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Generalized derivations in prime and semiprime rings

Shuliang Huang and Nadeem ur Rehman

ABSTRACT: Let R be a prime ring, I a nonzero ideal of R and m, n fixed positive
integers. If R admits a generalized derivation F' associated with a nonzero derivation
d such that (F([z,y])™ = [z,y]n for all z,y € I, then R is commutative. Moreover
we also examine the case when R is a semiprime ring.
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1. Introduction

In all that follows, unless stated otherwise, R will be an associative ring, Z(R)
the center of R, @ its Martindale quotient ring and U its Utumi quotient ring.
The center of U, denoted by C, is called the extended centroid of R (we refer the
reader to [3] for these objects). For any z,y € R, the symbol [z, y] and x oy stand
for the commutator xy — yx and anti-commutator xy + yx, respectively. For each
z,y € R and each n > 1, define [z,y]; = zy — yx and [z,y]x = [[z,y]k-1,y] for
k > 2. Recall that a ring R is prime if for any a,b € R, aRb = (0) implies a = 0
or b =0, and is semiprime if for any a € R, aRa = (0) implies a = 0. An additive
mapping d : R — R is called a derivation if d(zy) = d(z)y + xd(y) holds for all
z,y € R. In [4], Bresar introduced the definition of generalized derivation: an
additive mapping F' : R — R is called a generalized derivation if there exists a
derivation d : R — R such that F(zy) = F(z)y + zd(y) holds for all z,y € R,
and d is called the associated derivation of F'. Hence, the concept of generalized
derivations covers both the concepts of a derivation and of a left multiplier. Basic
examples are derivations and generalized inner derivations. We refer to call such
mappings generalized inner derivations for the reason they present a generalization
of the concept of inner derivations. In [9], Hvala studied generalized derivations in
the context of algebras on certain norm spaces. In [13], Lee extended the definition
of a generalized derivation as follows: by a generalized derivation we mean an ad-
ditive mapping F': I — U such that F(xy) = F(2)y +xd(y) holds for all z,y € I,
where I is a dense left ideal of R and d is a derivation from [ into U. Moreover,
Lee also proved that every generalized derivation can be uniquely extended to a
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generalized derivation of U and thus all generalized derivations of R will be implic-
itly assumed to be defined on the whole of U. Lee obtained the following: every
generalized derivation F' on a dense left ideal of R can be uniquely extended to U
and assumes the form F(x) = ax + d(x) for some a € U and a derivation d on U.

This paper is included in a line of investigation concerning the relationship
between the structure of a ring R and the behaviour of some additive mappings
defined on R satisfy certain special identities. In [1], Ashraf and Rehman proved
that if R is a prime ring, I a nonzero ideal of R and d is a derivation of R such that
d(xoy) =x oy for all z,y € I, then R is commutative. In [2, Theorem 1], Argac
and Inceboz generalized the above result as following: Let R be a prime ring, I a
nonzero ideal of R and n a fixed positive integer, if R admits a derivation d with
the property (d(zoy))” = xzoy for all z,y € I, then R is commutative. In [7], Daif
and Bell showed that if in a semiprime ring R there exists a nonzero ideal I of R
and a derivation d such that d([z,y]) = [z,y] for all z,y € I, then I C Z(R). At
this point the natural question is what happens in case the derivation is replaced
by a generalized derivation. In [18], Quadri et al., proved that if R is a prime ring,
I a nonzero ideal of R and F' a generalized derivation associated with a nonzero
derivation d such that F([z,y]) = [z,y] for all z,y € I, then R is commutative.
In [10], we studied a similar condition and proved that a prime ring R satisfying
(F(zoy))™ = x oy must be commutative. The present paper is motivated by the
previous results and we here continue this line of investigation by examining what
happens a ring R satisfying the identity (F([z,y])™ = [z,y].. Explicitly we shall
prove the following:

Theorem 1.1. Let R be a prime ring, I a nonzero ideal of R and m,n fized
positive integers. If R admits a generalized derivation F associated with a nonzero
deriwation d such that (F([x,y])™ = [z, y]n for all z,y € I, then R is commutative.

Theorem 1.2. Let R be a semiprime ring and m,n fived positive integers. If R
admits a generalized derivation F associated with a derivation d such that
(F([x,y])™ = [z, y]n for all z,y € R, then there exists a central idempotent element
e in U such that on the direct sum decomposition R = eU & (1 — e)U, d vanishes
identically on eU and the ring (1 — e)U 1is commutative.

2. The case: R a prime ring

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and m,n fized
positive integers. If R admits a generalized derivation F' associated with a nonzero
deriwation d such that (F([x,y])™ = [z, y], for all z,y € I, then R is commutative.

Proof: Since R is a prime ring and F is a generalized derivation of R, by Lee [13,
Theorem 3|, F(x) = azx + d(z) for some a € U and a derivation d on U. By the
given hypothesis we have now [z, 9], = (alz,y] + d([z,y]))™ = (alz, y] + [d(z), y] +
[z, d(y)])™ for all z,y € I. By Kharchenko [12], we divide the proof into two cases:
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Case 1. Let d be an outer derivation of U, then [ satisfies the polynomial iden-
tity (alz,y] + [s,9] + [z,t])™ = [z, y], for all z,y,s,t € I. In particular, for y = 0,
I satisfies the blended component ([x,t])™ = 0 for all z,¢ € I, by Herstein [11,
Theorem 2|, we have I C Z(R), and so R is commutative by Mayne [17, Lemma 3|.

Case 2. Let now d be the inner derivation induced by an element ¢ € @, that is
d(z) = [¢q,z] for all x,y € U. It follows that (a[x, y]+[[q, z], y] + |z, [¢, y])™ = [z, y]x
for all z,y € I. By Chuang [5, Theorem 2|, I and @ satisfy the same generalized
polynomial identities (GPIs), we have (a[z,y] + [[q, z],y] + [, [¢, y]])™ = [z,y]n
for all z,y € Q. In case center C of @ is infinite, we have (a[z,y] + [[¢, x],y] +
[z, [q,y]])™ = [2,y]n for all z,y € Q Q. C, where C is the algebraic closure of
C. Since both @ and Q @, C are prime and centrally closed [8, Theorem 2.5 and
Theorem 3.5], we may replace R by Q or Q @ C according as C'is finite or infinite.
Thus we may assume that R is centrally closed over C' (i.e. RC = (') which is
either finite or algebraically closed and (a[z,y] + [[g, 2], y] + [z, [q,y]])™ = [z,y]n
for all x,y € R. By Martindale [16, Theorem 3], RC' (and so R) is a primitive ring
which is isomorphic to a dense ring of linear transformations of a vector space V'
over a division ring D.

Assume that dimVp > 3.

First of all, we want to show that v and gv are linearly D-dependent for all
v € V. Since if qv = 0 then v, gqv is D-dependent, suppose that quv # 0. If v
and qv are D-independent, since dimVp > 3, then there exists w € V such that
v, qu,w are also D-independent. By the density of R, there exists x,y € R such
that: zv = 0,2qv = w,zw = v;yv = 0,yqu = 0,yw = v. These imply that
v = (a[z,y] + g, 2], y] + [z, [q, y]])"v = [x, y]nv = 0, which is a contradiction. So
we conclude that v and gv are linearly D-dependent for all v € V.

Our next goal is to show that there exists b € D such that qu = vb for all
v € V. In fact, choose v,w € V linearly independent. Since dimVp > 3, then
there exists u € V' such that u, v, w are linearly independent, and so by, by, b, € D
such that qu = uby,, qu = vb,, qw = wby,, that is g(u + v 4+ w) = uby + Vb, + Why,.
Moreover q(u + v + w) = (u 4+ v + W)byyy1w for a suitable by iy € D. Then
0 = u(byutvtw — bu) + V(byutviw — by) + W(bytvptw — byw) and because u, v, w are
linearly independent, b, = b, = by = by+v+w, that is b does not depend on the
choice of v. Hence now we have qu = vb for all v € V.

Now for r € R, v € V, we have (rq)v = r(quv) = r(vdb) = (rv)b = ¢(rv), that
is [¢, R]V = 0. Since V is a left faithful irreducible R-module, hence [¢, R] = 0, i.e.
q € Z(R) and so d = 0, a contradiction.

Suppose now that dimVp < 2.

In this case R is a simple GPI-ring with 1, and so it is a central simple algebra
finite dimensional over its center. By Lanski [14, Lemma 2|, it follows that there
exists a suitable filed F' such that R C My (F), the ring of all k£ x k matrices over
F, and moreover M, (F) satisfies the same GPI as R.

Assume k > 3, by the same argument as in the above, we can get a contra-
diction.

Obviously if k = 1, then R is commutative.
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Thus we may assume that k = 2 i.e., R C My(F), where My(F') satisfies

(alz,y] + [lg, =], y] + [, [g, )™ = [, y]n-
Denote e;; the usual matrix unit with 1 in (7, j)-entry and zero elsewhere.

Let [z,y] = [e21,€11] = e21. Then [x,y], = e21. In this case we have (aea +
ges1 — e21q)™ = eo1. Right multiplying by e, we get (—1)™(e21q)™ea1 = (ae21 +
gea1 — e21q)™ea1 = eg1ea1 = 0. Set ¢ = i@z By calculation we find
q21  g22
that (—1)™ ( q(’)” 8 ) = 0, which implies that ¢12 = 0. Similarly we can see
12

that go1 = 0. Therefore ¢ is diagonal in Ms(F). Let f € Aut(Ms(F)). Since
(F(@Lf (@), W)+ (@), £@)], £+ (@), [ (@) FI™ = [ (), F @)l 50 Fla)
must be a diagonal matrix in My(F). In particular, let f(z) = (1 — e;5)z(1 + e;i5)
for i # j, then f(q) = ¢+ (g — gj;)eij, that is g;; = ¢q;; for i # j. This implies
that ¢ is central in My(F'), which leads to d = 0, a contradiction. This completes
the proof of the theorem. O

The following example demonstrates that R to be prime is essential in the
hypothesis.

Example 2.2. Consider S be any ring and let R = { ( 8 8 ) | a,b € S} and let

0 0
by F(x) = 2e112 — xeq1. Then it is easy to see that F is a generalized derivation
associated with a nonzero derivation d(x) = [e11,x]. It is straightforward to check
that F' satisfies the property: (F([z,y))™ = [x,y]n for all x,y € I. However, R is
not commutative.

I:{( 0 a) | aeS} be a monzero ideal of R. We define a map F : R — R

3. The case: R a semiprime ring

Theorem 3.1. Let R be a semiprime ring and m,n fived positive integers. If R
admits a generalized derivation F associated with a derivation d such that
(F([x,y])™ = [x,y]n for all z,y € R, then there exists a central idempotent element
e in U such that on the direct sum decomposition R = eU & (1 — e)U, d vanishes
identically on eU and the ring (1 — e)U is commutative.

Proof: Since R is semiprime and F is a generalized derivation of R, by Lee [13,
Theorem 3|, F(x) = ax + d(x) for some a € U and a derivation d on U. We are
given that (a[z,y] + d([z,y]))™ = [z,y], for all z,y € R. By Lee [15, Theorem 3|,
R and U satisfy the same differential identities, then (a[z,y] + d([z,y]))™ = [z, y]x
for all x,y € U. Let B be the complete Boolean algebra of idempotents in C' and
M be any maximal ideal of B. Since U is a B-algebra orthogonal complete [6,
p.42] and MU is a prime ideal of U, which is d-invariant. Denote U = U/MU
and d the derivation induced by d on U, i.e., d(@) = d(u) for all u € U. For all

z,5 € U, @z, 5] +d([Z,7]))™ = [Z,7]n. It is obvious that U is prime. Therefore by
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Theorem 2.1, we have either U is commutative or d = 0, that is either d(U) C MU
or [U,U] C MU. Hence d(U)[U,U] C MU, where MU runs over all prime ideals
of U. Since Ny MU = 0, we obtain d(U)[U, U] = 0.

By using the theory of orthogonal completion for semiprime rings( see [3,
Chapter 3]), it is clear that there exists a central idempotent element e in U such
that on the direct sum decomposition R = eU @ (1 — e)U, d vanishes identically on
eU and the ring (1 —e)U is commutative. This completes the proof of the theorem.

O
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