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Sufficient conditions for certain subclasses of meromorphic p-valent
functions
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ABSTRACT: In the present paper, we obtain certain sufficient conditions for mero-
morphic p-valent functions. Several corollaries and consequences of the main results
are also considered.
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1. Introduction and definitions

Let >, denote the class of functions of the form
I = .
f(z) = Z—p+2anz , (peN:={1,2,3,..}), (1.1)
n=p

which are analytic and p-valent in the punctured open unit disk
U ={2z:2€C;0 < |z] <1}=:U\{0}.

where U is an open unit disk. A function f(z) in X, is said to be meromorphically
p-valent starlike of order ¢ if and only if

%{?&?}>5 (z € UY), (1.2)

for some d( 0 < § < p). We denote by %7(0) the class of all meromorphically
p-valent starlike of order 6. Further, a function f(z) in X, is said to be meromor-
phically p-valent convex of order 0 if and only if

O e
m{ 1 f@)}>5 (z € UY), (1.3)
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for some §( 0 < & < p). We denote by Z’;(é) the class of all meromorphi-
cally p-valent convex of order §. A function f(z) belonging to X, is said to be
meromorphically p-valent close-to-convex of order ¢ if it satisfies

R (— /') ) >4 (zeu), (1.4)

z—Pp—1

for some 6(0 < 6 < p).We denote by 37 (d) the subclass of ¥, consisting of functions
which are meromorphically p-valent close-to-convex of order ¢ in U*.

Note that X1(§) = $*(d), 2¥(5) = £¥(6) and 2§(5) = X¢(0), where ©*(d),
Y#(5) and X¢(J) are subclasses of ¥1 consisting meromorphic univalent functions
which are respectively, starlike, convex and close-to-convex of order §(0 < 6 < 1).

Some subclasses of ¥, = ¥ when p = 1 were considered by (for example)
Miller [12], Pommerenke [16], Clunie [7], Frasin and Darus [8] and Royster [17].
Furthermore, several subclasses of ¥, were studied by (amongst others) Mogra et

al. [14], Goyal and Prajapat [11], Owa et al. [15], Srivastava et al. [18], Wang and
Zhang [21],Uralegaddi and Ganigi [19], Cho et al. [6], Aouf [1-4], and Uralegaddi
Somantha [20].

The object in the present paper is to obtain some sufficient conditions for mero-
morphic p-valent functions.
In the proofs of our main results, we need the following Jack’s Lemma [9]:

Lemma 1.1. Let the (non constant) function w(z) be analytic in W with w(0) = 0.
If |w(z)| attains its mazimum value on the circle |z| = r < 1 at a point zy € U,
then

20w’ (20) = mw(zg)

where m is a real number and m > n where n > 1.

2. Main Results
With the aid of Lemma 1.1, we derive the next two theorems.

Theorem 2.1. Let the function f €%, satisfies the inequality

2f'(2) Zf”(Z))} S Rlat Blp+n]+A2(a+ Bp — n]
f(2) f'(z) 2(1+ ) '

—m[a +5<1+

Then

% [(zpf(Z))“ (= :

where (o, B € R, A > 1, p,n €N).

/ B
Y (z)> ] _ LA
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Proof: Let the function w be defined by

zpﬂfxa)ﬂl%xw@> (2.3)

e (= e

Then, clearly, w is analytic in U with w(0) = 0. We also find from (2.3) that

2f'(2) P ON] gy AR ()
{ f(2) *ﬂ( 7(2) )] = p(a+p) 1+Aw(z)+1+w(z),( cu). (2.4)

Suppose there exists a point zo € U such thatjw(zo)| =1 and |w(z)| <1, when
|z| < |z0|. Then by applying Lemma 1.1, there exists m > n such that

zow' (20) = mw(zp), (m>n>1w(z0) = ;0 €R) . (2.5)

Then by using (2.4) and (2.5), it follows that
nfatlo) o (1, )]
n oyt (14

Ame me
:P@+@‘”GIXE) Q+¢J

— platf)— Am (A + cos 6) L m
1+ A+ 2 cosh 2

m(2 = 1)
2(1+ A* + 2\ cosh)

= pla+p8) -

< (a+ﬁ)ﬁ<i+i)
_ Rla+Bp+nl+ AR+ Bp—n)
= 2(1+ )

which contradicts the given hypothesis. Hence |w(z)| < 1, which implies

1= (2P f(2)" (_—z’”*;f%z))"
() (=542)" -y

<1 (2.6)

or equivalently

9{bff@»“(ifiﬁlﬁ)j:>lgé.

p

This completes the proof of Theorem 2.1. O
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Theorem 2.2. Let the function f €%, satisfies the inequality

2f'(2)
f(2)

—%{a +5(1+ 70 D)

Then

% [(zpf(Z))“ (Z;Hf’(Z))ﬂ] > L

where (o, B € R, A >1,p,n € N).
Proof: Let the function w be defined by

o (—2PF g 1
(7 F()) ( : f<z>) - o

Then clearly w is analytic in W with w(0) =0
Using logarithmic differentiation (3.3) yields

B [QZf’(Z) 2f"(2)
1) 1)

(1+X) zw/(2)
L+ (1+MNw(z)’

+ﬂ<1+ >}p(a+ﬂ)+ (z e W).

zf”(Z))] c HatBpt+npr+ {2p(at B) +n)

(3.4)

Suppose there exists a point zo € U such that |w(zo)| =1 and |w(z)| <1, when

|z| < |z0|. Then by applying Lemma 1.1, there exists m > n such that
20w’ (20) = mw(20), (m>n>1w(z) = e 0 €R).

Then by using (3.4) and (3.5), it follows that

zf'(20) zf" (z0) — (a (14 X)zow'(20)
m[‘“ 7o) +5<” 70) )] = +ﬂ)”“’%<<1+A>w<ZO>+1

(14 \)yme®?
(1+N)e? +1

(a+ﬂ)p+%<

m(1+ X)(1+ A+ cosf)

(3.5)

=(a+6)p+(

>

1+ (1+N)? +2(1+/\)c089)
{4 Bp+ni A+ {2p(a+B) +n}

- A+2

which contradicts the hypothesis (3.1). It follows that |w(z)| < 1, that is

1
(22" (222 p(2)”

-1 <14+

This evidently completes the proof of Theorem 2.2.
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3. Corollaries and Consequences

In this concluding section, we consider some Corollaries and Consequences of
our main results (Theorem 2.1 and Theorem 2.2).
Upon setting « = 0 and § = 1 in Theorem 2.1, we get

Corollary 3.1. If the function f € X, satisfies the inequality

z2f"(z) (2p+n)+A(2p—n)
) ) - 2(1+ )

9%<1+ (A>1,p,neN)

then

- (_Zp+1fl(z)) N 1_’_)\.
P 2
Setting p = n =1 in Corollary 3.1, the result reduces to
Corollary 3.2. If the function f € ¥ satisfies the inequality
zf"(2) - 34+ A
f'(2) 2

A>1)

‘”(” TESVIGE

then
1+ A\

R[22 (2)] > 5

or equivalently,

1+

Setting « = 0 and 8 = 1, Theorem 2.1 gives

Corollary 3.3. Let the function f € ¥, satisfies the inequality

o [(2](2) (2p+n)+A(2p—n) .
() > sy (=1, p,n eR).
Then )

Setting p =n =1 in Corollary 3.3, the result reduces to

Corollary 3.4. Let the function f € X, satisfies the inequality

o (Z2) 34\
m(f(z)>>2(1+)\) (A>1).

Then
14+ A

R(zf(2)) > —
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Setting a =1 — v and 8 = 7; 7 € R in Theorem 2.2, we obtain the following
special case:

Corollary 3.5. Let the function f € ¥, satisfies the inequality

“R|(1-7) Z;;S) P (1 + ZJ{,/;(;))} >p+ g (;—i) (A>1, p,n N).

ol (5752152

2
Setting @« = 0 and S = 1 in Theorem 2.2, we get

Corollary 3.6. If the function f € X, satisfies the inequality

Zf”(Z)} (p+n)A+(2p+n)
f'(2) A2

o[ )5

Setting p = n =1 in Corollary 3.6, the result reduces to

—R [1+ (A>1,p,neN)

then

Corollary 3.7. If the function f € X satisfies the inequality

z2f"(z) 22 +3
/') ) -

9%<1+ A>1)

A2 -

then
1

R[(—22f(2))] > CFBY

or equivalently,

1
eX|——].
1o (535)
Setting @« = 0 and 8 = 1, Theorem 2.2, it gives

Corollary 3.8. Let the function f € ¥, satisfies the inequality

L (F'G)Y _ (prmt Eptn)
”( ) ) < 2

(A>1, p,n €N).

Then )
RIS > 5o
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Setting p = n =1 in Corollary 3.8, the result reduces to

Corollary 3.9. Let the function f € X, satisfies the inequality

o (2(2) 342X\
S’Q(f<z>)< 7ra A2

Then

1
24\
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