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Vector Valued Multiple Sequence Spaces Defined by Orlicz Function

Binod Chandra Tripathy and Rupanjali Goswami

ABSTRACT: In this article we define some vector valued multiple sequence spaces
defined by Orlicz function. We study some of their properties like solidness, sym-
metry, completeness etc and some inclusion results.
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1. Introduction

Throughout this article the space of all, bounded, convergent in Pringsheim’s
sense, null in Pringsheim’s sense, regularly convergent and regularly null multiple
sequences defined over a semi-normed space (X, ¢), semi-normed by ¢ will be de-
noted by xw (q), kleo (¢), k¢ (@), kco (q), ke (q), kel (¢). For X = C, the field of
complex numbers, these spaces represent the corresponding scalar sequence spaces.
Throughout this article 6 represents the zero element of X. The zero element of a
single sequence space is denoted by § = (0,0, ....). The zero element of a multiple
sequence is denoted by 0, a multiple infinite array of ’s.

An Orlicz function M is a mapping M : [0,00) — [0,00) such that it is con-
tinuous, non-decreasing and convex with M(0) = 0, M(z) > 0 for z > 0 and
M(z) = o0 as & — 0.

The idea of Orlicz function was used by Lindenstrauss and Tzafriri [6] to con-
struct the sequence space.

M = {(mk) : ZM(%) , for some p > 0},
h=1

which is a Banach space normed by
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[|xk|| = inf {p >0: kXZ:lM (—p&) < 1}

The space /M is an Orlicz sequence space with M (z) = |z|P for 1 < p < oo,
which is closely related to the sequence space ¢P.

An Orlicz function M is said to satisfy the As-condition for all values of u, if
there exists a constant K > 0, such that M (2u) < K (Mu), where u > 0.

Recently Tripathy [9], Tripathy and Mahanta [11], Altin et. al.[1] and many
others investigated the Orlicz sequence spaces from sequence point of view and
related with the summability theory.

Remark 1.1. Let 0 < A < 1, then M (A\x) < AM (x), for all z > 0.

2. Definition and Preliminaries.

Throughout this article a multiple sequence is denoted by A =< apyny...np >,
a multiple infinite array of elements @y, n,..n, € X for all ny,ns,..,np € N.

Initial works on double sequences is found in Bromwich [3]. Hardy [5] intro-
duced the notion of regular convergence for double sequences. Moricz [7] studied
some properties of double sequences of real and complex numbers. Recently differ-
ent types of double sequence have been introduced and investigated from different
aspects by Basarir and Sonalcan [2], Colak and Turkmenoglu [4], Turkmenoglu
[14], Moricz and Rhodes [8], Tripathy [10], Tripathy and Sarma ([12], [13])and
many others.

Definition 2.1. A multiple sequence space E is said to be solid if
< Qpyng..ngGning..n, >€ B, whenever < @y, n,..n, >€ L for all multiple sequences
< Onyng..ny > Of scalars with |apyny .. n,| < 1, for all ny,no,...,ni € N.

Definition 2.2. A multiple sequence space E is said to be symmetric if
< Onyny..ny >€ E, tmplies < Ur(ny,ng,....np) >E E, where w(ni,na,...,nk) are per-
mutations of N X N... x N.

Definition 2.3. A multiple sequence space E is said to be monotone if it contains
the canonical pre-images of all its step spaces.

Definition 2.4. A multiple sequence space E is said to be convergence free if
< bnyng..m, >€ E, whenever < anyny..n, >€ E and by n,..n, = 0 whenever

anlng...nk = 9'

Remark 2.5. A sequence space E is solid implies E is monotone.
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Let M be an Orlicz function. Now we introduce the following multiple sequence
spaces:

iloo(M,q) = {< Uning..ny € kw(q) : SUP (q (“"1"72%)) < o0

ning... N 14

for some p >0 }

ning...ng L
ke(M,q) = {< Gnyng..ny € ww(qQ) : M <q (%)) -0

as ni,ng,..,nE — 0o for some p > 0 }

A =< Gpyns..m, >E€ 1cft(M,q), ie., regularly convergent if < an,n,. .n, >€
xc(M,q) and the following limits hold:

There exists Lynyng...nps Lnyng..ongs Lninona.ngs oo Lningeong_imiq.omgs ooeees
Lnlng ..... Ng—1 S X SuCh that
L

M (q (a"””””k; n2n3e Pk )) — 0asny; — oo for some p > 0 and no, ng, ...,ng €

ning..ngy—Lning..n
M(q(a 12tk 12 ’“)) — 0 asng — oo for some p > 0 and ni,ng,...,n, €
€

p

Anyng..ng —Lningng...n
1m2 k 1mang k

o ))%0asng,%ooforsomep>0andn1,n2,n4,

Aning..ongg—Lning..on;_1n;iq..n
M(q(12 b s o Tl "))%Oasni%ooforsomep>0and

p
N1y N2y ey Mj— 1, Nt 15 -, N € N.

Anyng..ny—Lning..n
M(q( e e e e )) — 0 as ng — oo for some p > 0 and ny,no, ...,

p
ng—1 € N.
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Without loss of generality, p can be chosen to be same for all the above cases.

The definition of rcq (M, q) and el (M, q) follows from the above definition on
taking

L= anng...nk - Ln1n3n4...nk — . = Lnlng...n¢,1n¢+1...nk — . = Lnlng...nk,l

0 for all ny,no,...,n € N

Remark 2.6. The space xc& (M, q) has the following definition too.

ket (M, q) = {< Uning..ny =€ kw(q) : M (q (a””‘%)) — 0 as max{ny,na,

weeyNE } — 00 for some p >0 ¢ .
We also define
kCB (Maq) = kC(M,q)ﬁ kgoo (Maq) and kc(? (M7Q) = kCo (M7Q>m kgoo (Maq)

3. Main Results

Theorem 3.1. The classes Z (M, q) for Z = leo, k€, kCo, k2, kc?, and pcf of
multiple sequences are linear spaces.

Proof: We prove it for the case ,ls (M, q) and other cases can also be proved
similarly.

Let < Anyns...ny >, < bnlng...nk >e kgoo (Ma q)

Then we have

Sup M <q (*anmz”'nk >) < 00, for some p; >0 (3.1)
Ny, N2, ..., Nk £1
s
P M (q (m)) < oo for some p, > 0. (3.2)
ny,no,...,Ng P2

Let a, 8 be scalars and p = max {2|«|py, 2|8|ps}-

Then

sup M q Otanlng...nk+ﬂbn1n2...nk
n1,12,..., Nk P
b

< 1 su?“’nkM (q (anlnzmng. )) + %nl, sup M (q ( 1m2..ny )) < 0.

P1 N2k P2
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Hence < Qlnyny...ng, + anlng...nk >c kgoo (Ma Q)

Thus s (M, q) is a linear space. O

Theorem 3.2. The spaces Z (M,q) for Z = jloo, 1cP, e, ke, kel are semi-
normed spaces, semi-normed by

(< ammans >>=mf{p>o: sup nM(q(T))Sl} (3.3)

niy,na, ...

Proof: Clearly f(x0) = 0 and f(— < Gnyny..ny >) = f (< Gnyny..m, >) for all
< Unyng..my € kloo (M,q). Let X € C, then we have

=i : sup nyng.ny
J(< @z, >) =inf {p> 02, =@ (g L)) <1

FO< Qs >) = inf {p> 00 =0 0 (g (Ao )
= Ninf {r >0, = (g () <1}

Mn1,Mn2,...,Nk
= |/\|f(< Aning..ny >)-

Next let < anyng..ng > < Onyng..ny >€ koo (M, q). Then we have

n1,Mn2,...,Nk 1

F(< bpyng..ny >) = inf {p2 >0, -~ M (q (M)) < 1}.

P2

J(< @nngny >) =i {py > 02, 200 M (g (s ) <1,

Let p; > 0 and p, > 0 be such that

sup M(q(anlng...nk)) S 1
MN1,M2;5.00, Nk P1

sup M (q (bnlng...nk )) S 1
N1,M2;5.00, Nk P2

Let p = p; + py, then we have

sup anlng...n,k+bn1n,2...n,k
n1n2...nkM (q( P
a b
< P1 sup M ning...ng Po sup M ning...nj .
— p1tpa n1n2,. N q P1 + p1tp2 nin2,. N q P2

Since p; and p, are non-negative, so we have
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f (< anlnz...nk > + < bnlng...nk >)

ninz...n bn1n2...n
:inf{p:p1+p2>0: sup M(q(a et "))gl}
ny,Na,...,Nk P
§inf{p1>0: sup M(q<m)>§1}
ny,ne,...,ng P1
bn n n
+inf{p2>0: Sup M<q <#)> Sl}
ny,n2,...,Ng P2

= (< @nyng..np >+ < bning..ny >)

Hence f is a semi-norm on Z (M, q) for Z = jleo, kB, pcl, 1c®, rclt.
O

Theorem 3.3. The spaces 1l (M, q) and kcl(M,q) are symmetric where as the

spaces Z(M,q) for Z = ¢, kco, s, kcg, wclt, kcé2 are mot symmetric.

Proof: The space /o (M, q) is symmetric is obvious. We prove it for pcff(M, q).

Let < anyny..ny >€ kcdi(M,q). Then for a given € > 0 there exists positive
integers ki, ko, ks, ..., ki, k+1 such that

M (‘1 (W%)) <eforall ny > ky for all ng,ng,....,np € N

M (q (anln%)) < eforall ng >k for all ny, ng,...,ni € N

M (q (a"l"%"k)) < ¢ for all ny > ki, for all ny,ns,n3,...,np_1 € N
M (q (a"l%"&)) < e forall ny > kpy1,n9 > kg1, ey g > Kig1
and without loss of generality p can be chosen to be same for the (k4 1) cases.
Let ko = max {k1, k2, k3, ..., ki, ki1 }-
Let < by, nsy..n, > be a rearrangement of < ap,n,...n, >. Then we have

Qiyig..iry = Oy miynig..ng, for all 41,49, ..., € N.

Let



VECTOR VALUED MULTIPLE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTION 75

kk+2 = max {n11 3 T020 5 vy Ty s T (k1) 15 (ko)1 TV ey Mok s TU (k1) 25 To(kg) 2y ++s Vs

N2y s ooy Mg Mot 1) > Pk | -
Then we have
M (q (bf)) <eforall nn > kpro,na > Kiros oo e > ko,
Thus < by, ny..np >€ ke (M, q). Hence clt(M, q) is a symmetric space. O

To show that 1c*(M, q) is not symmetric, we consider the following example.

Example 3.4. Let X = C and define < anyny..n, > by
Gnyng..n, = 1, for all my =1 and for all na,ns,...,n, € N.
=0, otherwise.
Then < anyny..n, >€ Kct(M,q)
Now consider the rearranged sequence < by, ny..ny, > 0f < Gnyny..n, > defined by
brning..m, =1 for allng =ng = ... =ny
= 0, otherwise.

Then < bp,ny. n, >¢ kc(M,q). Hence (M, q) is not symmetric.

Examples similar to the above can be constructed to establish that the other
spaces are also not symmetric.

Theorem 3.5. The spaces jcf(M,q),x c§ (M, q),x co(M,q) and Lo (M, q) are solid,
but the spaces pc(M,q), rc®(M,q) and rc®(M,q) are not solid.

Proof: The spaces Z(M,q) for Z = 4o, 1Co, kb and ycf, are solid follows from
the following inequality.

p p

M (q (a"1"'2”'”"“a"1”'2"'""“ )) <M (q (7%1"'2”'”’“ )) for all n1,ns,...,ny € N and
scalars < amyng..ny > With |apyne. n,| < 1, for all ny,ng,...,n; € N. O

To show that xc(M,q), xc®(M,q) and cf*(M, q) are not solid we consider the
following example.

Example 3.6. Let X =C, M(xz)=ux, q(z)=|z|. Define the sequence
< Aping..ng > OY Gnyng..my, = 1 for all ny,na,...,n, € N. Consider the sequence
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< Qping.omy > of scalars defined by o ny..n. = (=1 2T F for all ny, ng,
.y N € N.

Then < apyny.m, >€ Z(M,q), but < Qning..nyGnine..mp >¢ Z(M,q) for
Z = e, kP and e, Hence Z(M,q) is not solid for Z = jc, c?, pc®.

Theorem 3.7. The spaces Z(M,q) are monotone for Z = ek, 1loo, rco, kct,
but are not monotone for Z = ¢, pc®, pct.

Proof: The first part follows from the Remark 2.5 and Theorem 3.5. For the
second part, we consider the following example. O

Example 3.8. Let X =C, M(z)==xz, q(x)=|z|. Consider the sequence
< Gnyng..ny, > defined by apyny..n, =1 for all ni,nae,...,n, € N. We consider its
pre-tmages on the step space E defined by < by n,..n, >€ L, tmplies by, ny..n, =0,
for na,ns, , ...,ng even and for all ny € N.

Then the pre-image of < anyny..n, >¢ Z(M,q), for Z = ye, kP, pcft.

Theorem 3.9. Let X be a complex: semi-normed space, then the spaces Z(M, q) for
7 = kc{f, iloo, KCE, kcg and B are complete semi-normed spaces semi-normed

f defined by (3.3).

Proof: We prove it for the space 1l (M, q) and other cases can be established
following similar technique.

Let A; =< al, ., n. > be a Cauchy sequence in oo (M, q). Let € > 0 be fixed
and r > 0, we choose zg such that M (%) > 1 and rzg > 1. Then there exists a
positive integer mq such that

f (ajllnz___nk_ — aﬁlzmnk) < TETO for all i, 7 > my.

Using definition of semi-norm we have

a. — aj
inf {T < 0- sup M (q ( ning...ng ning...ng )) < 1} < i, (34)
Ny, N2, ..., Nk T rxo

for all 4,5 > myg

U ngmy =Py mg. -
it (1 s )) <t or a2 mo
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It follows that

al —al
M ningong T %nyngny <1, for all i,j > mo.
(q (.f(a'lnan,unkaiz,an...nk))) -7 ) =

For » > 0 with M (%) > 1 we have

i DY
Anyng..ny ~Aning...ny

Upiny g ~hyng.n ra o
M(q(f( B k ))SM(T"),foraﬂz,jZmo.

Since M is continuous, so we have

7
a’nlng...nk

aiLan,“n 70“'2171.2,“71. rT s
q(f( : k—ajﬁm :))g(T“,),forallz,jZmo.
g
=4 (a;lﬂw---nk - a%z,---,nk) < (Tgo) (rio) = %’ for all 1,7 > mo.

= <adl

nina..ny, > is a Cauchy sequence in X.
Since X is complete, there exists an,n,..n, € X such that

lim 4

oo Oning. . = Anang..ny, for all ny,ma,....;ng € N.

So we have from (3.4) for all 4, > mo,

i o
inf {7‘ >0: nl;‘;pnkM (q (anlnzmnk Tanmz'”nk)) < 1} <e,

. i —qd
ji’“oo inf {r >0:, "M (q (a"l"'Z“'”"fTa"l"'”“”"“ )) < 1} < e, for all 4 >
mo.

On taking the infimum of such r’s we have

n1,n2,...,Ng T

inf{r >0: sup N (q <ail"z‘“"’“_a"1n2”'n’“ >) <1} <e, for all i > my.
=< e — Gnang..ny € kloo(M,q).

Since kloo (M, q) is a linear space, we have for all i > mg

< lnyng..ny >=< a%lnzmnk > —< a%lwmnk — Unyng..mp €k oo (M, q).

Thus ¢ (M, q) is a complete semi-normed space. O

We state the following result without proof.

Theorem 3.10. The spaces Z(M,q) for Z = 1heo, 1cP, k8, wcft and yclt are
K -spaces.
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Since Z(M,q) C 1loo(M,q) for Z = ycB, pcB, et and el so the following
result is a consequence of Theorem 3.9.

Theorem 3.11. The spaces Z(M,q) for Z = ycB, kc(’?, wcf® and kc{f are nowhere
dense subsets of 1loo(M,q).

Theorem 3.12. Let My and My be Orlicz functions. Then we have
(Z) Z(Mlaq) g Z(M2 OMva)) fOT’ Z = kgoo; kC, kCo, kCB; kc(?; kCR and kcé%'

R(”) Z(Aglaq) N Z(MQaq) g Z(Ml +M2,Q)7 fO?" 7 = kgooa kC, kCo, kCB7 kCOB7
kC't and gy

(iii) Z(My,q1) N Z(My,q) C Z(My,q1 + q2), for Z = jles, k€, kCo, k€2, kcf,
e and kc{f, q1, Q2 are two semi-norms on X .

() If qu is stronger than g2, then Z(Mi,q1) C Z(My,q2), for Z = oo, kC,
kCo, kCP, kcg, ke and kc{f,

Proof: (i) We prove this for the space ,c*(Mi,q) and the other cases can be es-
tablished in a similar way.

Let < anyny..n, >€ kc¥(My,q). Then there exists p > 0 such that for a given
e >0 with 0 < ﬁ(l) < 1. We have ni,,na,,n3,, .-, Nk, € IN such that

a — L €
M, [ o [ Zrane—ne =) ) for all ny > niy,n2 > nog, ey g > Mgy -
1((]( P )) 1M2(1) orallny > ni,, N2 > N2, Tk nkz )
3.5

M, <q<a 1m2 pk 1))<M§(1) for all n; > nj, and for all na, ns,...,nk € N.
(3.6)

an1n2...n - Ln2 &
M, (q( pk ))<M2(1) for all ny > no, and for all ny, ns,...,nE € N.
(3.7)

M, (q (a 102 Pk k)) < ° , for all ny > ny, and for all n1,na,...,nx_1 € N,
()
(3.8)
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Thus from Remark 1.1 and from (3.5),(3.6), (3.7) and (3.8) we have

(My o My) (q (W‘;Zp"ki)) < e forall ny > ni,,ne > nay, ooy N > Nk -
(Myo M) (q (%”‘42;@)) < eforallny > ny, and for all ng, ng,...,ni € N

(My o My) (q (W)) < ¢ for all ng > ngy, and for all ny,ns,...,ni, €

(MyoMy) (q (w)) < ¢ for all ny, > ny, and for all ny, na, ..., np_1 €

Hence < anyny..m, >€ k(Mg o My, q).
Thus (M, q) € ™ (Ma o My, q).
(i) We prove the result for the case ploo. Other cases will follow similarly.

Let < @nyng..ny >€ kloo(M1,q) N kloo(Ma,q). Then there exists p; > 0 and
ps > 0, such that

sup le (q (anlnzmng. )) < 00

ni,mn2,...,n P1

and

Sup Gnyng..ny
N1,M2,.., N M (q( P2 )) < 0.

Let p = max{p;, ps}. Then

sup Aning...n
o O+ 0 (3 (P22 )

.....

a

< su}.D“ nle (q (an1n2,“n )) 4 sup nkMQ (q( ning...n )) < 00.

P1 n1,n2,..., P2

Hence < @nyny..ny € kloo(Mi + Ma,q).

(#9) Let < tnyng..ng >€ kloo(Mi,q1) N kloo(Mi, q2). Then there exists p; > 0
and p, > 0 such that

sup Anyng...ny
MN1,M2;5.00, Nk Ml (ql ( P1 )) <00
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° Aning...n
nl,n;?_,nle (q1 (%)) < .
Let p = max {p;, po}. Then

i dnjng..ng
77/17712,...,77,le ((th + qz) ( P - ))

sup Aning...n sup Animo

< n17n2,...,nkM1 ((Zl (%)) + n1,n2,---,nkM1 (Q2$) < oo.
Hence < Qning..ny >€ kﬁoo(Ml,ql +q2) )

The following result is a consequence of Theorem 3.12(7).

Proposition 3.13. Let M be an Orlicz function, then Z(q) C Z(M, q), for Z=jloo,
k€ kCos k€7, ke, ke, kel

4. Particular cases

If we take X to be normed linear space, instead of a semi-normed space, then all

the results of Section 3 will follow immediately. In that case spaces Z(M, ||.||),where
7 =t loo, kCP, kcg, wclt, kcé% will be normed linear spaces, normed by

F(< Gnime >) = inf {p> 00 2P (| 2z ) < 1},

mn1,Mn2,..,Nk

These spaces would be Banach spaces under f when X is a Banach space.
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