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Vector Valued Multiple Sequence Spaces Defined by Orlicz Function

Binod Chandra Tripathy and Rupanjali Goswami

abstract: In this article we define some vector valued multiple sequence spaces
defined by Orlicz function. We study some of their properties like solidness, sym-
metry, completeness etc and some inclusion results.
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1. Introduction

Throughout this article the space of all, bounded, convergent in Pringsheim’s
sense, null in Pringsheim’s sense, regularly convergent and regularly null multiple
sequences defined over a semi-normed space (X, q), semi-normed by q will be de-
noted by kω (q), kℓ∞ (q), kc (q), kc0 (q), kc

R (q), kc
R
0 (q). For X = C, the field of

complex numbers, these spaces represent the corresponding scalar sequence spaces.
Throughout this article θ represents the zero element of X . The zero element of a
single sequence space is denoted by θ = (θ, θ, ....). The zero element of a multiple
sequence is denoted by kθ, a multiple infinite array of θ’s.

An Orlicz function M is a mapping M : [0,∞) → [0,∞) such that it is con-
tinuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x) → ∞ as x → ∞.

The idea of Orlicz function was used by Lindenstrauss and Tzafriri [6] to con-
struct the sequence space.

ℓM =

{

(xk) :
∞
∑

k=1

M
(

|xk|
ρ

)

, for some ρ > 0

}

,

which is a Banach space normed by
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||xk|| = inf

{

ρ > 0 :
∞
∑

k=1

M
(

xk

ρ

)

≤ 1

}

The space ℓM is an Orlicz sequence space with M (x) = |x|p for 1 ≤ p < ∞,
which is closely related to the sequence space ℓp.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u, if
there exists a constant K > 0, such that M (2u) ≤ K (Mu), where u ≥ 0.

Recently Tripathy [9], Tripathy and Mahanta [11], Altin et. al. [1] and many
others investigated the Orlicz sequence spaces from sequence point of view and
related with the summability theory.

Remark 1.1. Let 0 < λ < 1, then M (λx) ≤ λM (x), for all x ≥ 0.

2. Definition and Preliminaries.

Throughout this article a multiple sequence is denoted by A =< an1n2...nk
>,

a multiple infinite array of elements an1n2...nk
∈ X for all n1, n2, .., nk ∈ N .

Initial works on double sequences is found in Bromwich [3]. Hardy [5] intro-
duced the notion of regular convergence for double sequences. Moricz [7] studied
some properties of double sequences of real and complex numbers. Recently differ-
ent types of double sequence have been introduced and investigated from different
aspects by Basarir and Sonalcan [2], Colak and Turkmenoglu [4], Turkmenoglu
[14], Moricz and Rhodes [8], Tripathy [10], Tripathy and Sarma ( [12], [13])and
many others.

Definition 2.1. A multiple sequence space E is said to be solid if
< αn1n2...nk

an1n2...nk
>∈ E, whenever < an1n2...nk

>∈ E for all multiple sequences
< αn1n2...nk

> of scalars with |αn1n2...nk
| ≤ 1, for all n1, n2, ..., nk ∈ N .

Definition 2.2. A multiple sequence space E is said to be symmetric if
< an1n2...nk

>∈ E, implies < aπ(n1,n2,...,nk) >∈ E, where π(n1, n2, ..., nk) are per-
mutations of N ×N...×N .

Definition 2.3. A multiple sequence space E is said to be monotone if it contains
the canonical pre-images of all its step spaces.

Definition 2.4. A multiple sequence space E is said to be convergence free if
< bn1n2...nk

>∈ E, whenever < an1n2...nk
>∈ E and bn1n2...nk

= θ whenever
an1n2...nk

= θ.

Remark 2.5. A sequence space E is solid implies E is monotone.
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Let M be an Orlicz function. Now we introduce the following multiple sequence
spaces:

kℓ∞(M, q) =

{

< an1n2...nk
>∈ kω(q) :

sup

n1n2...nk

M

(

q

(

an1n2...nk

ρ

))

< ∞

for some ρ > 0 }

kc(M, q) =

{

< an1n2...nk
>∈ kω(q) : M

(

q

(

an1n2...nk
− L

ρ

))

→ 0

as n1, n2, .., nk → ∞ for some ρ > 0 }
A =< an1n3...nk

>∈ kc
R(M, q), i.e., regularly convergent if < an1n2...nk

>∈

kc(M, q) and the following limits hold:

There exists Ln2n3...nk
, Ln1n3...nk

, Ln1n2n4...nk
, ....., Ln1n2...ni−1ni+1...nk

, .....,
Ln1n2.....nk−1

∈ X such that

M
(

q
(

an1n2...nk
−Ln2n3...nk

ρ

))

→ 0 as n1 → ∞ for some ρ > 0 and n2, n3, ..., nk ∈

N .

M
(

q
(

an1n2...nk
−Ln1n3...nk

ρ

))

→ 0 as n2 → ∞ for some ρ > 0 and n1, n3, ..., nk ∈

N .

M
(

q
(

an1n2...nk
−Ln1n2n4....nk

ρ

))

→ 0 as n3 → ∞ for some ρ > 0 and n1, n2, n4,

..., nk ∈ N .

........................................................

........................................................

M
(

q
(

an1n2...nk
−Ln1n2...ni−1ni+1...nk

ρ

))

→ 0 as ni → ∞ for some ρ > 0 and

n1, n2, ..., ni−1, ni+1, .., nk ∈ N .

........................................................

........................................................

M
(

q(
an1n2...nk

−Ln1n2...nk−1

ρ
)
)

→ 0 as nk → ∞ for some ρ > 0 and n1, n2, ...,

nk−1 ∈ N .
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Without loss of generality, ρ can be chosen to be same for all the above cases.

The definition of kc0 (M, q) and kc
R
0 (M, q) follows from the above definition on

taking

L = Ln2n3...nk
= Ln1n3n4...nk

= ... = Ln1n2...ni−1ni+1...nk
= ... = Ln1n2...nk−1

=
θ for all n1, n2, ..., nk ∈ N

Remark 2.6. The space kc
R
0 (M, q) has the following definition too.

kc
R
0 (M, q) =

{

< an1n2...nk
>∈ kω(q) : M

(

q
(

an1n2...nk

ρ

))

→ 0 as max{n1, n2,

..., nk} → ∞ for some ρ > 0 } .

We also define

kc
B (M, q) = kc (M, q)∩ kℓ∞ (M, q) and kc

B
0 (M, q) = kc0 (M, q)∩ kℓ∞ (M, q).

3. Main Results

Theorem 3.1. The classes Z (M, q) for Z = kℓ∞, kc, kc0, kc
B, kc

R, and kc
R
0 of

multiple sequences are linear spaces.

Proof: We prove it for the case kℓ∞ (M, q) and other cases can also be proved
similarly.

Let < an1n2...nk
>, < bn1n2...nk

>∈ kℓ∞ (M, q).

Then we have

sup

n1, n2, ..., nk

M

(

q

(

an1n2...nk

ρ1

))

< ∞, for some ρ1 > 0 (3.1)

sup

n1, n2, ..., nk

M

(

q

(

an1n2...nk

ρ2

))

< ∞ for some ρ2 > 0. (3.2)

Let α, β be scalars and ρ = max {2|α|ρ1, 2|β|ρ2}.

Then

sup
n1,n2,...,nk

M
(

q
(

αan1n2...nk
+βbn1n2...nk

ρ

))

≤ 1
2

sup
n1,n2,...,nk

M
(

q
(

an1n2...nk

ρ1

))

+ 1
2

sup
n1,n2,...,nk

M
(

q
(

bn1n2...nk

ρ2

))

< ∞.
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Hence < αan1n2...nk
+ βbn1n2...nk

>∈ kℓ∞ (M, q).

Thus kℓ∞ (M, q) is a linear space. ✷

Theorem 3.2. The spaces Z (M, q) for Z = kℓ∞, kc
B, kc

B
0 , kc

R, kc
R
0 are semi-

normed spaces, semi-normed by

f(< an1n2...nk
>) = inf

{

ρ > 0 :
sup

n1, n2, ..., nk

M

(

q

(

an1n2...nk

ρ

))

≤ 1

}

. (3.3)

Proof: Clearly f(kθ) = 0 and f (− < an1n2...nk
>) = f (< an1n2...nk

>) for all
< an1n2...nk

>∈ kℓ∞ (M, q) . Let λ ∈ C, then we have

f(< an1n2...nk
>) = inf

{

ρ > 0 : sup
n1,n2,...,nk

M
(

q
(

an1n2...nk

ρ

))

≤ 1
}

f(λ < an1n2...nk
>) = inf

{

ρ > 0 : sup
n1,n2,...,nk

M
(

q
(

λan1n2...nk

ρ

))

≤ 1
}

= |λ| inf
{

r > 0 : sup
n1,n2,...,nk

M
(

q
(an1n2...nk

r

))

≤ 1
}

where r = ρ
|λ|

= |λ|f (< an1n2...nk
>).

Next let < an1n2...nk
>, < bn1n2...nk

>∈ kℓ∞ (M, q) . Then we have

f(< an1n2...nk
>) = inf

{

ρ1 > 0 : sup
n1,n2,...,nk

M
(

q
(

an1n2...nk

ρ1

))

≤ 1
}

,

f(< bn1n2...nk
>) = inf

{

ρ2 > 0 : sup
n1,n2,...,nk

M
(

q
(

bn1n2...nk

ρ2

))

≤ 1
}

.

Let ρ1 > 0 and ρ2 > 0 be such that

sup
n1,n2,...,nk

M
(

q
(

an1n2...nk

ρ1

))

≤ 1

and

sup
n1,n2,...,nk

M
(

q
(

bn1n2...nk

ρ2

))

≤ 1.

Let ρ = ρ1 + ρ2, then we have

sup
n1n2...nk

M
(

q
(

an1n2...nk
+bn1n2...nk

ρ

))

≤ ρ1

ρ1+ρ2

sup
n1,n2,...,nk

M
(

q
(

an1n2...nk

ρ1

))

+ ρ2

ρ1+ρ2

sup
n1,n2,...,nk

M
(

q
(

bn1n2...nk

ρ2

))

.

Since ρ1 and ρ2 are non-negative, so we have
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f (< an1n2...nk
> + < bn1n2...nk

>)

= inf

{

ρ = ρ1 + ρ2 > 0 :
sup

n1, n2, ..., nk

M

(

q

(

an1n2...nk
+ bn1n2...nk

ρ

))

≤ 1

}

≤ inf

{

ρ1 > 0 :
sup

n1, n2, ..., nk

M

(

q

(

an1n2...nk

ρ1

))

≤ 1

}

+ inf

{

ρ2 > 0 :
sup

n1, n2, ..., nk

M

(

q

(

bn1n2...nk

ρ2

))

≤ 1

}

= f (< an1n2...nk
> + < bn1n2...nk

>)

Hence f is a semi-norm on Z(M, q) for Z = kℓ∞, kc
B, kc

B
0 , kc

R, kc
R
0 .

✷

Theorem 3.3. The spaces kℓ∞(M, q) and kc
R
0 (M, q) are symmetric where as the

spaces Z(M, q) for Z = kc, kc0, kc
B, kc

B
0 , kc

R, kc
R
0 are not symmetric.

Proof: The space kℓ∞(M, q) is symmetric is obvious. We prove it for kc
R
0 (M, q).

Let < an1n2...nk
>∈ kc

R
0 (M, q). Then for a given ε > 0 there exists positive

integers k1, k2, k3, ..., kk, kk+1 such that

M
(

q
(

an1n2...nk

ρ

))

< ε for all n1 > k1 for all n2, n3, ..., nk ∈ N

M
(

q
(

an1n2...nk

ρ

))

< ε for all n2 > k2 for all n1, n3, ..., nk ∈ N

..............................................

..............................................

M
(

q
(

an1n2...nk

ρ

))

< ε for all nk > kk for all n1, n2, n3, ..., nk−1 ∈ N

M
(

q
(

an1n2...nk

ρ

))

< ε for all n1 > kk+1, n2 > kk+1, ...., nk > kk+1

and without loss of generality ρ can be chosen to be same for the (k + 1) cases.

Let k0 = max {k1, k2, k3, ..., kk, kk+1}.

Let < bn1n2...nk
> be a rearrangement of < an1n2...nk

>. Then we have

ai1i2...ik = bni1
ni2

ni3
...nik

for all i1, i2, ..., ik ∈ N .

Let
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kk+2 = max
{

n11 , n21 , ..., nk1
, n(k+1)1 , n(k0)1 , n12 , ...., nk2

, n(k+1)2 , n(k0)2 , ..., n1k ,

n2k , ..., nnk
, n(k+1)k , n(k0)k

}

.

Then we have

M
(

q
(

bn1n2...nk

ρ

))

< ε for all n1 > kk+2, n2 > kk+2, ...., nk > kk+2.

Thus < bn1n2...nk
>∈ kc

R
0 (M, q). Hence kc

R
0 (M, q) is a symmetric space. ✷

To show that kc
R(M, q) is not symmetric, we consider the following example.

Example 3.4. Let X = C and define < an1n2...nk
> by

an1n2...nk
= 1, for all n1 = 1 and for all n2, n3, ..., nk ∈ N .

= 0, otherwise.

Then < an1n2...nk
>∈ kc

R(M, q)

Now consider the rearranged sequence < bn1n2...nk
> of < an1n2...nk

> defined by

bn1n2...nk
= 1 for all n1 = n2 = ... = nk

= 0, otherwise.

Then < bn1n2...nk
>/∈ kc

R(M, q). Hence kc
R(M, q) is not symmetric.

Examples similar to the above can be constructed to establish that the other
spaces are also not symmetric.

Theorem 3.5. The spaces kc
R
0 (M, q),k c

B
0 (M, q),k c0(M, q) and kℓ∞(M, q) are solid,

but the spaces kc(M, q), kc
B(M, q) and kc

R(M, q) are not solid.

Proof: The spaces Z(M, q) for Z = kℓ∞, kc0, kc
B
0 and kc

R
0 , are solid follows from

the following inequality.

M
(

q
(

αn1n2...nk
an1n2...nk

ρ

))

≤ M
(

q
(

an1n2...nk

ρ

))

for all n1, n2, ..., nk ∈ N and

scalars < αn1n2...nk
> with |αn1n2...nk

| ≤ 1, for all n1, n2, ..., nk ∈ N . ✷

To show that kc(M, q), kc
B(M, q) and kc

R(M, q) are not solid we consider the
following example.

Example 3.6. Let X = C, M(x) = x, q(x) = |x|. Define the sequence
< an1n2...nk

> by an1n2...nk
= 1 for all n1, n2, ..., nk ∈ N . Consider the sequence
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< αn1n2...nk
> of scalars defined by αn1n2...nk

= (−1)
n1+n2+...+nk for all n1, n2,

..., nk ∈ N .

Then < an1n2...nk
>∈ Z(M, q), but < αn1n2...nk

an1n2...nk
>/∈ Z(M, q) for

Z = kc, kc
B and kc

R. Hence Z(M, q) is not solid for Z = kc, kc
B, kc

R.

Theorem 3.7. The spaces Z(M, q) are monotone for Z = kc
R
0 , kℓ∞, kc0, kc

B
0 ,

but are not monotone for Z = kc, kc
B, kc

R.

Proof: The first part follows from the Remark 2.5 and Theorem 3.5. For the
second part, we consider the following example. ✷

Example 3.8. Let X = C, M(x) = x, q(x) = |x|. Consider the sequence
< an1n2...nk

> defined by an1n2...nk
= 1 for all n1, n2, ..., nk ∈ N . We consider its

pre-images on the step space E defined by < bn1n2...nk
>∈ E, implies bn1n2...nk

= 0,
for n2, n3, , ..., nk even and for all n1 ∈ N .

Then the pre-image of < an1n2...nk
>/∈ Z(M, q), for Z = kc, kc

B, kc
R.

Theorem 3.9. Let X be a complex semi-normed space, then the spaces Z(M, q) for
Z = kc

R
0 , kℓ∞, kc

R, kc
B
0 and kc

B are complete semi-normed spaces semi-normed
f defined by (3.3).

Proof: We prove it for the space kℓ∞(M, q) and other cases can be established
following similar technique.

Let Ai =< ain1n2...nk
> be a Cauchy sequence in kℓ∞(M, q). Let ε > 0 be fixed

and r > 0, we choose x0 such that M
(

rx0

2

)

≥ 1 and rx0 ≥ 1. Then there exists a
positive integer m0 such that

f
(

ain1n2...nk
− ajn2...nk

)

< ε
rx0

for all i, j ≥ m0.

Using definition of semi-norm we have

inf

{

r > 0 :
sup

n1, n2, ..., nk

M

(

q

(

ain1n2...nk
− ajn1n2...nk

r

))

≤ 1

}

<
ε

rx0
, (3.4)

for all i, j ≥ m0

and

sup
n1n2...nk

M

(

q

(

ai
n1n2...nk

−aj
n1n2...nk

f(ai
n1n2...nk

−a
j
n1n2...nk)

))

≤ 1, for all i, j ≥ m0.
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It follows that

M

(

q

(

ai
n1n2...nk

−aj
n1n2...nk

f(ai
n1n2...nk

−a
j
n1n2...nk)

))

≤ 1, for all i, j ≥ m0.

For r > 0 with M
(

rx0

2

)

≥ 1 we have

M

(

q

(

ai
n1n2...nk

−aj
n1n2...nk

f(ai
n1n2...nk

−a
j
n1n2...nk)

))

≤ M
(

rx0

2

)

, for all i, j ≥ m0.

Since M is continuous, so we have

q

(

ai
n1n2...nk

−aj
n1n2...nk

f(ai
n1n2...nk

−a
j
n1n2...nk)

)

≤
(

rx0

2 ,
)

, for all i, j ≥ m0.

⇒ q
(

ain1n2...nk
− ajn2,...,nk

)

≤
(

rx0

2

)

(

ε
rx0

)

= ε
2 , for all i, j ≥ m0.

⇒ < ain1n2...nk
> is a Cauchy sequence in X .

Since X is complete, there exists an1n2...nk
∈ X such that

lim
i→∞ain1n2...nk

= an1n2...nk
for all n1, n2, ...., nk ∈ N .

So we have from (3.4) for all i, j ≥ m0,

inf

{

r > 0 : sup
n1,n2,..,nk

M

(

q

(

ai
n1n2...nk

−aj
n1n2...nk

r

))

≤ 1

}

< ε,

lim
j→∞ inf

{

r > 0 : sup
n1,n2,..,nk

M

(

q

(

ai
n1n2...nk

−aj
n1n2...nk

r

))

≤ 1

}

< ε, for all i ≥

m0.

On taking the infimum of such r’s we have

inf{r > 0 : sup
n1,n2,...,nk

M

(

q

(

ai
n1n2...nk

−an1n2...nk

r

))

≤ 1} < ε, for all i ≥ m0.

⇒< ain1n2...nk
− an1n2...nk

>∈ kℓ∞(M, q).

Since kℓ∞(M, q) is a linear space, we have for all i ≥ m0

< an1n2...nk
>=< ain1n2...nk

> − < ain1n2...nk
− an1n2...nk

>∈k ℓ∞(M, q).

Thus kℓ∞(M, q) is a complete semi-normed space. ✷

We state the following result without proof.

Theorem 3.10. The spaces Z(M, q) for Z = kℓ∞, kc
B, kc

B
0 , kc

R and kc
R
0 are

K-spaces.
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Since Z(M, q) ⊂ kℓ∞(M, q) for Z = kc
B, kc

B
0 , kc

R and kc
R
0 , so the following

result is a consequence of Theorem 3.9.

Theorem 3.11. The spaces Z(M, q) for Z = kc
B, kc

B
0 , kc

R and kc
R
0 are nowhere

dense subsets of kℓ∞(M, q).

Theorem 3.12. Let M1 and M2 be Orlicz functions. Then we have

(i) Z(M1, q) ⊆ Z(M2 ◦M1, q), for Z = kℓ∞, kc, kc0, kc
B, kc

B
0 , kc

R and kc
R
0 .

(ii) Z(M1, q) ∩ Z(M2, q) ⊆ Z(M1 + M2, q), for Z = kℓ∞, kc, kc0, kc
B, kc

B
0 ,

kc
R and kc

R
0 .

(iii) Z(M1, q1) ∩ Z(M1, q) ⊆ Z(M1, q1 + q2), for Z = kℓ∞, kc, kc0, kc
B, kc

B
0 ,

kc
R and kc

R
0 , q1, q2 are two semi-norms on X.

(iv) If q1 is stronger than q2, then Z(M1, q1) ⊆ Z(M1, q2), for Z = kℓ∞, kc,

kc0, kc
B, kc

B
0 , kc

R and kc
R
0 .

Proof: (i) We prove this for the space kc
R(M1, q) and the other cases can be es-

tablished in a similar way.

Let < an1n2...nk
>∈ kc

R(M1, q). Then there exists ρ > 0 such that for a given
ε > 0 with 0 < ε

M2(1)
< 1. We have n10 , n20 , n30 , ..., nk0

∈ N such that

M1

(

q

(

an1n2...nk
− L

ρ

))

<
ε

M2(1)
for all n1 > n10 , n2 > n20 , ...., nk > nk0

.

(3.5)

M1

(

q

(

an1n2...nk
− Ln1

ρ

))

<
ε

M2(1)
for all n1 > n10 and for all n2, n3, ..., nk ∈ N.

(3.6)

M1

(

q

(

an1n2...nk
− Ln2

ρ

))

<
ε

M2(1)
for all n2 > n20 and for all n1, n3, ..., nk ∈ N.

(3.7)
...................................

...................................

M1

(

q

(

an1n2...nk
− Lnk

ρ

))

<
ε

M2(1)
, for all nk > nk0

and for all n1, n2, ..., nk−1 ∈ N,

(3.8)
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Thus from Remark 1.1 and from (3.5),(3.6), (3.7) and (3.8) we have

(M2 ◦M1)
(

q
(

an1n2...nk
−L

ρ

))

< ε for all n1 > n10 , n2 > n20 , ...., nk > nk0
.

(M2◦M1)
(

q
(

an1n2...nk
−Ln1

ρ

))

< ε for all n1 > n10 and for all n2, n3, ..., nk ∈ N

(M2 ◦M1)
(

q
(

an1n2...nk
−Ln2

ρ

))

< ε for all n2 > n20 and for all n1, n3, ..., nk ∈

N .

...........................

(M2◦M1)
(

q
(

an1n2...nk
−Lnk

ρ

))

< ε for all nk > nk0
and for all n1, n2, ..., nk−1 ∈

N.

Hence < an1n2...nk
>∈ kc

R(M2 ◦M1, q).

Thus kc
R(M1, q) ⊆ kc

R(M2 ◦M1, q).

(ii) We prove the result for the case kℓ∞. Other cases will follow similarly.

Let < an1n2...nk
>∈ kℓ∞(M1, q) ∩ kℓ∞(M2, q). Then there exists ρ1 > 0 and

ρ2 > 0, such that

sup
n1,n2,...,nk

M1

(

q
(

an1n2...nk

ρ1

))

< ∞

and

sup
n1,n2,...,nk

M2

(

q
(

an1n2...nk

ρ2

))

< ∞.

Let ρ = max {ρ1, ρ2}. Then

sup
n1,n2,...,nk

(M1 +M2)
(

q
(

an1n2...nk

ρ

))

≤ sup
n1,n2,...,nk

M1

(

q
(

an1n2...nk

ρ1

))

+ sup
n1,n2,...,nk

M2

(

q
(

an1n2...nk

ρ2

))

< ∞.

Hence < an1n2...nk
>∈ kℓ∞(M1 +M2, q).

(iii) Let < an1n2...nk
>∈ kℓ∞(M1, q1)∩ kℓ∞(M1, q2). Then there exists ρ1 > 0

and ρ2 > 0 such that

sup
n1,n2,...,nk

M1

(

q1

(

an1n2...nk

ρ1

))

< ∞

and



80 Binod Chandra Tripathy and Rupanjali Goswami

sup
n1,n2,...,nk

M1

(

q1

(

an1n2...nk

ρ2

))

< ∞.

Let ρ = max {ρ1, ρ2}. Then

sup
n1,n2,...,nk

M1

(

(q1 + q2)
(

an1n2...nk

ρ

))

≤ sup
n1,n2,...,nk

M1

(

q1

(

an1n2...nk

ρ1

))

+ sup
n1,n2,...,nk

M1

(

q2
an1n2...nk

ρ2

)

< ∞.

Hence < an1n2...nk
>∈ kℓ∞(M1, q1 + q2). ✷

The following result is a consequence of Theorem 3.12(i).

Proposition 3.13. Let M be an Orlicz function, then Z(q)⊂Z(M, q), for Z=kℓ∞,

kc, kc0, kc
B, kc

B
0 , kc

R, kc
R
0 .

4. Particular cases

If we take X to be normed linear space, instead of a semi-normed space, then all
the results of Section 3 will follow immediately. In that case spaces Z(M, ||.||),where
Z =k ℓ∞, kc

B, kc
B
0 , kc

R, kc
R
0 will be normed linear spaces, normed by

f (< an1n2.....nk
>) = inf

{

ρ > 0 : sup
n1,n2,...,nk

M
(

‖
an1n2.....nk

ρ
‖
)

≤ 1
}

.

These spaces would be Banach spaces under f when X is a Banach space.
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