

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 33** 2 (2015): 9–16. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i2.21919

Sufficient conditions for certain subclasses of meromorphic p-valent functions

Onkar Singh, Pranay Goswami and Basem Frasin

ABSTRACT: In the present paper, we obtain certain sufficient conditions for meromorphic p-valent functions. Several corollaries and consequences of the main results are also considered.

Key Words: Meromorphic multivalent functions, meromorphic starlike functions, meromorphic convex functions, meromorphic close-to-convex functions.

Contents

1	Introduction and definitions	9

3 Corollaries and Consequences

1. Introduction and definitions

Let Σ_p denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \sum_{n=p}^{\infty} a_n z^n \quad , \qquad (p \in \mathbb{N} := \{1, 2, 3, \dots\}), \tag{1.1}$$

which are analytic and p-valent in the punctured open unit disk

$$\mathcal{U}^* = \{z : z \in \mathbb{C}; 0 < |z| < 1\} =: \mathcal{U} \setminus \{0\}.$$

where \mathcal{U} is an open unit disk. A function f(z) in Σ_p is said to be meromorphically p-valent starlike of order δ if and only if

$$\Re\left\{-\frac{zf'(z)}{f(z)}\right\} > \delta \quad (z \in \mathcal{U}^*), \tag{1.2}$$

for some $\delta(0 \leq \delta < p)$. We denote by $\Sigma_p^*(\delta)$ the class of all meromorphically p-valent starlike of order δ . Further, a function f(z) in Σ_p is said to be meromorphically p-valent convex of order δ if and only if

$$\Re\left\{-1 - \frac{zf''(z)}{f'(z)}\right\} > \delta \quad (z \in \mathcal{U}^*), \tag{1.3}$$

 $2000\ Mathematics\ Subject\ Classification:\ 30{\rm C}45$

13

for some $\delta(0 \leq \delta < p)$. We denote by $\Sigma_p^k(\delta)$ the class of all meromorphically p-valent convex of order δ . A function f(z) belonging to Σ_p is said to be meromorphically p-valent close-to-convex of order δ if it satisfies

$$\Re\left(-\frac{f'(z)}{z^{-p-1}}\right) > \delta \qquad (z \in \mathcal{U}^*),$$
 (1.4)

for some $\delta(0 \le \delta < p)$. We denote by $\Sigma_p^c(\delta)$ the subclass of Σ_p consisting of functions which are meromorphically p-valent close-to-convex of order δ in \mathcal{U}^* .

Note that $\Sigma_1^*(\delta) = \Sigma^*(\delta)$, $\Sigma_1^k(\delta) = \Sigma^k(\delta)$ and $\Sigma_1^c(\delta) = \Sigma^c(\delta)$, where $\Sigma^*(\delta)$, $\Sigma^k(\delta)$ and $\Sigma^c(\delta)$ are subclasses of Σ_1 consisting meromorphic univalent functions which are respectively, starlike, convex and close-to-convex of order $\delta(0 \le \delta < 1)$.

Some subclasses of $\Sigma_p = \Sigma$ when p = 1 were considered by (for example) Miller [12], Pommerenke [16], Clunie [7], Frasin and Darus [8] and Royster [17]. Furthermore, several subclasses of Σ_p were studied by (amongst others) Mogra et

al. [14], Goyal and Prajapat [11], Owa et al. [15], Srivastava et al. [18], Wang and Zhang [21], Uralegaddi and Ganigi [19], Cho et al. [6], Aouf [1-4], and Uralegaddi Somantha [20].

The object in the present paper is to obtain some sufficient conditions for meromorphic *p*-valent functions.

In the proofs of our main results, we need the following Jack's Lemma [9]:

Lemma 1.1. Let the (non constant) function w(z) be analytic in \mathcal{U} with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point $z_0 \in \mathcal{U}$, then

$$z_0 w'(z_0) = m w(z_0)$$

where m is a real number and $m \ge n$ where $n \ge 1$.

2. Main Results

With the aid of Lemma 1.1, we derive the next two theorems.

Theorem 2.1. Let the function $f \in \Sigma_p$, satisfies the inequality

$$-\Re\left[\alpha \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > \frac{[2(\alpha + \beta)p + n] + \lambda [2(\alpha + \beta)p - n]}{2(1 + \lambda)}. \quad (2.1)$$

Then

$$\Re\left[\left(z^p f(z)\right)^{\alpha} \left(\frac{-z^{p+1} f'(z)}{p}\right)^{\beta}\right] > \frac{1+\lambda}{2}$$
 (2.2)

where $(\alpha, \beta \in \mathbb{R}, \lambda \geq 1, p, n \in \mathbb{N})$.

Proof: Let the function w be defined by

$$(z^p f(z))^{\alpha} \left(\frac{-z^{p+1} f'(z)}{p}\right)^{\beta} = \frac{1 + \lambda w(z)}{1 + w(z)}.$$
 (2.3)

Then, clearly, w is analytic in U with w(0) = 0. We also find from (2.3) that

$$-\left[\alpha\frac{zf'(z)}{f(z)}+\beta\left(1+\frac{zf''(z)}{f'(z)}\right)\right]=p(\alpha+\beta)-\frac{\lambda zw'(z)}{1+\lambda w(z)}+\frac{zw'(z)}{1+w(z)},(z\in\mathcal{U}). \tag{2.4}$$

Suppose there exists a point $z_0 \in \mathcal{U}$ such that $|w(z_0)| = 1$ and |w(z)| < 1, when $|z| < |z_0|$. Then by applying Lemma 1.1, there exists $m \ge n$ such that

$$z_0 w'(z_0) = m w(z_0), \qquad (m \ge n \ge 1; w(z_0) = e^{i\theta}; \theta \in \mathbb{R}).$$
 (2.5)

Then by using (2.4) and (2.5), it follows that

$$-\Re\left[\alpha \frac{zf'(z_0)}{f(z_0)} + \beta \left(1 + \frac{zf''(z_0)}{f'(z_0)}\right)\right]$$

$$= p(\alpha + \beta) - \Re\left(\frac{\lambda m e^{i\theta}}{1 + \lambda e^{i\theta}}\right) + \Re\left(\frac{m e^{i\theta}}{1 + e^{i\theta}}\right)$$

$$= p(\alpha + \beta) - \frac{\lambda m(\lambda + \cos \theta)}{1 + \lambda^2 + 2\lambda \cos \theta} + \frac{m}{2}$$

$$= p(\alpha + \beta) - \frac{m(\lambda^2 - 1)}{2(1 + \lambda^2 + 2\lambda \cos \theta)}$$

$$\leq p(\alpha + \beta) - \frac{n}{2}\left(\frac{\lambda - 1}{1 + \lambda}\right)$$

$$\leq \frac{[2(\alpha + \beta)p + n] + \lambda [2(\alpha + \beta)p - n]}{2(1 + \lambda)}$$

which contradicts the given hypothesis. Hence |w(z)| < 1, which implies

$$\left| \frac{1 - (z^p f(z))^{\alpha} \left(\frac{-z^{p+1} f'(z)}{p} \right)^{\beta}}{(z^p f(z))^{\alpha} \left(\frac{-z^{p+1} f'(z)}{p} \right)^{\beta} - \lambda} \right| < 1$$
 (2.6)

or equivalently

$$\Re\left[\left(z^pf(z)\right)^\alpha\left(\frac{-z^{p+1}f'(z)}{p}\right)^\beta\right]>\frac{1+\lambda}{2}.$$

This completes the proof of Theorem 2.1.

Theorem 2.2. Let the function $f \in \Sigma_p$, satisfies the inequality

$$-\Re\left[\alpha \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < \frac{\{(\alpha + \beta)p + n\}\lambda + \{2p(\alpha + \beta) + n\}}{\lambda + 2}. \quad (3.1)$$

Then

$$\Re\left[\left(z^{p}f(z)\right)^{\alpha}\left(\frac{-z^{p+1}}{p}f'(z)\right)^{\beta}\right] > \frac{1}{2+\lambda}$$
(3.2)

where $(\alpha, \beta \in \mathbb{R}, \lambda \geq 1, p, n \in \mathbb{N})$.

Proof: Let the function w be defined by

$$(z^{p}f(z))^{\alpha} \left(\frac{-z^{p+1}}{p}f'(z)\right)^{\beta} = \frac{1}{(1+\lambda)w(z)+1}.$$
 (3.3)

Then clearly w is analytic in U with w(0) = 0Using logarithmic differentiation (3.3) yields

$$-\left[\alpha \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)}\right)\right] = p(\alpha + \beta) + \frac{(1+\lambda)zw'(z)}{1 + (1+\lambda)w(z)}, (z \in \mathcal{U}).$$
 (3.4)

Suppose there exists a point $z_0 \in \mathcal{U}$ such that $|w(z_0)| = 1$ and |w(z)| < 1, when $|z| < |z_0|$. Then by applying Lemma 1.1, there exists $m \ge n$ such that

$$z_0 w'(z_0) = m w(z_0), \qquad (m \ge n \ge 1; w(z_0) = e^{i\theta}; \theta \in \mathbb{R}).$$
 (3.5)

Then by using (3.4) and (3.5), it follows that

$$-\Re\left[\alpha \frac{zf'(z_0)}{f(z_0)} + \beta \left(1 + \frac{zf''(z_0)}{f'(z_0)}\right)\right] = (\alpha + \beta) p + \Re\left(\frac{(1+\lambda)z_0w'(z_0)}{(1+\lambda)w(z_0) + 1}\right)$$

$$= (\alpha + \beta) p + \Re\left(\frac{(1+\lambda)me^{i\theta}}{(1+\lambda)e^{i\theta} + 1}\right)$$

$$= (\alpha + \beta) p + \left(\frac{m(1+\lambda)(1+\lambda + \cos\theta)}{1+(1+\lambda)^2 + 2(1+\lambda)\cos\theta}\right)$$

$$\geq \frac{\{(\alpha + \beta)p + n\} \lambda + \{2p(\alpha + \beta) + n\}}{\lambda + 2}$$

which contradicts the hypothesis (3.1). It follows that |w(z)| < 1, that is

$$\left| \frac{1}{(z^p f(z))^{\alpha} \left(\frac{-z^{p+1}}{p} f'(z) \right)^{\beta}} - 1 \right| < 1 + \lambda.$$

This evidently completes the proof of Theorem 2.2.

3. Corollaries and Consequences

In this concluding section, we consider some Corollaries and Consequences of our main results (Theorem 2.1 and Theorem 2.2).

Upon setting $\alpha = 0$ and $\beta = 1$ in Theorem 2.1, we get

Corollary 3.1. If the function $f \in \Sigma_p$ satisfies the inequality

$$-\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \frac{(2p+n)+\lambda\left(2p-n\right)}{2\left(1+\lambda\right)} \qquad (\lambda \ge 1,\, p,n \in \mathbb{N})$$

then

$$\Re\left(\frac{-z^{p+1}f'(z)}{p}\right) > \frac{1+\lambda}{2}.$$

Setting p = n = 1 in Corollary 3.1, the result reduces to

Corollary 3.2. If the function $f \in \Sigma$ satisfies the inequality

$$-\Re\left(1+\frac{zf''(z)}{f'(z)}\right)>\frac{3+\lambda}{2\left(1+\lambda\right)}\qquad (\lambda\geq 1)$$

then

$$\Re\left[-z^2f'(z)\right] > \frac{1+\lambda}{2},$$

or equivalently,

$$f \in \Sigma^c \left(\frac{1+\lambda}{2} \right)$$
.

Setting $\alpha = 0$ and $\beta = 1$, Theorem 2.1 gives

Corollary 3.3. Let the function $f \in \Sigma_p$, satisfies the inequality

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) > \frac{(2p+n) + \lambda(2p-n)}{2(1+\lambda)} \qquad (\lambda \ge 1, \, p, n \in \mathbb{N}).$$

Then

$$\Re\left(z^p f(z)\right) > \frac{1+\lambda}{2}.$$

Setting p = n = 1 in Corollary 3.3, the result reduces to

Corollary 3.4. Let the function $f \in \Sigma$, satisfies the inequality

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) > \frac{3+\lambda}{2(1+\lambda)} \qquad (\lambda \ge 1).$$

Then

$$\Re\left(zf(z)\right) > \frac{1+\lambda}{2}.$$

Setting $\alpha = 1 - \gamma$ and $\beta = \gamma$; $\gamma \in \mathbb{R}$ in Theorem 2.2, we obtain the following special case:

Corollary 3.5. Let the function $f \in \Sigma_p$, satisfies the inequality

$$-\Re\left[\left(1-\gamma\right)\frac{zf'(z)}{f(z)}+\gamma\left(1+\frac{zf''(z)}{f'(z)}\right)\right]>p+\frac{n}{2}\left(\frac{1-\lambda}{1+\lambda}\right)\qquad(\lambda\geq 1,\,p,n\in\mathbb{N}).$$

Then

$$\Re\left[\left(z^pf(z)\right)\left(\frac{-zf'(z)}{pf(z)}\right)^{\gamma}\right] > \frac{1+\lambda}{2}.$$

Setting $\alpha = 0$ and $\beta = 1$ in Theorem 2.2, we get

Corollary 3.6. If the function $f \in \Sigma_p$ satisfies the inequality

$$-\Re\left[1+\frac{zf''(z)}{f'(z)}\right]<\frac{(p+n)\lambda+(2p+n)}{\lambda+2} \qquad (\lambda\geq 1,\,p,n\in\mathbb{N})$$

then

$$\Re\left[\left(\frac{-z^{p+1}}{p}f'(z)\right)\right] > \frac{1}{2+\lambda}.$$

Setting p = n = 1 in Corollary 3.6, the result reduces to

Corollary 3.7. If the function $f \in \Sigma$ satisfies the inequality

$$-\Re\left(1+\frac{zf''(z)}{f'(z)}\right) < \frac{2\lambda+3}{\lambda+2} \qquad (\lambda \ge 1)$$

then

$$\Re\left[\left(-z^2f'(z)\right)\right] > \frac{1}{2+\lambda},$$

or equivalently,

$$f \in \Sigma^c \left(\frac{1}{2+\lambda} \right)$$
.

Setting $\alpha = 0$ and $\beta = 1$, Theorem 2.2, it gives

Corollary 3.8. Let the function $f \in \Sigma_p$, satisfies the inequality

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) < \frac{(p+n)\lambda + (2p+n)}{\lambda + 2} \qquad (\lambda \ge 1, \, p, n \in \mathbb{N}).$$

Then

$$\Re\left[\left(z^p f(z)\right)\right] > \frac{1}{2+\lambda}.$$

Setting p = n = 1 in Corollary 3.8, the result reduces to

Corollary 3.9. Let the function $f \in \Sigma$, satisfies the inequality

$$-\Re\left(\frac{zf'(z)}{f(z)}\right)<\frac{3+2\lambda}{2+\lambda} \qquad (\lambda\geq 1).$$

Then

$$\Re\left[\left(zf(z)\right)\right]>\frac{1}{2+\lambda}.$$

Acknowledgments

The authors would like to thank the referee for his helpful comments and suggestions.

References

- M. K. Aouf, A generalization of meromorphic multivalent functions with positive coefficients, Math. Japon., 35 (1990), 609-614.
- M. K. Aouf, On a class of meromorphic multivalent functions with positive coefficients, Math. Japon., 35 (1990), 603-608.
- M.K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. (7) 11 (1991), 209-219.
- M. K. Aouf, Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Modelling 47(2008), 328-340.
- S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22 (1977), 295-297.
- N.E. Cho, S.H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
- 7. J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
- 8. B.A. Frasin and M. Darus, On certain meromorphic functions with positive coefficients, Southeast Asian Bulletin of Mathematics 30 (2006), 1-8.
- I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2)3, (1971), 469-474.
- R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glas. Mat. Ser.III 17(37) (1982), 19-28.
- 11. S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions Involving certain linear operator, Tamsui Oxford Journal of Mathematical Sciences 25(2) (2009) 167-176.
- 12. J. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220-228.
- 13. S.S. Miller and P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differ. Equations, 67(1987), 199-211.
- 14. M.L. Mogra , T.R. Reddy and O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
- S. Owa, H. E. Darwish and M. K. Aouf, Meromorphic multivalent functions with positive and fixed second coefficients, Math. Japon., 46(2) (1997), 231-236.
- 16. CH. Pommerenke, On meromorphic starlike functions, Pacific J. Math.13 (1963), 221-235.

- 17. W.C. Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math.Soc.107 (1963), 300-308.
- H.M. Srivastava, H.M. Hossen and M.K. Aouf, A unified presentation of some classes of meromorphically multivalent functions, Computer and Mathematics with Applications 38(1999), 63-70
- 19. B.A. Uralegaddi and M.D. Ganigi, A certain class of meromorphic univalent functions with positive coefficients, Pure Appl. Math. Sci. 26 (1987), 75-81.
- 20. B.A. Uralegaddi and C. Somantha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), 137-140.
- 21. Z. Wang, Y. Sun and Z. Zhang, Certain classes of meromorphic multivalent functions, Computers and Mathematics with Applications 58 (2009) 1408-1417.

Onkar Singh

Department of Mathematics, University of Rajasthan, Jaipur-302055

E-mail address: onkarbhati@gmail.com

and

 $P.\ Goswami$

Department of Mathematics, School of Liberal Studies, Bharat Ratn Dr. B.R. Amedkar University, Delhi -110007, India

 $E\text{-}mail\ address: \verb"pranaygoswami83@gmail.com"}$

and

Basem Frasin

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

 $E\text{-}mail\ address: \verb|bafrasin@yahoo.com||$