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ABSTRACT: In this paper, we define the sequence spaces: x?iu (A) and A?‘Lu (A),
where for any sequence © = (xmn) , the difference sequence Az is given by (Awmn)x,n:1 =
[(@mn — Tmn+1) — (Tmt+1n — mm+1n+1)}§’n:1 . We also study some properties and
theorems of these spaces.
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1. Introduction

Throughout w, x and A denote the classes of all, gai and analytic scalar valued
single sequences, respectively.
We write w? for the set of all complex sequences (), where m,n € N, the set
of positive integers. Then, w? is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later
on, they were investigated by Hardy [14], Moricz [19], Moricz and Rhoades [20],
Basarir and Solankan [2], Turkmenoglu [30] and many others.

We procure the following sets of double sequences:

M, (t) :== {(xmn) € w? 1 SUPm neN |xmn|t’"" < oo} ,
Cp (t) :== {(acmn) € w?:p—limpm nsoo |Tmn — |t””" =1 forsome € (C} ,
Cop (t) := {(zmn) € w? i p—limmnsoo |zmn|t””" = 1} ,

Lo (t) = { (wmn) € 02+ 20510 o0y [ ™ < 00}
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Cop (t) == €y () My (t) and Copyp (t) = Cop (1) M (1);

where t = (tm,,) is the sequence of strictly positive reals t,,, for all m,n € N and
D — limy, n—so0o denotes the limit in the Pringsheim’s sense. In the case t,,, = 1 for
all m,n € N;M, (t),C, (t),Cop (t),Lu (t),Crp (t) and Copp (t) reduce to the sets
My, Cp, Cop, Ly, Cpp and Copp, respectively. Now, we may summarize the knowl-
edge given in some document related to the double sequence spaces. Gdkhan and
Colak [8,9] have proved that M, (¢t) and C, (¢),Cs, (t) are complete paranormed
spaces of double sequences and gave the a—, f—, y— duals of the spaces M, (¢) and
Cop (t) . Quite recently, in her PhD thesis, Zelter [33] has essentially studied both
the theory of topological double sequence spaces and the theory of summability of
double sequences. Mursaleen and Edely [21] and Tripathy [29] have independently
introduced the statistical convergence and Cauchy for double sequences and given
the relation between statistical convergent and strongly Cesaro summable double
sequences. Altay and Basar [1] have defined the spaces BS, BS (1), CS,, €Sy, €8,
and BV of double sequences consisting of all double series whose sequence of par-
tial sums are in the spaces My, M, (t), Cp, Cpp, Cr and L,,, respectively, and also
examined some properties of those sequence spaces and determined the a— duals
of the spaces BS, BV, €8, and the 8 (¥) — duals of the spaces €8y, and €S, of
double series. Basar and Sever [3] have introduced the Banach space £, of double
sequences corresponding to the well-known space £, of single sequences and exam-
ined some properties of the space £,. Quite recently Subramanian and Misra [2§]
have studied the space x3, (p, ¢, u) of double sequences and gave some inclusion
relations.

The class of sequences which are strongly Cesaro summable with respect to a
modulus was introduced by Maddox [18] as an extension of the definition of strongly
Cesaro summable sequences. Cannor [5] further extended this definition to a defi-
nition of strong A— summability with respect to a modulus where A = (ay, 1) is a
nonnegative regular matrix and established some connections between strong A—
summability, strong A— summability with respect to a modulus, and A— statistical
convergence. In [25] the notion of convergence of double sequences was presented
by A. Pringsheim. Also, in [11]-[12], and [13] the four dimensional matrix trans-
formation (Az), , = D2 % 707 afly &mn Was studied extensively by Robison and
Hamilton.

We need the following inequality in the sequel of the paper. For a,b,> 0 and
0 <p <1, we have

(a+b)P <aP + b (1.1)
The double series nyjn:l Tmn 1S called convergent if and only if the double se-
quence (Sy,y,) is convergent, where s,,, = Zznjzl z;j(m,n € N).

A sequence x = (z,,,)is said to be double analytic if sup,, |xmn|1/m+" < 00. The

vector space of all double analytic sequences will be denoted by A%2. A sequence
2 = (Zyn) is called double gai sequence if ((m + 1)! |Zma )/ ™™ = 0 as m,n — .

The double gai sequences will be denoted by x2. Let ¢ = {all finitesequences}.
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Consider a double sequence x = (x;;). The (m,n)" section zl™n] of the sequence
is defined by zl™m" =3 i il02ijSij for all m,n € N; where Sj; denotes the double
sequence whose only non zero term is a ﬁ in the (i,j)th place for each 7,7 € N.

An FK-space(or a metric space)X is said to have AK property if (Si.,) is
a Schauder basis for X. Or equivalently z[™" — z.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings = (z) —
(Zmn)(m,n € N) are also continuous.

Let M and ® are mutually complementary modulus functions. Then, we have:
(i) For all u,y > 0,

uy < M (u) + @ (y), (Young'sinequality)[See[15]] (1.2)

(ii) For all u > 0,
wn (u) = M (u) +® (5 (). (13)
(iii) For all w > 0, and 0 < A < 1,
M (Au) < AM (u) (1.4)

Lindenstrauss and Tzafriri [18] used the idea of Orlicz function to construct Orlicz
sequence space

by = {wa:Z;OZIM(%) < 00, forsomep>0},

The space £;; with the norm

lall = inf {p>0: 522, 0 (1) <1

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
t? (1 < p < 00), the spaces £y coincide with the classical sequence space £,,.

A sequence f = (fimn) of modulus function is called a Musielak-modulus func-
tion. A sequence g = (gmn) defined by

Imn (V) = sup{|v|u — (frn) (u) :u >0}, mn=1,2,---

is called the complementary function of a Musielak-modulus function f. For a
given Musielak modulus function f, the Musielak-modulus sequence space ¢y and
its subspace hy are defined as follows

ty = {:c ew?: Iy (|xmn|)1/m+n —0asm,n — oo},
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)1/m+n

hf:{$€w2:1f(|xmn| —>0asm,n—>oo},

where Iy is a convex modular defined by

I (@) = 3200 2% fon (@)™ o2 = (@mn) € L

We consider ¢ty equipped with the Luxemburg metric

4@, 9) = supmn {inf (Seoy Doty foun (E220) ) <1
If X is a sequence space, we give the following definitions:
()X = the continuous dual of X;
(i) X = {a = (amn) : 355 et [@mnmn| < 00, foreachz € X} ;
(iii) X# = {a = (amn) : Y. mn=14mnTmn is convegent, foreachx € X} ;

(iv) X7 = {a = (amn) @ SUPmn > 1 ‘2%75:1 AmnTmn

< o0, foreachz € X} ;

(v)let X beanF K — space O ¢; then X¥ = {f(%mn) cfe X/};

Lmin o o0, foreachz € X} ;

(vi) X% = {a = (amn) : SUPmn |@mnTmn|
X X8 X7 are called a — (orKéthe — Toeplitz)dual of X, 3 — (or generalized —
Kaothe — Toeplitz) dual of X,y — dualof X, § — dual of X respectively. X* is de-
fined by Gupta and Kamptan [15]. It is clear that X* € X? and X® C X7, but
X# c X7 does not hold, since the sequence of partial sums of a double convergent
series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz as follows

Z(A)={z=(ap) Ew: (Axy) € Z}

for Z = ¢, ¢y and £, where Az, = xp, — 241 for all k € N.

Here ¢, ¢y and /, denote the classes of convergent,null and bounded sclar valued
single sequences respectively. The difference sequence space bv, of the classical
space £, is introduced and studied in the case 1 < p < oo by Bagar and Altay and
in the case 0 < p < 1 by Altay and Basar in [1]. The spaces ¢ (A),co (A),ls (A)
and bv, are Banach spaces normed by

1
e = lovl + supis |Aay| and [l],,, = (572, lal”)?, (1 < p < 00).

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z(A) = {z = (2mn) € W : (Azmn) € Z}
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where Z = A% x? and Azpn = (Tmn — Tmnt1) — @mtin — Tmaintl) = Tmn —
Tmntl — Tmtin + Tmiin+1 for all myn € N. The generalized difference double
notion has the following representation: A2, = A"l — A™ e —
A" g+ A™ 1,00, and also this generalized dlfference double notion
has the following binomial representation:

AT = Z:ZO Z;m:o (71)i+j (’L) <J> Tmdints-

2. Definition and Preliminaries

Let n € N and X be a real vector space of dimension w, where n < w. A
real valued function dp(z1,...,2,) = [[(di(x1),...,dn(zn))]|, on X satisfying the
following four conditions:

() |[(di(z1), ..., dn(zn))|lp = 0 if and and only if di(z1),...,d,(xy,) are linearly
dependent,

(i) ||(d1(z1), .-, dn(xn))|lp is invariant under permutation,

(iii) [[(edy(z1), - .. dn(zn))llp = |l [(di(21), ..., dn(@n))|lp, 0 € R

(iv) dp (21, 91), (22, 92) - (@nsYn)) = (dx (@1, 22, 20)P + dy (Y1, y2, - yn)?) /7
forl <p < oo; (or)

(v) d((z1,91), (¥2,92), -+ (T, Yn)) == sup {dx (z1, 22, Tn),dy (Y1, Y2, Yn)} ,
for x1,xo, - xn € X, y1,Y2, - yn € Y is called the p product metric of the Carte-
sian product of n metric spaces is the p norm of the n-vector of the norms of the
n subspaces.

A trivial example of p product metric of n metric space is the p norm space is
X =R equipped with the following Euclidean metric in the product space is the p
norm:

[(dy (1), ..., dn(zn))|| & = sup (|det(dmn (Tmn))]) =

d11 (x11)  diz(x12) ... dip (210)

doy (302 ) daa(we2) ... dap (x1n)
sup

dnl (xnl) dn2 (-TnQ) dnn (:Cnn)

where z; = (41, @) € R" for eachi =1,2,---n
If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the p— metric. Any complete p— metric space is said to
be p— Banach metric space.

Let X be a linear metric space. A function w : X — R is called paranorm, if
(1) w(x) >0, for all x € X;
(2) w(—z) =w(z), for all x € X;
B)w(x+y) <w(zr)+w(y), forall z,y € X;
(4) If (omn) is a sequence of scalars with o, — 0 as m,n — oo and (T, ) is a
sequence of vectors with w (2., — ) — 0 as m,n — oo, then w (GpmpTmn — ox) —
0 as m,n — oo.
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A paranorm w for which w (z) = 0 implies = 0 is called total paranorm and the
pair (X, w) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2,
p.183).

7 = (¢,,) a nondecreasing sequence of positive reals tending to infinity and
prp=1land @4 41 <+ 1
The generalized de la Vallee-Pussin means is defined by :

trs (:C) = i ZmGITS zﬂ€frs Tmmns

where I,.s = [rs — A5 + 1,7s] . For the set of sequences that are strongly summable
to zero, strongly summable and strongly bounded by the de la Vallee-Poussin
method.

The notion of A— double gai and double analytic sequences as follows: Let
A= (Amn)ﬁ,n:o be a strictly increasing sequences of positive real numbers tending
to infinity, that is

0< Ao <A1 < -+ and Ay, — 00aSM, N — 00

and said that a sequence x = (Z,,) € w? is A— convergent to 0, called a the A\—
limit of x, if u,,, () = 0asm,n — oo, where

Homn (:L') = i Z Z (Amil/\m,n - Amjl)\m,nJrl - Amil/\erl,n
Prs mELys n€lrs

+Am71)\m+1,n+1) |$mn|1/m+n .

The sequence = (x,,) € w? is A— double analytic if supyy |, (z)| < oo. If
limupnTmn = 0 in the ordinary sense of convergence, then

limumn, (i Z Z (A™ N — A N1 — A" N1

Prs meEl,s n€lyps

+ A N 1nt1) (14 n)! T — 0|)1/m+") ~0.

This implies that

UiMumn [y () — 0] = lim

(% Z Z (Am_l)\m,n_Am_l)\m,n-i-l

mel.s n€lrs

A Nt A+ A N1 ni1) (14 1) T — o|)1/m+n)’ — 0.

which yields that limy,,,, () = 0 and hence & = (Zn) € w? is A— conver-
gent to 0.

Let f = (fmn) be a Musielak-modulus function and ( X, [(d(x1),d(z2), -,
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d(zn-1))]l ) be a p—metric space, ¢ = (¢mn) be double analytic sequence of

strictly positive real numbers and u = (u,,) be any sequence such that w,,, #
0(m,n=1,2,---). By w? (p — X) we denote the space of all sequences defined over

(X, [(d(z1),d(z2), - ,d(xn-1))] ) The following inequality will be used through-
out the paper. If 0 < gpn, < sUPGimy = H, K = maz (1,2771) then

|axmn + bmn|q"bn S K{|amn|‘hnn + |bmn|q"zn} (21)

for all m,n and apmpn, byn € C. Also |al]™™™ < max (1, |a|H) for all a € C.
In the present paper we define the following sequence spaces:

[ () d () o dmo))E] =
{ros € L s timstmn [Fonn (Jitn @), (@ @1)  d(22) -+ d @am))],) | =0}
(A2 (d (@) d 2) - d (o) 2] =
{r, 5 € Ipg i SUPrstUmnp [fmn (||an (), (d(z1),d(x2), - ,d(zn-1))] )}qmn< oo},

If we take frn, () = x, we get

[ @) ), d )] =
{r.5 € Lo < timrstimn [ (W (), (@ (21) A 22) -+ wn0))| )}qmn "y

[AQqu,”( (z1),d (z2) - d (1)) } _
{5 € L suppatimn [ (It (2) @ (1) d )+ d (@), )| < o0}

If we take ¢ = (gmn) = 1, we get

[ @ @) d (@) - d @) E] =
{r,sefm:umn [on (It @) (@ 1) 2), s en))] o},
(A% 1 @) da) - d )] =
{75 € Los st [ Fron (1t (2) (@ (1) d2) -+ s d (wn 1), ) | < o0}

In the present paper we plan to study some topological properties and inclusion

relation between the above defined sequence spaces. [x?’iu, l(d(x1),d(z2), -,

d (zn_1))]| } and [Aii“,|\(d(x1),d(x2),--- d (zn_1))||? } which we shall dis-
cuss in this paper.
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3. Main Results

Theorem 3.1. Let f = (fmn) be a Musielak-modulus function, ¢ = (qmn) be
a double analytic sequence of strictly positive real numbers, the sequence spaces

Dz WA () d(w2) o d )] and (200 @) d (w2) o d ()]

are linear spaces.

Proof: It is routine verification. Therefore the proof is omitted. O

Theorem 3.2. Let f = (fmn) be a Musielak-modulus function, ¢ = (qmn) be
a double analytic sequence of strictly positz’ve real numbers, the sequence space

[x?c’iu, I(d(x1),d(x2), - ,d(zn-1))] } is a paranormed space with respect to the

paranorm defined by
g(x) =inf -
{twmn [ £ran (Ittmn (@), (d @1) d (@2) - s d @ami)ll, )| < 1) =0,

1%
Proof: Clearly g (z) > 0for = (zn) € [ngf, I(d (1), d (z2) - ,d(xn_l))nﬂ

Since fin (0) =0, we get g (0) = 0.
Conversely, suppose that g () = 0, then

. Gmn
inf {wmn [fon (1t (@) (d(21) A (@2) - d @), )| <1} =0
Suppose that ,,,, () # 0 for each m,n € N. Then

[t ()5 (d (1), d(22), - ,d (:I:n_l))H‘p — oo. It follows that

Gmn\ 1/ H
(e [Fovn (st (@) (@ (@1) d (22) - ), )] ) T = o0 which s a
contradiction. Therefore ,,,, (x) = 0. Let

(Um” {fmn (Hﬂmn (), (d(x1),d(x2),- - ,d(xn_l))Hp)}qmn)l/H o

and

dmn 1/H
(tn [ Frun (Mt @) (@ (1) d2) s+ s d a0, )| ) <1
Then by using Minkowski’s inequality, we have

(o [ (Wit G2+ 90 @ 1) ) eai), )] ™)
GmnN 1/H

(o [Foun (Itmn @), (@ (@1) d (22) - @ae),) | 7) 7 +
(tmn [ (110 @) (@ (1) s (@2) -+ d i), )|

So we have .
9(@+y) = inf {wnn [fun (Imn (@ +9), (d (@) d(22) 7d<xn-1>>||p)] RS Y=

inf {unn [Frn (Ibn (@), (@ (@), d(@2), - d@a)],)| " <1} +
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inf {umn [fmn (IIumn (), (d(21),d(z2), - d(zn1))| )]qmn . 1}

Therefore,

glx+y)<gx)+g(y).

Finally, to prove that the scalar multiplication is continuous. Let A be any complex
number. By definition,

92) = inf {tun [ frn (I1tmn O2) (@ (@1) d (@2) -+ d @), )| <1}
Then

g(Az) =inf

LA™t [ Fonn (It ) (d (1) d (w2) - d @a))],) | <1
where t = \T1| Since || < maz (1, [M*“PP™") | we have

g () < maz (1, 7P ) inf

q’m.'n.
{1t | oo (10 O2) (A (1) d @2) -+ d@a-n)),) | < 1
This completes the proof. O

Theorem 3.3. (i) If the sequence (fmn) satisﬁes um'form As— condition, then
[C b () (A1) (@) - d )] =

v
[, Ny (@), (@ (21) 1 (22) -+ d () Y]
(i) If the sequence (Gmn) satisfies uniform Ag— condition, then

D g (@) (d (1) 1 (@2) -+ (- 1>>H B

[ i (2) (@ (22) A 22) - d ) E]

Proof: Let the sequence (f,,) satisfies uniform Ay— condition, we get

[,y () (d 1) s (22) - o m)E]

[ b (&) (A1) (22) - e )E] (3.1)
To prove the inclusion
[t (2) (@ (1) d (a) - d )] €
[t ) (A1) (), d ()]
let a € [x?‘if‘vllumn (), (d(z1) ,d(22) -, d (zn_1))] } Then for all {2}
with () € (V20 Nt (2)  (d (2) (@) - (wac))Z] we have

i i |Trmn @mn| < 00. (3.2)

m=1n=1
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Since the sequence (f,,) satisfies uniform Ay— condition then

() € [ it (), (A1) () d )] we et

D om—1 21 \Aﬁgijgm;)! < 0. by (3.2). Thus

(Pratimn) € [ it () (A1) d (@2, dza)]E] =

[ b (2) (A (1) 1 (3) (2 1))||] and hence

() € (X295 [y () (0 22)  d (22) - )] This gives thas
0 i (2) (@ (20) d 2) - d )]
G it (@) (d 1) s (22) - )] (3.3)

we are granted with (3.1) and (3.3)

D i (2) (@ (@0) d 2) - d )] =

[xgw bt ) (d 1) (22) - e DIE]

(ii) Similarly, one can prove that

G5 N (2), (@ 1) d 2) o d )] C

©
P
X?f(iua |t (), (d (21) ,d (22) -+ s d (xp_1))||¥ } if the sequence (gmn) satisfies

uniform As— condition. O

Proposition 3.4. If 0 < ¢un < Pmn < 00 for each m and n, then
v

[A?‘L“,||umn<:c>,<d<x1>,d<w2>,--- da))E] <

(A2 ity (@) (1) (22) - )]

Proof: The proof is standard, so we omit it. |

Proposition 3.5. (i) If 0 < infqmn < ¢mn < 1 then
v
A5 it () () 02) - -]

(A28 (&) (A (1) (22) - d () E]
(i1) If 1 < quun < SUPGmn < 00, then
(A28 Nt (@) (1) d (@)= d ()]

2 14
|50 Mt () (d (1) s (2) -+ s () ]

Proof: The proof is standard, so we omit it. O
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Proposition 3.6. Let f/ = (f,/nn) and f” = (f,/;n) are sequences of Musielak
functions, we have

(202 g &) (@ 1) (02) - dn)E] 1)
(A28 W () @ (1) 02 o )]

1%
(220 Mt (2) (A 22)  d (2) )]
Proof: The proof is easy so we omit it. O

Proposition 3.7. For any sequence of Musielak functions f = (fmn) and g =
(gmn) be double analytic sequence of strictly positz’ve real numbers. Then

[t (0), @ (00) d 2) - d ) 2]

(A2 i (2), (8 (22) L (2) ,d<xn_1>>|\;:}v

Proof: The proof is easy so we omit it. |
Proposition 3.8. The sequence space

14
(A ity (2) (A (21) o (22) -+ s d (o )E] e is solid

) 1%
Proof: Let © = (xmy) € [Af‘ftu, |t ()5 (d (z1) ,d (z2) - ,d(mn_l))Hﬂ , (i.e)

upmn [A202, it (2) ,(d (22) . 22) - d 1) ] < oo

Let (amn) be double sequence of scalars such that |a,,| <1 for all m,n € N x N.
Then we get

14
supmn [ A0 [t (@) (d (1), (3) -+, (2 1) Hp} <
U, [A?‘L“,Humn<w>,<d<w1>,d<x2>,--- d@alE] -
This completes the proof. O

Proposition 3.9. The sequence space

v
[A?ff}‘, |t (2) 5 (d(21) ,d (22),--- ,d (xn_l))Hﬂ is monotone
Proof: The proof follows from Proposition 3.8. |

Proposition 3.10. If f = (fin) be any Musielak function. Then

(A2 it (2). (@ (22) d2) - )]
[A?fiua ||an (:C) ) (d (:Cl) ,d(l‘g) [ ad(‘rn—l))H;f *:|V Zf and OTLly Zf 5“1%821% <

Q.
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*

1%
Proof: Let z € [Afc‘i“,ﬂumn( ), (d(@1),d(w2) -, d(wa_1)|f] and

N = sup,, s>1 55 #rs < 0. Then we get

2 eV
(ATt (2 ) () d () A =

2 « 1V
N (A2t (@), (@ (1) (2) - d ) E5] =0,

w7V
Thus z € [Aﬁu, [t () (d (1), d (22) -+ d (xn-1))|7 } . Conversely, sup-
pose that

2 v
A5 1t () (d (1) d (o) - - ,d(:cnfl))llﬂ -

) w1V
A2t (2), (A1) A (22) o d (e )]JE] and

«1V
€ | AR N (2),(d (21) d (22) -, d (@)l } - Then

Vv
AQqu, [t (@) 5 (d (1), d (22) -+ d (Tn-1))]I] ] < ¢, for every € > 0. Suppose

that supnszl% = 00, then there exists a sequence of members (rs;;) such that
limjykﬁoo% = 0o. Hence, we have
ik
v
5 .
[Afzua ||an ((E) ) (d (‘rl) ,d(l‘g) [ ad('rn—l))HZm} = 00. Therefore

7V
¢ [A?;ﬁ, ity (2) 4 (d (1) 1 d (2) -+ d (@n1))]? ] , which is a contradiction.
This completes the proof. O

Proposition 3.11. If f = (fmmn) be any Musielak function. Then
TV
A58 It (@) (d (1) s (22) - o d )] =

wxV *
[A?CZ“) ||an (:L') ) (d (1‘1) ad(xQ) [ ad(xnfl))ng :| Zf and O’Illy Zf Supr7521g_£§ <

EES

%)
00, SUPr,s>1 5E > 00,
s
Proof: It is easy to prove so we omit. O

Proposition 3.12. The sequence space

[X?Lua | tnn (), (d(21) ,d(x2) -+ ,d(Tn-1) || is not solid

Proof: The result follows from the following example.
Example: Consider

11 .. 1

1 1 .. 1

&= (Tmn) = | € X M (2), (d (1) d (22) - d (@)}
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Let

L | |

—min _qmen | _qmin
O, = ' , for all m,n € N.

_17-n+n _1m+n _1m+n

2qu

Then i & [0 [t (2) . (d (1) d (2). - . d (za1))]Z] - Henee
[X?fft“, |t (), (d (21) ,d (22) -+ s d (xp_1))||¥ } is not solid. O

Proposition 3.13. The sequence space
[X?Lua g (), (d (z1),d (22), - ,d(zn—1))|7 } is not monotone
Proof: The proof follows from Proposition 3.12.

A sequence z = () is said to be p— statistically convergent or s,— statisti-
cally convergent to 0 if for every € > 0,

{ttmn [Fn (It (@) (@ (1) d (@2) - ), ) || = e} =0

where the vertical bars indicates the number of elements in the enclosed set. In this
case we write s, —lima = 0 0r Ty, — 0(s,) and s, = { : 30 € R : s, — limaz =0},
O

lim,s

Proposition 3.14. For any sequence of Musielak functions f = (fmn) and ¢ =
(Gmn) be double analytic sequence of strictly positive real numbers. Then

[ i (2), () (22) o d )]

(520 M ()01 ) )]

Proof: Let x € {x?ﬂ“,”gmn (), (d(x1),d(x2), - ,d(zn_1))| } and ¢ > 0.
Then
o [Fonn (it (), (@ (1) s d @) -+ d )], )] 2

(o (It ), @) ) dai)] ™

-9

from which it follows that « € [si%,numn (2),(d(21),d(22), - ,d(zn_1))| }
To show that [sjjfi,nﬂmn (@), (d(z1),d (x2), - ,d(zn1))] } strictly con-

tain

[t (2) (@ (@1) d (@)~ . d zar )] We define 2 = () by

(Zmn) =mn if rs — [\/@;5] + < mn < rs and (2m,) = 0 otherwise. Then
£ (A2t (2) . (d (1) A (22) - (ea)]E] and forevery ¢ (0 < < 1),
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[t [ (it &) (@ @0) ) - o), 2 € = 222 0

as r,s —» 00

v
. 2qu
iex—0 ([swqf#, lttmn (2), (d(x1),d (z2),--- ,d (ggn_l))Hﬂ ) , where [] denotes
the greatest integer function. On the other hand,

[ Fran (Wtgun (@) (@ (1) d (@) -+ d @), ) | = o0 s 75 = 00

%
ie omn A 0 [x?iu, lttmn (), (d(x1),d (z2),--- ,d (xn_l))Hﬂ . This completes
the proof. O
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