 0.22776 0.2277706409 0.22782 3.072601176 2.633658151 2.166583268
0.90 0.12065 0.12065 0.1206611482 0.12069 3.314276245 3.314276245 2.390570884

5.2. Examples of passages states of the numerical solution to obtain the

final solution

To move from the initial time t = 0 to the final time t = 0, 1, the approximate
solution passes through intermediate states. The Figures 1 and 2, show the passages
states of the numerical solution to obtain the final result at t = 0.1, with h = 0.1
for µ = 1, 0.1 respectively.

t=0.02

t=0.04

t=0.06

t=0.08

t=0.1

t=0.0

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 1: The passages states of the numerical solution at t=0.1, with h=0.1,
τ = 0.00001 and ν = 1.
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t=0.1

t=0.0

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 2: The passages states of the numerical solution at t=0.1, with h=0.1,
τ = 0.00001 and ν = 0.1.

We note that the approximate solution to arrive at time t = 0.1, passes through of
the steps which corresponds to the instants t = 0.002, t = 0.004, t = 0.06, t = 0.08,
in a manner dependent on the viscosity of the liquid, see Figures 1 and 2.

6. Conclusion

The present technique (MBSQI) of discretization for solving numerically
Burger’s equation is based on matrix arguments and cubic B-spline quasi- inter-
polants. We have deduce that the MBSQI scheme gives the accuracy better than
those given by BSQI and Dag. Furthermore we have find an iterative expression
which is easy to implement. We also gave the corresponding error iterative scheme
to our discritization.
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