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Existence and upper semicontinuity of global attractors for a

p-Laplacian inclusion

Jacson Simsen and Edson N. Neres Junior

abstract: In this work we study the asymptotic behavior of a p-Laplacian in-

clusion of the form
∂uλ

∂t
− div(Dλ |∇uλ|

p−2∇uλ) + |uλ|
p−2uλ ∈ F (uλ) + h, where

p > 2, h ∈ L2(Ω), with Ω ⊂ Rn, n ≥ 1, a bounded smooth domain, Dλ ∈ L∞(Ω),
∞ > M ≥ Dλ(x) ≥ σ > 0 a.e. in Ω, λ ∈ [0,∞) and Dλ → Dλ1 in L∞(Ω) as
λ → λ1, F : D(F ) ⊂ L2(Ω) → P(L2(Ω)), given by F (y(·)) = {ξ(·) ∈ L2(Ω) : ξ(x) ∈
f(y(x)) x-a.e. in Ω} with f : R → Cv(R) a multivalued Lipschitz map, where Cv(R)
is the set of all nonempty, bounded, closed, convex subsets of R. We prove the exis-
tence of a global attractor in L2(Ω) for each positive finite diffusion coefficient and
we show that the family of attractors behaves upper semicontinuously on positive
finite diffusion parameters.

Key Words: Partial differential inclusions, p-Laplacian, attractors, upper
semicontinuity.
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1. Introduction

Let us consider the problem
{

∂uλ

∂t
(t)− div(Dλ|∇uλ(t)|

p−2∇uλ(t)) + |uλ(t)|
p−2uλ(t) ∈ F (uλ(t)) + h, t > 0

uλ(0) = u0,λ,

(1.1)

where p > 2, Ω ⊂ Rn, n ≥ 1, is a bounded smooth domain, h, u0,λ ∈ H := L2(Ω),
Dλ ∈ L∞(Ω), ∞ > M ≥ Dλ(x) ≥ σ > 0 a.e. in Ω, λ ∈ [0,∞) and Dλ → Dλ1 in
L∞(Ω) as λ → λ1, F : D(F ) ⊂ L2(Ω) → P(L2(Ω)), given by

F (y(·)) = {ξ(·) ∈ L2(Ω) : ξ(x) ∈ f(y(x)) x-a.e. in Ω}
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with f : R → Cv(R) a multivalued map, where Cv(R) is the set of all nonempty,
bounded, closed, convex subsets of R. Assume that f is Lipschitz, i.e., there exists
C ≥ 0 such that

distH(f(x), f(z)) ≤ C‖x− z‖ for all x, z ∈ R.

Consequently, the map F (u) + h has values in Cv(L
2(Ω)) and is Lipschitz.

The authors in [21] proved that the operator

ADλ

(u) := −div(Dλ|∇u|p−2∇u) + |u|p−2u

is maximal monotone in H and is the subdifferential of a proper, convex and lower

semicontinuos function ϕDλ

: H → R ∪ {+∞} defined by

ϕDλ

(u)
.
=





1

p

[ ∫

Rn

Dλ(x)|∇u|pdx+

∫

Rn

|u|pdx
]
, u ∈ W 1,p(Ω)

+∞, otherwise
.

Moreover, it is not difficult to see that there are constants w1 = w1(σ) > 0,
w2 = w2(p,M) > 0, c1

.
= 0 ∈ R and p > 2 such that for all u ∈ E := W 1,p(Ω) the

following two conditions hold:

〈ADλ

1 u, u〉E∗,E ≥ w1 ‖ u ‖pE +c1 (1.2)

and
‖ ADλ

1 u ‖E∗≤ w2 ‖ u ‖p−1
E < w2(‖ u ‖p−1

E +1). (1.3)

As a consequence we can conclude that D(ADλ) = H and the operator ADλ

:

D(ADλ

) ⊂ H → H generates a compact semigroup SDλ

, [7].
During the last ten years, many researches have spent much effort in ob-

taining results on global attractors for p-Laplacian problems (see for example
[1,4,8,6,10,11,12,13,16,18,19,21,22,23,24,25,26,27]). To prove existence of a global
attractor for Partial Differential Inclusions it is necessary to use theory of multival-
ued semigroups or generalized semiflows (see [2,5,17,20]). In this work, in order to
prove existence of a global attractor for problem (1.1) we use the theory developed
in [17].

The paper is organized as follows. In Section 2 we present some preliminaries
results. In Section 3 we prove the existence of the global attractor for the problem
(1.1). Moreover, in Section 4 we obtain H and E estimates for the solutions uλ

of the problem (1.1), uniformly on λ ∈ [0,∞). Finally, in Section 5 we prove the
upper semicontinuity of the global attractors.

2. A preliminary theory

This section is based on the paper [17], therefore we strongly suggest that the
reader consult the original sources when using the results for further research. We
include them to make this text self-contained.
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Consider the following evolution inclusion

dy(t)

dt
∈ A(y(t)) + F (y(t)), t ∈ [0, T ], (2.1)

with the initial condition

y(0) = y0 ∈ H. (2.2)

Let us consider the next conditions:

(A) The operator A is maximal monotone in H .

(F1) F : H → Cv(H), where Cv(H) is the set of all nonempty, bounded, closed
and convex subsets of H .

(F2) The map F is Lipschitz on D(A), i.e., there exists c ≥ 0 such that

distH(F (y1), F (y2)) ≤ c ‖ y1 − y2 ‖H , for all y1, y2 ∈ D(A),

where distH(·, ·) denotes the Hausdorff metric of bounded sets.

Consider also the next inclusion

dy(t)

dt
∈ A(y(t)) + f(t), t ∈ [0, T ], (2.3)

with the initial condition

y(0) = y0 ∈ H, (2.4)

where f(·) ∈ L1([0, T ];H) and L1([0, T ];H) is the space of Bochner integrable
functions.

Definition 2.1. [17] The continuous function y : [0, T ] → H is called an integral
solution of the problem (2.3), (2.4) if:

i) y(0) = y0;

ii) ∀ u ∈ D(A), ∀ v ∈ A(u),

‖y(t)− u‖2H ≤ ‖y(s)− u‖2H + 2

∫ t

s

〈f(τ ) + v, y(τ )− u〉dτ , t ≥ s. (2.5)

Definition 2.2. [14] The continuous function y : [0, T ] → H is called a strong
solution of the problem (2.3), (2.4) if y(0) = y0 and y(·) is absolutely continuous
on every compact subsets of (0, T ) and satisfies (2.3) almost everywhere on (0, T ).

Definition 2.3. [17] The continuous function y : [0, T ] → H is called an integral
solution of the problem (2.1), (2.2) if:
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i) y(0) = y0;

ii) For some selection f ∈ L1([0, T ], H), f(t) ∈ F (y(t)) a.e. on [0, T ] and the
inequality (2.5) holds.

Definition 2.4. [14,21] The continuous function y : [0, T ] → H is called a strong
solution of the problem (2.1), (2.2) if there exists a selection f ∈ L1([0, T ], H),
f(t) ∈ F (y(t)) a.e. on [0, T ] such that y : [0, T ] → H is a strong solution of the
problem (2.3), (2.4).

Remark 2.5. [3,17] If the condition (A) holds and f ∈ L1([0, T ];H), then for ev-
ery y0 ∈ D(A), there exists a unique integral solution y(·) of the problem (2.3), (2.4)
for each T > 0. We shall denote y(·) = I(y0)f(·). Moreover, for any integral solu-
tions yi(·) = I(yi0)fi(·), i = 1, 2, the next inequality holds:

‖y1(t)− y2(t)‖ ≤ ‖y1(s)− y2(s)‖ +

∫ t

s

‖f1(τ )− f2(τ )‖dτ, t ≥ s. (2.6)

Let us denote by D(y0) the set of all integral solutions of (2.1) such that y(0) =
y0.

Lemma 2.6. [17] The multivalued map G : R+ × D(A) → P(D(A)) defined by
G(t, y0) := {y(t) : y(·) ∈ D(y0)} is a multivalued semigroup.

3. Existence of the global attractor

Using the properties on the external forcing term and on the operator we obtain
from Lemma 2.6 the following

Proposition 3.1. The inclusion (1.1) defines a multivalued semigroup (or m-
semiflow) Gλ(t, ·) : H → P(H) where Gλ(t, u0) is the set of all integral solutions
of (1.1) beginning at u0 ∈ H valuated at time t.

Let us consider the following condition:

(H) The sets MK := {u ∈ D(ϕ) : ‖u‖H ≤ K, ϕ(u) ≤ K} are compact in H for
any K > 0.

We intend to use the following

Theorem 3.2. [17] Let (H) be satisfied. Suppose that there exist δ > 0, M > 0
such that for every u ∈ D(∂ϕ) with ‖u‖ ≥ M and for each y ∈ −∂ϕ(u)+F (u)+h,

we have

(y, u) ≤ −δ. (3.1)

Then the multivalued semigroup G has a global attractor R. It is the minimal closed
set attracting each bounded set. It is compact, invariant and maximal among all
negatively semi-invariant bounded subsets in H.
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Now, considering a growth condition on f , we establish the following

Theorem 3.3. If there exist constants M0 > 0 and ǫ0 > 1
2 + 1

M0|Ω|+ 1

2
‖h‖2

such

that for all s ∈ R and for every z ∈ f(s),

zs ≤
w1

γp
|s|

p
− ǫ0 |s|

2
+M0, (3.2)

where γ is the immersion constant of W 1,p(Ω) →֒ Lp(Ω), then the multivalued
semigroup associated with problem (1.1) has a global attractor Aλ. It is the minimal
closed set attracting each bounded set. It is compact, invariant and maximal among
all negatively semi-invariant bounded subsets in H.

Proof: First, we will to prove that the condition (H) is satisfied. Indeed, since
E ⊂⊂ H and

MK :=
{
u ∈ D(ϕDλ

); ‖u‖H ≤ K, ϕDλ

(u) ≤ K
}
= Mk,

it is sufficient to show that for each K > 0, MK is a bounded set in E. Let be
K > 0 and u ∈ MK . Using (1.2), we have

w1‖u‖
p
E ≤

p

p

[∫

Ω

Dλ(x) |∇u|
p
dx+

∫

Ω

|u|
p
dx

]
= pϕDλ

(u) ≤ pK =: K1.

So, ‖u‖E ≤ [K1

w1

]
1

p and the the condition (H) is satisfied.

Now, we intend to show that the condition (3.1) in Theorem 3.2 is satisfied.

Let u ∈ D(ADλ

) and ξ ∈ F (u). Then, using Cauchy Schwarz and the hypothesis
(3.2) we get

〈
−ADλ

(u) + ξ + h, u
〉
≤

≤ −w1‖u‖
p
E +

∫

Ω

(
w1

γp
|u(x)|

p
− ǫ0‖u(x)‖

2 +M0

)
dx+ ‖h‖H‖u‖H

≤ −
w1

γp
‖u‖pLp +

w1

γp
‖u‖pLp − ǫ0‖u‖

2
H +

1

2
‖h‖2H +

1

2
‖u‖2H +M0 |Ω|

=

(
1

2
− ǫ0

)
‖u‖2H +

(
M0 |Ω|+

1

2
‖h‖2H

)
.

Considering M := M0 |Ω|+
1
2‖h‖

2
H > 0 and δ :=

(
ǫ0 −

1
2

)
M2 −M > 0 we have

that
〈
−ADλ

(u) + ξ + h, u
〉
≤ −δ, for all u ∈ D(ADλ

) with ‖u‖H > M.

So, condition (3.1) is satisfied and the result follows from Theorem 3.2. ✷



240 Jacson Simsen and Edson N. Neres Junior

4. Uniform Estimates

In this section we obtain H and E estimates for the solutions uλ’s of the problem
(1.1), uniformly on λ ∈ [0,∞). Since the map f has values in Cv(R) it’s easy to see
that there exist D1, D2 ≥ 0 such that

sup
y∈f(s)

|y| ≤ D1 +D2|s|, for all s ∈ R.

Consequently, there exist D̃1, D̃2 ≥ 0 such that

sup
vλ∈F (uλ)

‖vλ‖ ≤ D̃1 + D̃2‖uλ‖, for all λ ∈ [0,∞). (4.1)

By Lemma 1 in [14] each integral solution uλ of problem (1.1) is a strong solution of
this problem. Since ∞ > M ≥ Dλ(x) ≥ σ > 0 a.e. in Ω, λ ∈ [0,∞), working with
selections we can repeat the same arguments used in [21,22] to obtain the desired
estimates. What essentially change is the control on the right hand side, i.e., being
uλ a solution of (1.1), then there exists ξλ ∈ L1(0, T ;H), ξλ(t) ∈ F (uλ(t)) t− a.e.

in (0, T ) such that

∂uλ

∂t
(t)− div(Dλ|∇uλ(t)|

p−2∇uλ(t)) + |uλ(t)|
p−2uλ(t) = ξλ(t) + h.

Multiplying the equation by uλ(t) we control the right hand side using (4.1):

〈ξλ(t) + h, uλ(t)〉 ≤ D̃2‖uλ(t)‖
2
H + (D̃1 + ‖h‖H)‖uλ(t)‖H , ∀ λ ∈ [0,∞).

Thus, we obtain

Lemma 4.1. If uλ is a solution of (1.1) in (0,∞), then there are positive constants
r0, t0 such that ‖uλ(t)‖H ≤ r0, for each t ≥ t0 and λ ∈ [0,∞).

Remark 4.2. We observe that the constants r0, t0 in Lemma 4.1 depend neither
on the initial data nor on λ.

Remark 4.3. For each fixed λ ∈ [0,∞), there exists a positive constant r̃0(u0,λ, t0)
such that ‖uλ(t)‖H < r̃0(u0,λ, t0), for each t ∈ [0, t0] and, for initial conditions in
bounded subsets of H, we have that ‖uλ(t)‖H < r̃0, for each λ ∈ [0,∞) and t ∈
[0, t0].

Corollary 4.4. There is a bounded set B0 in H such that Aλ ⊂ B0, ∀ λ ∈ [0,∞).

Lemma 4.5. If uλ is a solution of (1.1) in (0,∞), then there exist positive con-
stants r1 > 0 and t1 > t0 such that ‖uλ(t)‖E ≤ r1, for each t ≥ t1 and λ ∈ [0,∞),
with t0 as in the Lemma 4.1.

Remark 4.6. If uλ is a solution of (1.1) with initial conditions in bounded subsets
of E, we have that there is a constant r̃3 > 0 such that ‖uλ(t)‖E < r̃3, for each λ ∈
[0,∞) and t ∈ [0, t1].

As an important consequence of Lemma 4.5 it follows that
⋃

λ∈[0,∞) Aλ is a
bounded subset of E and once E ⊂⊂ H, we can conclude:

Corollary 4.7. A :=
⋃

λ∈[0,∞) Aλ is a compact subset of H.
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5. Upper semicontinuity of the global attractors

In this section we guarantee that {Aλ}λ∈[0,∞) is upper semicontinuous at λ1,
i.e.,

dist(Aλ,Aλ1
) = sup

aλ∈Aλ

dist(aλ,Aλ1
) → 0 as λ → λ1.

To accomplish that we appeal to

Theorem 5.1. [15] Let Λ be a metric space, λ1 be a non-isolated point and let
Gλ : R+ × X → P (X), λ ∈ Λ, a family of m-semiflows in the Banach space X

satisfying:
(i) For each λ ∈ Λ, Gλ has a compact and invariant global B-attractor Aλ and⋃

λ∈ΛAλ ∈ B(X);

(ii) The multivalued map λ 7→ Gλ(t,A), A
.
=

⋃
λ∈ΛAλ, is w-upper semicontinuous

at λ1 for large t, i.e., there exists t0 > 0 such that for each t ≥ t0 fixed, given
ε > 0, ∃ δ > 0 such that Gλ(t,A) ⊂ Oε(Gλ1

(t,A)), ∀ λ ∈ Oδ(λ1).
Then dist(Aλ,Aλ1

) → 0, as λ → λ1.

To prove the next theorem we intend to use Theorem 3.3 in [9]. So, we need
impose one more hypothesis on F . We suppose that F is upper w-semicontinuous
on H , i.e., for any ε > 0 and x0 ∈ H, there exists δ > 0 such that, for any
x ∈ Bδ(x0), we have F (x) ⊂ Bε(F (x0)).

Theorem 5.2. The map λ 7−→ Gλ(t,A) is w-upper semicontinuous at λ1 for each
t > 0.

Proof: For simplicity, we consider λ1
.
= 0. Suppose, on contrary, that there exists a

number t0 > 0 such that the map λ 7→ Gλ(t0,A) is not w-upper semicontinuous at
λ1. So, there exists a γ-neighborhood Oγ(G0(t0,A)) such that for each n ∈ N there
exists 0 ≤ λn < 1

n
and ξλn

∈ Gλn
(t0,A) with ξλn

6∈ Oγ(G0(t0,A)). ( Note that
λn → λ1 = 0 as n → +∞ ). Then, ξλn

= uλn
(t0), uλn

(0) ∈ A. It is enough to show
that there is a subsequence {ξλnk

} of {ξλn
} with ξλnk

→ ξ0 ∈ G0(t0,A), and so we

obtain a contradiction. Indeed, we have that uλn
is a solution of (1.1) with uλn

(0) ∈
A. So, there exists fλn

∈ L1(0, T ;H), with fλn
(t) ∈ F (uλn

(t)) + h, a.e. in (0, T ),
and such that uλn

is an integral solution over (0, T ) of the problem (P 1
λn

) below:

(P 1
λn

)
∂uλn

∂t
− div(Dλn |∇uλn

|p−2∇uλn
) + |uλn

|p−2uλn
= fλn

in (0, T ).

We can suppose t0 ∈ (0, T ). As A is compact uλn
(0) → u0 ∈ A. Let uλn

(·)
.
=

I(u0,λn
)fλn

(·) and zλn
(·)

.
= I(u0)fλn

(·) be the solution of the problem

(Pfλn ,u0
)

{
∂zλn

∂t
− div(Dλn |∇zλn

|p−2∇zλn
) + |zλn

|p−2zλn
= fλn

zλn
(0) = u0.

By (4.1) and Remark 4.3, there exists L > 0 such that ‖ fλn
(t) ‖H ≤ L for all

t ∈ [0, T ], and for all n ∈ N. Let K
.
= {fλn

;n ∈ N} and M(K)
.
= {zλn

;n ∈ N}.
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Once K is a bounded set, it is easy to see it is a uniformly integrable subset. Given
t ∈ (0, T ] and h > 0 such that t−h ∈ (0, T ], consider the operator Th : M(K)(t) →
H defined by Thzλn

(t) = Sλn(h)zλn
(t − h). By Statement 1 in [21], the operator

Th : M(K)(t) → H is compact. Then, from Theorem 3.2 in [21], the set M(K)
is relatively compact in C([0, T ];H) and so there exists z ∈ C([0, T ];H) and there
exists a subsequence {zλn

(·)} such that zλn
→ z in C([0, T ];H). As each zλn

is a
solution of (Pfλn ,u0

), then zλn
verify

1

2
‖ zλn

(t)− θ ‖2≤
1

2
‖ zλn

(s)− θ ‖2 +

∫ t

s

〈fλn
(τ )− yλn

, zλn
(τ )− θ〉dτ (5.1)

for all θ ∈ D(ADλn

) ⊆ W 1,p(Ω) ⊂ H and yλn
= ADλn

(θ) and for all 0 ≤ s ≤ t ≤ T.

As ‖ fλn
(τ ) ‖H≤ L, for all 0 ≤ τ ≤ T and for all n ∈ N, we conclude that

there exists a positive constant L̃ such that ‖ fλn
‖L2(0,T ;H)≤ L̃ for all n ∈ N. As

L2(0, T ;H) is a reflexive Banach space there is f ∈ L2(0, T ;H) and subsequence,
which we do not relabel, {fλn

} such that fλn
⇀ f in L2(0, T ;H). Consequently

fλn
⇀ f in L1(0, T ;H). Moreover,

sup
t∈[0,T ]

‖ uλn
(t)− z(t) ‖H ≤ sup

t∈[0,T ]

‖ I(u0,λn
)fλn

(t)− I(u0)fλn
(t) ‖H

+ sup
t∈[0,T ]

‖ zλn
(t)− z(t) ‖H

≤ ‖ u0,λn
− u0 ‖H

+ sup
t∈[0,T ]

‖ zλn
(t)− z(t) ‖H→ 0 as n → +∞.

Therefore uλn
→ z in C([0, T ];H). So, from Theorem 3.3 in [9], f(t) ∈ F (z(t))

t-a.e. in [0, T ]. Since fλn
⇀ f in L2(0, T ;H) implies that fλn

⇀ f in L2(s, t;H),
∀ 0 ≤ s ≤ t ≤ T ; and zλn

→ z in C([0, T ];H) implies that zλn
→ z in C([s, t];H)

and consequently zλn
→ z in L2(s, t;H), ∀ 0 ≤ s ≤ t ≤ T ; then

〈fλn
− h, zλn

− θ〉L2(s,t;H) → 〈f − h, z − θ〉L2(s,t;H)

for all θ, h ∈ H. Now, consider θ ∈ D(AD0

) ⊂ W 1,p(Ω) ⊂ H and let be

h := AD0

(θ) ∈ H . We consider

yλn
:= ADλn

(θ) = −div(Dλn |∇θ|p−2∇θ) + |θ|p−2θ.

Note that D(ADλn

) = D(AD0

), ∀ n ∈ N. We already knows by (5.1) that holds

1

2
‖ zλn

(t)− θ ‖2 ≤
1

2
‖ zλn

(s)− θ ‖2 +

∫ t

s

〈fλn
(τ )− h, zλn

(τ )− θ〉dτ

+

∫ t

s

〈h− yλn
, zλn

(τ )− θ〉dτ . (5.2)

Repeating the arguments as in [21], we have
∫ t

s

〈h− yλn
, zλn

(τ )− θ〉dτ → 0
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as n → +∞. So, taking the limit in inequality (5.2) as n → +∞, we obtain

1

2
‖ z(t)− θ ‖2≤

1

2
‖ z(s)− θ ‖2 +

∫ t

s

〈f(τ )− h, z(τ)− θ〉dτ

for all θ ∈ D(AD0

) and h
.
= AD0

(θ) and for all 0 ≤ s ≤ t ≤ T . So z ∈ G0

with z(0) = u0 ∈ A. Then, z(t) ∈ G0(t,A), ∀ t ≥ 0. Thus, defining ξ0
.
= z(t0) ∈

G0(t0,A), we obtain

‖ ξλn
− ξ0 ‖H=‖ uλn

(t0)− z(t0) ‖H≤ sup
τ∈[0,T ]

‖ uλn
(τ )− z(τ) ‖H→ 0 as n → +∞,

which is a contradiction, and so we conclude that the map

[0,∞) ∋ λ 7→ Gλ(t,A)

is w-upper semicontinuous on λ1 for each t > 0. ✷

Therefore, the family {Gλ}λ∈[0,∞) satisfies the condition (ii) of the Theorem
5.1. Therefore, using Corollary 4.7, we obtain immediately by Theorem 5.1 the
following result:

Theorem 5.3. The family of global attractors {Aλ;λ ∈ [0,∞)} of the problem
(1.1) is upper semicontinuous at λ1.

Remark 5.4. All the results in this work can be reproduced in a similar way for
the problem

∂uλ

∂t
(t)− div(Dλ|∇uλ(t)|

p−2∇uλ(t)) ∈ F (uλ(t)) + h.
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