

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 33** 1 (2015): 235–245. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i1.21767

Existence and upper semicontinuity of global attractors for a p-Laplacian inclusion

Jacson Simsen and Edson N. Neres Junior

ABSTRACT: In this work we study the asymptotic behavior of a p-Laplacian inclusion of the form $\frac{\partial u_{\lambda}}{\partial t} - div(D^{\lambda}|\nabla u_{\lambda}|^{p-2}\nabla u_{\lambda}) + |u_{\lambda}|^{p-2}u_{\lambda} \in F(u_{\lambda}) + h$, where p>2, $h\in L^2(\Omega)$, with $\Omega\subset\mathbb{R}^n$, $n\geq 1$, a bounded smooth domain, $D^{\lambda}\in L^{\infty}(\Omega)$, $\infty>M\geq D^{\lambda}(x)\geq\sigma>0$ a.e. in Ω , $\lambda\in[0,\infty)$ and $D^{\lambda}\to D^{\lambda_1}$ in $L^{\infty}(\Omega)$ as $\lambda\to\lambda_1$, $F:\mathcal{D}(F)\subset L^2(\Omega)\to\mathcal{P}(L^2(\Omega))$, given by $F(y(\cdot))=\{\xi(\cdot)\in L^2(\Omega):\xi(x)\in f(y(x))\ x$ -a.e. in $\Omega\}$ with $f:\mathbb{R}\to\mathcal{C}_v(\mathbb{R})$ a multivalued Lipschitz map, where $\mathcal{C}_v(\mathbb{R})$ is the set of all nonempty, bounded, closed, convex subsets of \mathbb{R} . We prove the existence of a global attractor in $L^2(\Omega)$ for each positive finite diffusion coefficient and we show that the family of attractors behaves upper semicontinuously on positive finite diffusion parameters.

Key Words: Partial differential inclusions, p-Laplacian, attractors, upper semicontinuity.

Contents

1	Introduction	235
2	A preliminary theory	236
3	Existence of the global attractor	238
4	Uniform Estimates	240
5	Upper semicontinuity of the global attractors	241

1. Introduction

Let us consider the problem

$$\begin{cases} \frac{\partial u_{\lambda}}{\partial t}(t) - div(D^{\lambda}|\nabla u_{\lambda}(t)|^{p-2}\nabla u_{\lambda}(t)) + |u_{\lambda}(t)|^{p-2}u_{\lambda}(t) \in F(u_{\lambda}(t)) + h, \ t > 0 \\ u_{\lambda}(0) = u_{0,\lambda}, \end{cases}$$

(1.1)

where p > 2, $\Omega \subset \mathbb{R}^n$, $n \ge 1$, is a bounded smooth domain, $h, u_{0,\lambda} \in H := L^2(\Omega)$, $D^{\lambda} \in L^{\infty}(\Omega)$, $\infty > M \ge D^{\lambda}(x) \ge \sigma > 0$ a.e. in Ω , $\lambda \in [0, \infty)$ and $D^{\lambda} \to D^{\lambda_1}$ in $L^{\infty}(\Omega)$ as $\lambda \to \lambda_1$, $F : \mathcal{D}(F) \subset L^2(\Omega) \to \mathcal{P}(L^2(\Omega))$, given by

$$F(y(\cdot)) = \{ \xi(\cdot) \in L^2(\Omega) : \xi(x) \in f(y(x)) \text{ x-a.e. in } \Omega \}$$

2000 Mathematics Subject Classification: 35A16, 35K10, 35K92, 35K55

with $f: \mathbb{R} \to \mathcal{C}_v(\mathbb{R})$ a multivalued map, where $\mathcal{C}_v(\mathbb{R})$ is the set of all nonempty, bounded, closed, convex subsets of \mathbb{R} . Assume that f is Lipschitz, i.e., there exists $C \geq 0$ such that

$$\operatorname{dist}_{\mathcal{H}}(f(x), f(z)) \leq C \|x - z\|$$
 for all $x, z \in \mathbb{R}$.

Consequently, the map F(u) + h has values in $C_v(L^2(\Omega))$ and is Lipschitz.

The authors in [21] proved that the operator

$$A^{D^{\lambda}}(u) := -div(D^{\lambda}|\nabla u|^{p-2}\nabla u) + |u|^{p-2}u$$

is maximal monotone in H and is the subdifferential of a proper, convex and lower semicontinuos function $\varphi^{D^{\lambda}}: H \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\varphi^{D^{\lambda}}(u) \doteq \left\{ \begin{array}{l} \frac{1}{p} \Big[\int_{\mathbb{R}^n} D^{\lambda}(x) |\nabla u|^p dx + \int_{\mathbb{R}^n} |u|^p dx \Big], \qquad u \in W^{1,p}(\Omega) \\ +\infty, \qquad \text{otherwise} \end{array} \right..$$

Moreover, it is not difficult to see that there are constants $w_1 = w_1(\sigma) > 0$, $w_2 = w_2(p, M) > 0$, $c_1 \doteq 0 \in \mathbb{R}$ and p > 2 such that for all $u \in E := W^{1,p}(\Omega)$ the following two conditions hold:

$$\langle A_1^{D^{\lambda}} u, u \rangle_{E^*, E} \ge w_1 \parallel u \parallel_E^p + c_1$$
 (1.2)

and

$$||A_1^{D^{\lambda}}u||_{E^*} \le w_2 ||u||_E^{p-1} < w_2(||u||_E^{p-1} + 1).$$
 (1.3)

As a consequence we can conclude that $\overline{\mathcal{D}(A^{D^{\lambda}})} = H$ and the operator $A^{D^{\lambda}}$: $\mathcal{D}(A^{D^{\lambda}}) \subset H \to H$ generates a compact semigroup $S^{D^{\lambda}}$, [7].

During the last ten years, many researches have spent much effort in obtaining results on global attractors for p-Laplacian problems (see for example [1,4,8,6,10,11,12,13,16,18,19,21,22,23,24,25,26,27]). To prove existence of a global attractor for Partial Differential Inclusions it is necessary to use theory of multivalued semigroups or generalized semiflows (see [2,5,17,20]). In this work, in order to prove existence of a global attractor for problem (1.1) we use the theory developed in [17].

The paper is organized as follows. In Section 2 we present some preliminaries results. In Section 3 we prove the existence of the global attractor for the problem (1.1). Moreover, in Section 4 we obtain H and E estimates for the solutions u_{λ} of the problem (1.1), uniformly on $\lambda \in [0, \infty)$. Finally, in Section 5 we prove the upper semicontinuity of the global attractors.

2. A preliminary theory

This section is based on the paper [17], therefore we strongly suggest that the reader consult the original sources when using the results for further research. We include them to make this text self-contained.

Consider the following evolution inclusion

$$\frac{dy(t)}{dt} \in A(y(t)) + F(y(t)), \ t \in [0, T], \tag{2.1}$$

with the initial condition

$$y(0) = y_0 \in H. (2.2)$$

Let us consider the next conditions:

- (A) The operator A is maximal monotone in H.
- (F_1) $F: H \to \mathcal{C}_v(H)$, where $\mathcal{C}_v(H)$ is the set of all nonempty, bounded, closed and convex subsets of H.
- (F_2) The map F is Lipschitz on $\overline{\mathcal{D}(A)}$, i.e., there exists c > 0 such that

$$\operatorname{dist}_{H}(F(y_{1}), F(y_{2})) \leq c \| y_{1} - y_{2} \|_{H}$$
, for all $y_{1}, y_{2} \in \overline{\mathcal{D}(A)}$,

where $\operatorname{dist}_{H}(\cdot,\cdot)$ denotes the Hausdorff metric of bounded sets.

Consider also the next inclusion

$$\frac{dy(t)}{dt} \in A(y(t)) + f(t), \ t \in [0, T], \tag{2.3}$$

with the initial condition

$$y(0) = y_0 \in H, (2.4)$$

where $f(\cdot) \in L^1([0,T];H)$ and $L^1([0,T];H)$ is the space of Bochner integrable functions.

Definition 2.1. [17] The continuous function $y : [0,T] \to H$ is called an integral solution of the problem (2.3), (2.4) if:

- i) $y(0) = y_0;$
- $ii) \ \forall \ u \in \mathcal{D}(A), \ \forall \ v \in A(u),$

$$||y(t) - u||_H^2 \le ||y(s) - u||_H^2 + 2\int_s^t \langle f(\tau) + v, y(\tau) - u \rangle d\tau, \ t \ge s.$$
 (2.5)

Definition 2.2. [14] The continuous function $y : [0,T] \to H$ is called a strong solution of the problem (2.3), (2.4) if $y(0) = y_0$ and $y(\cdot)$ is absolutely continuous on every compact subsets of (0,T) and satisfies (2.3) almost everywhere on (0,T).

Definition 2.3. [17] The continuous function $y : [0,T] \to H$ is called an integral solution of the problem (2.1), (2.2) if:

- i) $y(0) = y_0$;
- ii) For some selection $f \in L^1([0,T],H)$, $f(t) \in F(y(t))$ a.e. on [0,T] and the inequality (2.5) holds.

Definition 2.4. [14,21] The continuous function $y:[0,T] \to H$ is called a strong solution of the problem (2.1), (2.2) if there exists a selection $f \in L^1([0,T],H)$, $f(t) \in F(y(t))$ a.e. on [0,T] such that $y:[0,T] \to H$ is a strong solution of the problem (2.3), (2.4).

Remark 2.5. [3,17] If the condition (A) holds and $f \in L^1([0,T]; H)$, then for every $y_0 \in \overline{\mathcal{D}(A)}$, there exists a unique integral solution $y(\cdot)$ of the problem (2.3), (2.4) for each T > 0. We shall denote $y(\cdot) = I(y_0)f(\cdot)$. Moreover, for any integral solutions $y_i(\cdot) = I(y_{i0})f_i(\cdot)$, i = 1, 2, the next inequality holds:

$$||y_1(t) - y_2(t)|| \le ||y_1(s) - y_2(s)|| + \int_s^t ||f_1(\tau) - f_2(\tau)|| d\tau, \ t \ge s.$$
 (2.6)

Let us denote by $D(y_0)$ the set of all integral solutions of (2.1) such that $y(0) = y_0$.

Lemma 2.6. [17] The multivalued map $G : \mathbb{R}_+ \times \overline{\mathcal{D}(A)} \to \mathcal{P}(\overline{\mathcal{D}(A)})$ defined by $G(t, y_0) := \{y(t) : y(\cdot) \in D(y_0)\}$ is a multivalued semigroup.

3. Existence of the global attractor

Using the properties on the external forcing term and on the operator we obtain from Lemma 2.6 the following

Proposition 3.1. The inclusion (1.1) defines a multivalued semigroup (or m-semiflow) $G_{\lambda}(t,\cdot): H \to \mathcal{P}(H)$ where $G_{\lambda}(t,u_0)$ is the set of all integral solutions of (1.1) beginning at $u_0 \in H$ valuated at time t.

Let us consider the following condition:

(\mathcal{H}) The sets $M_K:=\{u\in D(\varphi):\|u\|_H\leq K,\ \varphi(u)\leq K\}$ are compact in H for any K>0.

We intend to use the following

Theorem 3.2. [17] Let (\mathcal{H}) be satisfied. Suppose that there exist $\delta > 0$, M > 0 such that for every $u \in \mathcal{D}(\partial \varphi)$ with $||u|| \geq M$ and for each $y \in -\partial \varphi(u) + F(u) + h$, we have

$$(y,u) \le -\delta. \tag{3.1}$$

Then the multivalued semigroup G has a global attractor R. It is the minimal closed set attracting each bounded set. It is compact, invariant and maximal among all negatively semi-invariant bounded subsets in H.

Now, considering a growth condition on f, we establish the following

Theorem 3.3. If there exist constants $M_0 > 0$ and $\epsilon_0 > \frac{1}{2} + \frac{1}{M_0|\Omega| + \frac{1}{2} ||h||^2}$ that for all $s \in \mathbb{R}$ and for every $z \in f(s)$,

$$zs \le \frac{w_1}{\gamma^p} |s|^p - \epsilon_0 |s|^2 + M_0,$$
 (3.2)

where γ is the immersion constant of $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$, then the multivalued semigroup associated with problem (1.1) has a global attractor A_{λ} . It is the minimal closed set attracting each bounded set. It is compact, invariant and maximal among all negatively semi-invariant bounded subsets in H.

Proof: First, we will to prove that the condition (\mathcal{H}) is satisfied. Indeed, since $E \subset\subset H$ and

$$M_K := \left\{ u \in \mathcal{D}(\varphi^{D^{\lambda}}); \|u\|_H \le K, \ \varphi^{D^{\lambda}}(u) \le K \right\} = \overline{M_k},$$

it is sufficient to show that for each K > 0, M_K is a bounded set in E. Let be K > 0 and $u \in M_K$. Using (1.2), we have

$$||u||_E^p \le \frac{p}{p} \left[\int_{\Omega} D^{\lambda}(x) |\nabla u|^p dx + \int_{\Omega} |u|^p dx \right] = p\varphi^{D^{\lambda}}(u) \le pK =: K_1.$$

So, $||u||_E \leq \left[\frac{K_1}{w_1}\right]^{\frac{1}{p}}$ and the the condition (\mathcal{H}) is satisfied. Now, we intend to show that the condition (3.1) in Theorem 3.2 is satisfied. Let $u \in \mathcal{D}(A^{D^{\lambda}})$ and $\xi \in F(u)$. Then, using Cauchy Schwarz and the hypothesis (3.2) we get

$$\begin{split} \left\langle -A^{D^{\lambda}}(u) + \xi + h, u \right\rangle &\leq \\ &\leq -w_{1} \|u\|_{E}^{p} + \int_{\Omega} \left(\frac{w_{1}}{\gamma^{p}} |u(x)|^{p} - \epsilon_{0} \|u(x)\|^{2} + M_{0} \right) dx + \|h\|_{H} \|u\|_{H} \\ &\leq -\frac{w_{1}}{\gamma^{p}} \|u\|_{L^{p}}^{p} + \frac{w_{1}}{\gamma^{p}} \|u\|_{L^{p}}^{p} - \epsilon_{0} \|u\|_{H}^{2} + \frac{1}{2} \|h\|_{H}^{2} + \frac{1}{2} \|u\|_{H}^{2} + M_{0} |\Omega| \\ &= \left(\frac{1}{2} - \epsilon_{0} \right) \|u\|_{H}^{2} + \left(M_{0} |\Omega| + \frac{1}{2} \|h\|_{H}^{2} \right). \end{split}$$

Considering $M:=M_0|\Omega|+\frac{1}{2}\|h\|_H^2>0$ and $\delta:=\left(\epsilon_0-\frac{1}{2}\right)M^2-M>0$ we have

$$\left\langle -A^{D^{\lambda}}(u) + \xi + h, u \right\rangle \leq -\delta$$
, for all $u \in \mathcal{D}(A^{D^{\lambda}})$ with $||u||_{H} > M$.

So, condition (3.1) is satisfied and the result follows from Theorem 3.2.

4. Uniform Estimates

In this section we obtain H and E estimates for the solutions u_{λ} 's of the problem (1.1), uniformly on $\lambda \in [0, \infty)$. Since the map f has values in $\mathcal{C}_v(\mathbb{R})$ it's easy to see that there exist D_1 , $D_2 \geq 0$ such that

$$\sup_{y \in f(s)} |y| \le D_1 + D_2|s|, \text{ for all } s \in \mathbb{R}.$$

Consequently, there exist $\tilde{D_1}$, $\tilde{D_2} \geq 0$ such that

$$\sup_{v_{\lambda} \in F(u_{\lambda})} \|v_{\lambda}\| \le \tilde{D}_1 + \tilde{D}_2 \|u_{\lambda}\|, \text{ for all } \lambda \in [0, \infty).$$

$$\tag{4.1}$$

By Lemma 1 in [14] each integral solution u_{λ} of problem (1.1) is a strong solution of this problem. Since $\infty > M \geq D^{\lambda}(x) \geq \sigma > 0$ a.e. in Ω , $\lambda \in [0, \infty)$, working with selections we can repeat the same arguments used in [21,22] to obtain the desired estimates. What essentially change is the control on the right hand side, i.e., being u_{λ} a solution of (1.1), then there exists $\xi_{\lambda} \in L^{1}(0,T;H)$, $\xi_{\lambda}(t) \in F(u_{\lambda}(t))$ t-a.e. in (0,T) such that

$$\frac{\partial u_{\lambda}}{\partial t}(t) - div(D^{\lambda}|\nabla u_{\lambda}(t)|^{p-2}\nabla u_{\lambda}(t)) + |u_{\lambda}(t)|^{p-2}u_{\lambda}(t) = \xi_{\lambda}(t) + h.$$

Multiplying the equation by $u_{\lambda}(t)$ we control the right hand side using (4.1):

$$\langle \xi_{\lambda}(t) + h, u_{\lambda}(t) \rangle \leq \tilde{D_2} \|u_{\lambda}(t)\|_H^2 + (\tilde{D_1} + \|h\|_H) \|u_{\lambda}(t)\|_H, \ \forall \ \lambda \in [0, \infty).$$

Thus, we obtain

Lemma 4.1. If u_{λ} is a solution of (1.1) in $(0, \infty)$, then there are positive constants r_0 , t_0 such that $||u_{\lambda}(t)||_H \leq r_0$, for each $t \geq t_0$ and $\lambda \in [0, \infty)$.

Remark 4.2. We observe that the constants r_0 , t_0 in Lemma 4.1 depend neither on the initial data nor on λ .

Remark 4.3. For each fixed $\lambda \in [0, \infty)$, there exists a positive constant $\widetilde{r_0}(u_{0,\lambda}, t_0)$ such that $\|u_{\lambda}(t)\|_H < \widetilde{r_0}(u_{0,\lambda}, t_0)$, for each $t \in [0, t_0]$ and, for initial conditions in bounded subsets of H, we have that $\|u_{\lambda}(t)\|_H < \widetilde{r_0}$, for each $\lambda \in [0, \infty)$ and $t \in [0, t_0]$.

Corollary 4.4. There is a bounded set B_0 in H such that $A_{\lambda} \subset B_0, \forall \lambda \in [0, \infty)$.

Lemma 4.5. If u_{λ} is a solution of (1.1) in $(0, \infty)$, then there exist positive constants $r_1 > 0$ and $t_1 > t_0$ such that $||u_{\lambda}(t)||_E \le r_1$, for each $t \ge t_1$ and $\lambda \in [0, \infty)$, with t_0 as in the Lemma 4.1.

Remark 4.6. If u_{λ} is a solution of (1.1) with initial conditions in bounded subsets of E, we have that there is a constant $\widetilde{r_3} > 0$ such that $||u_{\lambda}(t)||_E < \widetilde{r_3}$, for each $\lambda \in [0, \infty)$ and $t \in [0, t_1]$.

As an important consequence of Lemma 4.5 it follows that $\bigcup_{\lambda \in [0,\infty)} \mathcal{A}_{\lambda}$ is a bounded subset of E and once $E \subset\subset H$, we can conclude:

Corollary 4.7. $A := \overline{\bigcup_{\lambda \in [0,\infty)} A_{\lambda}}$ is a compact subset of H.

5. Upper semicontinuity of the global attractors

In this section we guarantee that $\{A_{\lambda}\}_{{\lambda}\in[0,\infty)}$ is upper semicontinuous at λ_1 , i.e.,

$$dist(\mathcal{A}_{\lambda},\mathcal{A}_{\lambda_1}) = \sup_{a_{\lambda} \in \mathcal{A}_{\lambda}} dist(a_{\lambda},\mathcal{A}_{\lambda_1}) \to 0 \ as \ \lambda \to \lambda_1.$$

To accomplish that we appeal to

Theorem 5.1. [15] Let Λ be a metric space, λ_1 be a non-isolated point and let $\mathbb{G}_{\lambda} : \mathbb{R}_+ \times X \to P(X)$, $\lambda \in \Lambda$, a family of m-semiflows in the Banach space X satisfying:

- (i) For each $\lambda \in \Lambda$, \mathbb{G}_{λ} has a compact and invariant global B-attractor \mathcal{A}_{λ} and $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \in B(X)$;
- (ii) The multivalued map $\lambda \mapsto \mathbb{G}_{\lambda}(t, \mathcal{A})$, $\mathcal{A} \doteq \overline{\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}}$, is w-upper semicontinuous at λ_1 for large t, i.e., there exists $t_0 > 0$ such that for each $t \geq t_0$ fixed, given $\varepsilon > 0$, $\exists \ \delta > 0$ such that $\mathbb{G}_{\lambda}(t, \mathcal{A}) \subset O_{\varepsilon}(\mathbb{G}_{\lambda_1}(t, \mathcal{A}))$, $\forall \ \lambda \in O_{\delta}(\lambda_1)$. Then $dist(\mathcal{A}_{\lambda}, \mathcal{A}_{\lambda_1}) \to 0$, as $\lambda \to \lambda_1$.

To prove the next theorem we intend to use Theorem 3.3 in [9]. So, we need impose one more hypothesis on F. We suppose that F is upper w-semicontinuous on H, i.e., for any $\varepsilon > 0$ and $x_0 \in H$, there exists $\delta > 0$ such that, for any $x \in B_{\delta}(x_0)$, we have $F(x) \subset B_{\varepsilon}(F(x_0))$.

Theorem 5.2. The map $\lambda \longmapsto G_{\lambda}(t, A)$ is w-upper semicontinuous at λ_1 for each t > 0.

Proof: For simplicity, we consider $\lambda_1 \doteq 0$. Suppose, on contrary, that there exists a number $t_0 > 0$ such that the map $\lambda \mapsto G_\lambda(t_0, \mathcal{A})$ is not w-upper semicontinuous at λ_1 . So, there exists a γ -neighborhood $O_\gamma(G_0(t_0, \mathcal{A}))$ such that for each $n \in \mathbb{N}$ there exists $0 \leq \lambda_n < \frac{1}{n}$ and $\xi_{\lambda_n} \in G_{\lambda_n}(t_0, \mathcal{A})$ with $\xi_{\lambda_n} \notin O_\gamma(G_0(t_0, \mathcal{A}))$. (Note that $\lambda_n \to \lambda_1 = 0$ as $n \to +\infty$). Then, $\xi_{\lambda_n} = u_{\lambda_n}(t_0)$, $u_{\lambda_n}(0) \in \mathcal{A}$. It is enough to show that there is a subsequence $\{\xi_{\lambda_{n_k}}\}$ of $\{\xi_{\lambda_n}\}$ with $\xi_{\lambda_{n_k}} \to \xi_0 \in G_0(t_0, \mathcal{A})$, and so we obtain a contradiction. Indeed, we have that u_{λ_n} is a solution of (1.1) with $u_{\lambda_n}(0) \in \mathcal{A}$. So, there exists $f_{\lambda_n} \in L^1(0,T;H)$, with $f_{\lambda_n}(t) \in F(u_{\lambda_n}(t)) + h$, a.e. in (0,T), and such that u_{λ_n} is an integral solution over (0,T) of the problem $(P_{\lambda_n}^1)$ below:

$$(P_{\lambda_n}^1) \frac{\partial u_{\lambda_n}}{\partial t} - div(D^{\lambda_n} | \nabla u_{\lambda_n}|^{p-2} \nabla u_{\lambda_n}) + |u_{\lambda_n}|^{p-2} u_{\lambda_n} = f_{\lambda_n}$$
 in $(0, T)$.

We can suppose $t_0 \in (0,T)$. As \mathcal{A} is compact $u_{\lambda_n}(0) \to u_0 \in \mathcal{A}$. Let $u_{\lambda_n}(\cdot) \doteq I(u_{0,\lambda_n})f_{\lambda_n}(\cdot)$ and $z_{\lambda_n}(\cdot) \doteq I(u_0)f_{\lambda_n}(\cdot)$ be the solution of the problem

$$(P_{f_{\lambda_n},u_0}) \begin{cases} \frac{\partial z_{\lambda_n}}{\partial t} - div(D^{\lambda_n} |\nabla z_{\lambda_n}|^{p-2} \nabla z_{\lambda_n}) + |z_{\lambda_n}|^{p-2} z_{\lambda_n} = f_{\lambda_n} \\ z_{\lambda_n}(0) = u_0. \end{cases}$$

By (4.1) and Remark 4.3, there exists L > 0 such that $||f_{\lambda_n}(t)||_H \le L$ for all $t \in [0,T]$, and for all $n \in \mathbb{N}$. Let $K \doteq \{f_{\lambda_n}; n \in \mathbb{N}\}$ and $M(K) \doteq \{z_{\lambda_n}; n \in \mathbb{N}\}$.

Once K is a bounded set, it is easy to see it is a uniformly integrable subset. Given $t \in (0,T]$ and h>0 such that $t-h \in (0,T]$, consider the operator $T_h:M(K)(t)\to H$ defined by $T_hz_{\lambda_n}(t)=S^{\lambda_n}(h)z_{\lambda_n}(t-h)$. By Statement 1 in [21], the operator $T_h:M(K)(t)\to H$ is compact. Then, from Theorem 3.2 in [21], the set M(K) is relatively compact in C([0,T];H) and so there exists $z\in C([0,T];H)$ and there exists a subsequence $\{z_{\lambda_n}(\cdot)\}$ such that $z_{\lambda_n}\to z$ in C([0,T];H). As each z_{λ_n} is a solution of $(P_{f_{\lambda_n},u_0})$, then z_{λ_n} verify

$$\frac{1}{2} \parallel z_{\lambda_n}(t) - \theta \parallel^2 \le \frac{1}{2} \parallel z_{\lambda_n}(s) - \theta \parallel^2 + \int_s^t \langle f_{\lambda_n}(\tau) - y_{\lambda_n}, z_{\lambda_n}(\tau) - \theta \rangle d\tau \qquad (5.1)$$

for all $\theta \in \mathcal{D}(A^{D^{\lambda_n}}) \subseteq W^{1,p}(\Omega) \subset H$ and $y_{\lambda_n} = A^{D^{\lambda_n}}(\theta)$ and for all $0 \le s \le t \le T$. As $\parallel f_{\lambda_n}(\tau) \parallel_H \le L$, for all $0 \le \tau \le T$ and for all $n \in \mathbb{N}$, we conclude that there exists a positive constant \widetilde{L} such that $\parallel f_{\lambda_n} \parallel_{L^2(0,T;H)} \le \widetilde{L}$ for all $n \in \mathbb{N}$. As $L^2(0,T;H)$ is a reflexive Banach space there is $f \in L^2(0,T;H)$ and subsequence, which we do not relabel, $\{f_{\lambda_n}\}$ such that $f_{\lambda_n} \rightharpoonup f$ in $L^2(0,T;H)$. Consequently $f_{\lambda_n} \rightharpoonup f$ in $L^1(0,T;H)$. Moreover,

$$\sup_{t \in [0,T]} \| u_{\lambda_n}(t) - z(t) \|_H \leq \sup_{t \in [0,T]} \| I(u_{0,\lambda_n}) f_{\lambda_n}(t) - I(u_0) f_{\lambda_n}(t) \|_H$$

$$+ \sup_{t \in [0,T]} \| z_{\lambda_n}(t) - z(t) \|_H$$

$$\leq \| u_{0,\lambda_n} - u_0 \|_H$$

$$+ \sup_{t \in [0,T]} \| z_{\lambda_n}(t) - z(t) \|_H \to 0 \text{ as } n \to +\infty.$$

Therefore $u_{\lambda_n} \to z$ in C([0,T];H). So, from Theorem 3.3 in [9], $f(t) \in F(z(t))$ t-a.e. in [0,T]. Since $f_{\lambda_n} \rightharpoonup f$ in $L^2(0,T;H)$ implies that $f_{\lambda_n} \rightharpoonup f$ in $L^2(s,t;H)$, $\forall \ 0 \le s \le t \le T$; and $z_{\lambda_n} \to z$ in C([0,T];H) implies that $z_{\lambda_n} \to z$ in C([s,t];H) and consequently $z_{\lambda_n} \to z$ in $L^2(s,t;H)$, $\forall \ 0 \le s \le t \le T$; then

$$\langle f_{\lambda_n} - h, z_{\lambda_n} - \theta \rangle_{L^2(s,t;H)} \to \langle f - h, z - \theta \rangle_{L^2(s,t;H)}$$

for all $\theta, h \in H$. Now, consider $\overline{\theta} \in D(A^{D^0}) \subset W^{1,p}(\Omega) \subset H$ and let be $\overline{h} := A^{D^0}(\overline{\theta}) \in H$. We consider

$$y_{\lambda_{-}} := A^{D^{\lambda_{n}}}(\overline{\theta}) = -div(D^{\lambda_{n}}|\nabla \overline{\theta}|^{p-2}\nabla \overline{\theta}) + |\overline{\theta}|^{p-2}\overline{\theta}.$$

Note that $\mathcal{D}(A^{D^{\lambda_n}}) = D(A^{D^0}), \forall n \in \mathbb{N}$. We already knows by (5.1) that holds

$$\frac{1}{2} \| z_{\lambda_n}(t) - \overline{\theta} \|^2 \leq \frac{1}{2} \| z_{\lambda_n}(s) - \overline{\theta} \|^2 + \int_s^t \langle f_{\lambda_n}(\tau) - \overline{h}, z_{\lambda_n}(\tau) - \overline{\theta} \rangle d\tau + \int_s^t \langle \overline{h} - y_{\lambda_n}, z_{\lambda_n}(\tau) - \overline{\theta} \rangle d\tau.$$
(5.2)

Repeating the arguments as in [21], we have

$$\int_{s}^{t} \langle \overline{h} - y_{\lambda_n}, z_{\lambda_n}(\tau) - \overline{\theta} \rangle d\tau \to 0$$

as $n \to +\infty$. So, taking the limit in inequality (5.2) as $n \to +\infty$, we obtain

$$\frac{1}{2} \parallel z(t) - \overline{\theta} \parallel^2 \leq \frac{1}{2} \parallel z(s) - \overline{\theta} \parallel^2 + \int_s^t \langle f(\tau) - \overline{h}, z(\tau) - \overline{\theta} \rangle d\tau$$

for all $\overline{\theta} \in D(A^{D^0})$ and $\overline{h} \doteq A^{D^0}(\overline{\theta})$ and for all $0 \leq s \leq t \leq T$. So $z \in G_0$ with $z(0) = u_0 \in \mathcal{A}$. Then, $z(t) \in G_0(t, \mathcal{A}), \ \forall \ t \geq 0$. Thus, defining $\xi_0 \doteq z(t_0) \in G_0(t_0, \mathcal{A})$, we obtain

$$\|\xi_{\lambda_n} - \xi_0\|_{H} = \|u_{\lambda_n}(t_0) - z(t_0)\|_{H} \le \sup_{\tau \in [0,T]} \|u_{\lambda_n}(\tau) - z(\tau)\|_{H} \to 0 \text{ as } n \to +\infty,$$

which is a contradiction, and so we conclude that the map

$$[0,\infty)\ni\lambda\mapsto G_{\lambda}(t,\mathcal{A})$$

is w-upper semicontinuous on λ_1 for each t > 0.

Therefore, the family $\{G_{\lambda}\}_{{\lambda}\in[0,\infty)}$ satisfies the condition (ii) of the Theorem 5.1. Therefore, using Corollary 4.7, we obtain immediately by Theorem 5.1 the following result:

Theorem 5.3. The family of global attractors $\{A_{\lambda}; \lambda \in [0, \infty)\}$ of the problem (1.1) is upper semicontinuous at λ_1 .

Remark 5.4. All the results in this work can be reproduced in a similar way for the problem

$$\frac{\partial u_{\lambda}}{\partial t}(t) - div(D^{\lambda}|\nabla u_{\lambda}(t)|^{p-2}\nabla u_{\lambda}(t)) \in F(u_{\lambda}(t)) + h.$$

Acknowledgments

The second author was supported by CAPES.

References

- 1. Anh, C.T. and Ke, T.D.: Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators, Nonlinear Anal. 71 (10) (2009), 4415–4422.
- Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci. 7 (5) (1997), 475–502.
- Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International, 1976.
- Bruschi, S.M., Gentile, C.B. and Primo, M.R.T.: Continuity properties on p for p-Laplacian parabolic problems, Nonlinear Anal. 72 (3-4) (2010), 1580–1588.
- Caraballo, T., Marin-Rubio, P. and Robinson, J.C.: A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal. 11 (3) (2003), 297–322.
- Carbone, V.L., Gentile, C.B. and Schiabel-Silva, K.: Asymptotic properties in parabolic problems dominated by a p-Laplacian operator with localized large diffusion, Nonlinear Anal. 74 (12) (2011), 4002–4011.

- 7. Carvalho, A.N., Cholewa, J.W. and Dlotko, T.: Global attractors for problems with monotone operators, Bolletino U.M.I., 2 (3) (1999), 693–706.
- 8. Carvalho, A.N. and Gentile, C.B.: Asymptotic behaviour of non-linear parabolic equations with monotone principal part, J. Math. Anal. Appl. 280 (2) (2003), 252–272.
- 9. Díaz, J.I. and Vrabie, I.I.: Existence for Reaction Diffusion Systems. A Compactness Method Approach, Journal of Mathematical Analysis and Applications 188 (1994), 521–540.
- Efendiev, M.A. and Ôtani, M.: Infinite-dimensional attractors for parabolic equations with p-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (4) (2011), 565–582.
- 11. Ouardi, H.El.: Global attractor for quasilinear parabolic systems involving weighted p-Laplacian operators, J. Pure Appl. Math. Adv. Appl. 5 (2) (2011), 79–97.
- 12. Gentile, C.B. and Primo, M.R.T.: Parameter Dependent Quasi-linear Parabolic Equations, Nonlinear Anal. 59 (5) (2004), 801–812.
- 13. Khanmamedov, A.Kh.: Global attractors for one dimensional p-Laplacian equation, Nonlinear Anal. 71 (1-2) (2009), 155–171.
- Kapustyan, O.V. and Valero, J.: Attractors of differential inclusions and their approximation, Ukrainian Mathematical Journal 52 (7) (2000), 1118–1123.
- 15. Kapustyan, A.V. and Valero, J.: Attractors of multivalued semiflows generated by differential inclusions and their approximations, Abstr. Appl. Anal. 5 (1) (2000), 33–46.
- Ma, S. and Li, H.: Global attractors for weighted p-Laplacian equations with boundary degeneracy, J. Math. Phys. 53 (1) (2012), 012701 (8 pp).
- 17. Melnik, V.S. and Valero, J.: On attractors of multivalued semi-flows and differential inclusions, Set-Valued Analysis 6 (1998), 83–111.
- 18. Niu, W. and Zhong, C.: Global attractors for the p-Laplacian equations with nonregular data, J. Math. Anal. Appl. 392 (2) (2012), 123–135.
- 19. Simsen, J.: A note on p-Laplacian parabolic problems in \mathbb{R}^n , Nonlinear Anal. 75 (18) (2012), 6620–6624.
- 20. Simsen, J. and Gentile, C.B.: On attractors for multivalued semigroups defined by generalized semiflows, Set-Valued Anal. 16 (2008), 105–124.
- Simsen, J. and Gentile, C.B.: On p-Laplacian differential inclusions global existence, compactness properties and asymptotic behavior, Nonlinear Analysis 71 (7-8) (2009), 3488–3500.
- Simsen, J. and Gentile, C.B.: Well-posed p-Laplacian problems with large diffusion, Nonlinear Analysis 71 (10) (2009), 4609–4617.
- Simsen, J. and Gentile, C.B.: Systems of p-Laplacian differential inclusions with large diffusion, J. Math. Anal. Appl. 368 (2) (2010), 525–537.
- 24. Wang, H. and Chen, C.: On global attractors for (p,q)-Laplacian parabolic system in \mathbb{R}^N , Indagationes Mathematicae 23 (2012), 423–437.
- 25. Yang, M., Sun, C. and Zhong, C.: Existence of a global attractor for a p-Laplacian equation in \mathbb{R}^n , Nonlinear Anal. 66 (1) (2007), 1–13.
- 26. Yang, M., Sun, C. and Zhong, C.: Global attractors for p-Laplacian equation, J. Math. Anal. Appl. 327 (2) (2007), 1130–1142.
- 27. Zhong, C. and Niu, W.: On the Z₂ index of the global attractor for a class of p-Laplacian equations, Nonlinear Anal. 73 (12) (2010), 3698–3704.

Jacson Simsen

Instituto de Matemática e Computação - Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903 - Itajubá - MG - Brazil. Fax: +55-35-36291140

 $E ext{-}mail\ address: jacson@unifei.edu.br}$

and

Edson N. Neres Junior Instituto de Matemática e Computação - Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903 - Itajubá - MG - Brazil.