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Quasirecognition by prime graph of Cn(4), where n ≥ 17 is odd

S. Mosavi and N. Ahanjideh

abstract: Let G be a finite group and let Γ(G) be the prime graph of G. We
assume that n ≥ 17 is an odd number. In this paper, we show that if Γ(G) =
Γ(Cn(4)), then G has a unique non-abelian composition factor isomorphic to Cn(4).
As consequences of our result, Cn(4) is quasirecognizable by its spectrum.
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1. Introduction

The spectrum ω(G) of a finite group G is the set of element orders of G, i.e.
a natural number n is in ω(G) if there is an element of order n in G. A finite
non-abelian simple group G is called quasirecognizable by its spectrum, if each
finite group H with ω(G) = ω(H) has a unique non-abelian composition factor
isomorphic to G [1]. If G is a finite group, we denote by π(G) the set of all
prime divisors of |G|. The prime graph (or Gruenberg-Kegel graph) Γ(G) of G is
the graph with vertex set π(G) where two distinct vertices p and q are adjacent
by an edge (we write (p, q) ∈ Γ(G)) if p.q ∈ ω(G) and we denote by s(G) the
number of connected components of Γ(G). A finite non-abelian simple group G is
quasirecognizable by its prime graph, if each finite group P with Γ(P ) = Γ(G) has
a unique non-abelian composition factor isomorphic to G [5]. The most recent lists
of finite simple groups that are quasirecognizable by prime graph are presented in
[2], [4], [6], [7] and [8].

In this paper, we show that the group Cn(4) is quasirecognizable by its prime
graph. In fact, we prove the following main theorem:
Main Theorem: Let n ≥ 17 be an odd number. Then the simple group Cn(4) is
quasirecognizable by its prime graph.

Actually in this paper, we will show that how the method in [4] for Cn(2) can
be applied for Cn(4).

Note that if a finite group G is quasirecognizable by prime graph, then it is
quasirecognizable by spectrum. Thus as a consequence of main theorem, we can
prove that the finite simple group Cn(4) is quasirecognizable by spectrum.
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2. Preliminaries

Throughout this paper, we use the following notations: we denote by ρ(G)
and ρ(r,G) a coclique of maximal size in GK(G) and a coclique of maximal size,
containing r, in GK(G), respectively. We put t(G) = |ρ(G)| and t(r,G) = |ρ(r,G)|.
Also we assume that q = pα, where p is a prime and α is a natural number. All
further unexplained notations are standard and can be found, for example in [3].

Lemma 2.1. [9, Theorem] Let G be a finite group whit t(G) ≥ 3 and t(2, G) ≥ 2.
Then

1. There exists a finite non-abelian simple group S that

S ≤ Ḡ = G/K ≤ Aut(S)

for the maximal normal soluble subgroup K of G.
2. For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ

divides the product |K|.|Ḡ/S|. In particular, t(S) ≥ t(G)− 1.
3. one of the following statements holds:
a) every prime r ∈ π(G) non-adjacent to 2 in Γ(G) does not divide the product

|K|.|Ḡ/S|. In particular, t(2, S) ≥ t(2, G);
b) there exists a prime r ∈ π(G) non-adjacent to 2 in Γ(G) in which case

t(G) = 3, t(2, G) = 2 and S ∼= A7 or A1(q) for some odd q.

Lemma 2.2. Let G be a finite group, H a subgroup of G and N a normal subgroup
of G. Then:

1. if (p, q) ∈ Γ(H), then (p, q) ∈ Γ(G);
2. if (p, q) ∈ Γ(G/N), then (p, q) ∈ Γ(G);
3. if (p, q) ∈ Γ(G) and {p, q} ∩ π(N) = ∅, then (p, q) ∈ Γ(G/N).

Proof. The proof is straightforward. ✷

Let s be a prime and let m be a natural number. The s-part of m is denoted
by ms, i.e., ms = st if st | m and st+1 doesn’t divide m. If gcd(s,m) = 1 and s is
odd, then by e(s,m) we mean that s | (me(s,m) − 1) but s does not divide (ma − 1)
for all natural numbers a with a < e(s,m). If m is odd, we put e(2,m) = 1, if
m ≡ 1 (mod 4) and e(2,m) = 2, if m ≡ −1 (mod 4).

Lemma 2.3. [11, Corollary of Zsigmondy’s theorem] Let q be a natural number
greater than 1. For every natural number m, there exists a prime r with e(r, q) = m,
unless q = 2 and m = 1, q = 3 and m = 1, and q = 2 and m = 6.

The prime s with e(s,m) = n is called a primitive prime divisor of mn − 1.
It is obvious that mn − 1 can have more than one primitive prime divisor. We
denote by rn(m) some primitive prime divisor of mn − 1. We write Aǫ

n(q) and
Dǫ

n(q), where ǫ ∈ {±}, and A+
n (q) = An(q), A

−
n (q) =

2 An(q), D
+
n (q) = Dn(q) and

D−
n (q) =

2 Dn(q).
Also, ν(n) and η(n) for an integer n, are defined in [10] as follow:
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ν(n) =







n, if n ≡ 0 (mod 4);
n
2 , if n ≡ 2 (mod 4);
2n, if n ≡ 1 (mod 2).

, (2.1)

η(n) =

{

n, if n is odd;
n

2
, otherwise.

. (2.2)

Lemma 2.4. [10, Proposition 4.1] Let G = An−1(q) be a finite simple group of
Lie type, r be a prime divisor of q − 1 and s ∈ π(G)− {2, p} such that k = e(s, q).
Then s and r are non-adjacent if and only if one of the following holds:

(1) k = n, nr ≤ (q − 1)r, and if nr = (q − 1)r, then 2 < (q − 1)r;
(2) k = n− 1 and (q − 1)r ≤ nr.

Lemma 2.5. [10, Proposition 4.2] Let G =2 An−1(q) be a finite simple group of
Lie type, r be a prime divisor of q + 1 and s be an odd prime distinct from the
characteristic. Put k = e(s, q). Then s and r are non-adjacent if and only if one
of the following holds:

(1) ν(k) = n, nr ≤ (q + 1)r, and if nr = (q + 1)r, then 2 < (q + 1)r;
(2) ν(k) = n− 1 and (q + 1)r ≤ nr.

Lemma 2.6. [10, Propositions 2.1,2.2] Let G be a finite simple group of Lie type
over a field of order q. Let r and s be odd primes and r, s ∈ π(G) \ {p}. Put
k = e(r, q) and l = e(s, q).

1. If G = An−1(q) and 2 ≤ k ≤ l, then r and s are non-adjacent if and only if
k + l > n and k does not divide l;

2. if G =2 An−1(q) and 2 ≤ ν(k) ≤ ν(l), then r and s are non-adjacent if and
only if ν(k) + ν(l) > n and ν(k) does not divide ν(l).

Lemma 2.7. [11] Let G be one of the simple groups of Lie type, Bn(q) or Cn(q),
over a field of characteristic p. Let r, s be odd primes with r, s ∈ π(G) \ {p}. Put
k = e(r, q) and l = e(s, q), and suppose that 1 ≤ η(k) ≤ η(l). Then r and s are
nonadjacent if and only if η(k) + η(l) > n and l/k is not an odd natural number.

Lemma 2.8. [10, Proposition 3.1] Let G be a finite simple classical group of Lie
type defined over a field of characteristic p. Let r ∈ π(G) and r 6= p. Then r and
p are non-adjacent if and only if one of the following holds:

1. G = An−1(q), r is odd and e(r, q) > n− 2;
2. G =2 An−1(q), r is odd and ν(e(r, q)) > n− 2;
3. G = Cn(q), η(e(r, q)) > n− 1;
4. G = Bn(q), η(e(r, q)) > n− 1;
5. G = Dǫ

n(q), where ǫ ∈ {+,−}, η(e(r, q)) > n− 2;
6. G = A1(q), r = 2;
7. G = Aǫ

2(q), r = 3 and (q − ǫ1)3 = 3.
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3. Proof of the main theorem

Let G be a finite group with Γ(G) = Γ(Cn(4)), where n is an odd number and
n ≥ 17. During the proof of the main theorem we used Tables 2-8 in [10] without
the reference number [10].

By Tables 4 and 8 we have:

1. t(Cn(4)) = [(3n+ 5)/4] ≥ 14, ρ(Cn(4)) = {r2i(4)|[(n+ 1)/2] ≤ i ≤ n }∪
{ri(4)|(n+ 1)/2 ≤ i ≤ n, i ≡ 1 (mod 2)},

2. t(2, Cn(4)) = 3, ρ(2, Cn(4)) = {2, rn(4), r2n(4)}.
Since t(G) = t(Cn(4)) ≥ 14 and t(2, G) = t(2, Cn(4)) = 3, we can apply Lemma

(2.1) for G. Let S be the non-abelian simple group which is obtained in that
Lemma. If S is a sporadic simple group or an exceptional simple group of Lie type,
then t(S) ≤ 12 (see Table 4 in [11] and Table 2 in [10]). But this is impossible,
because by Lemma (2.1)(2), t(S) ≥ t(G)−1 ≥ 13. Hence, S is either an alternating
group or a classical group of Lie type. We will prove that S ∼= Cn(4) in two steps:

Step I. The simple group S can not be an alternating group Am,m ≥ 5.

If S ∼= Am, where m ≥ 5, then since t(S) ≥ 13, by Table 3, we can see that
m ≥ 10 and ρ(2, S) = τ (2,m) ∪ {2}, where

τ (2,m) = { s : s is a prime, m− 3 ≤ s ≤ m}.

Also, by Lemma (2.1)(3), we can see that ρ(2, Cn(4)) = ρ(2, G) ⊆ ρ(2, S). Hence,
{rn(4), r2n(4)} ⊆ τ (2,m). So, by the definition of τ(2,m), we can see that rn(4)−
r2n(4) = ǫ, where ǫ ∈ {+2,−2}. But by Fermat’s little theorem, 2n = e(r2n(4), 4) |
r2n(4)− 1 and n = e(rn(4), 4) | rn(4)− 1. Therefore, n|ǫ. This implies that n | 2,
which is impossible.

Step II. If S is a classical Lie type group, then we shall prove that S ∼= Cn(4).
We prove this, with a case by case analysis.

Case 1. S can not be a simple group of type An′−1(q), where q = pα.

If S ∼= An′−1(q), then since t(S) ≥ 13, by Table 8, we can see that n′ ≥ 25.
Thus by Tables 4 and 6, we have the following two subcases:

(i) If p = 2, then by Table 4, ρ(2, S) = {2, rn′−1(2
α), rn′(2α)} and since

ρ(2, Cn(4)) ⊆ ρ(2, S), we conclude that each number in the set

{rn′−1(2
α), rn′(2α)}

is a primitive prime divisor of 4n − 1 or 42n − 1.

If rn′−1(2
α) = rn(4), then we can see that e(rn(4), 2) ∈ {n, 2n} and hence,

α(n′ − 1) ∈ {n, 2n}.
Also, rn′(2α) = r2n(4) gives that n′α = 4n. This give that n′ = 2 or n′ = 4/3,

which is impossible.

If rn′−1(2
α) = r2n(4) and rn′(2α) = rn(4), then we can see that (n′ − 1)α = 4n

and n′α ∈ {n, 2n}. Therefore, α < 0, which is impossible.

(ii) If p 6= 2, then gcd(4, p) = 1. Let t = e(p, 4), then t ≥ 1 . Thus one of the
following occurs:
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a. If t = 1, then p = 3. Since n′ ≥ 25,

|S| = |An′−1(q)| =
1

gcd(n′, q − 1)
q(n

′−1)n
′

2

n′

∏

i=2

(qi − 1)

and 11 | 35 − 1, we deduce that 11 = r5(3
α) or r1(3

α) ∈ π(S). Now we are going
to find t(11, S). If 11 = r5(3

α), then by Lemmas (2.4) and (2.8)(1), we can see
that (2, 11), (r1(q), 11) and (3, 11) ∈ Γ(S). Therefore, if 11 6= x ∈ ρ(11, S), then
x is an odd number distinct from 3 and r1(q) and if e(x, q) = l, then by Lemma
(2.6)(1), we conclude that l + 5 > n′ and 5 does not divide l. Therefore, l ∈
{n′, n′−1, n′−2, n′−3, n′−4}. Since {n′, n′−1, n′−2, n′−3, n′−4} are five consec-
utive numbers, then 5 divides exactly one of them and we have exactly four choices
for l. Thus, four elements of the set {rn′(q), rn′−1(q), rn′−2(q), rn′−3(q), rn′−4(q)}
can be chosen for x. Also, by Lemma (2.6)(1), we can see that this set is inde-
pendent. Thus, t(11, S) = 4. If 11 = r1(3

α), then by Lemma (2.4), we can see
that t(11, S) ≤ 3. On the other side, 11 ∈ π(S) ⊆ π(Cn(4)) and we can consider
ρ(11, Cn(4)). Since η(e(11, 4)) = e(11, 4) = 5, by Lemma (2.7), we can see that
{r2n(4), r2(n−1)(4), r2(n−2)(4), r2(n−3)(4), r2(n−4)(4)} ⊆ ρ(11, Cn(4)) and also, since
5 divides at most one of the elements of the set {n, n− 2, n− 4}, we obtain that at
least seven elements of the set

{rn(4), r2n(4), r2(n−1)(4), rn−2(4), r2(n−2)(4), r2(n−3)(4), rn−4(4), r2(n−4)(4)}

are in ρ(11, Cn(4)). Hence, t(11, Cn(4)) ≥ 7. Now by assuming ρ = ρ(11, Cn(4)) in
Lemma (2.1)(3), we can see that t(11, S) ≥ |ρ(11, Cn(4))∩π(S)| ≥ t(11, Cn(4))− 1
and hence, 4 ≥ t(11, S) ≥ t(11, Cn(4))− 1 ≥ 7− 1 = 6, which is impossible.

b. If t = 2, then p = 5. Since n′ ≥ 25

|S| = |An′−1(q)| =
1

gcd(n′, q − 1)
q(n

′−1)n
′

2

n′

∏

i=2

(qi − 1)

and 31 | 53− 1, we deduce that 31 = r3(5
α) or r1(5

α) ∈ π(S). Now we are going to
find t(31, S). If 31 = r3(5

α), then by Lemmas (2.4) and (2.8)(1), we can see that
(2, 31), (r1(q), 31) and (5, 31) ∈ Γ(S). Therefore, if 31 6= x ∈ ρ(31, S), then x is an
odd number distinct from 5 and r1(q) and if e(x, q) = l, then by Lemma (2.6)(1),
we conclude that l+3 > n′ and 3 does not divide l. Therefore, l ∈ {n′, n′−1, n′−2}.
Since {n′, n′ − 1, n′ − 2} are three consecutive numbers, then 3 divides exactly one
of them and we have exactly two choices for l. Thus, two elements of the set
{rn′(q), rn′−1(q), rn′−2(q)} can be chosen for x. Also, by Lemma (2.6)(1), we can
see that this set is independent. Thus, t(31, S) = 3. If 31 = r1(5

α), then by Lemma
(2.4), we can see that t(31, S) ≤ 3. On the other side, 31 ∈ π(S) ⊆ π(Cn(4)) and we
can consider ρ(31, Cn(4)). Since η(e(31, 4)) = e(31, 4)) = 5, by Lemma (2.7), we
can see that {r2n(4), r2(n−1)(4), r2(n−2)(4), r2(n−3)(4), r2(n−4)(4)} ⊆ ρ(31, Cn(4)).
Hence, t(31, Cn(4)) ≥ 5. Now by assuming ρ = ρ(31, Cn(4)) in Lemma (2.1)(3),
we can see that t(31, S) ≥ |ρ(31, Cn(4)) ∩ π(S)| ≥ t(31, Cn(4)) − 1 and hence,
3 ≥ t(31, S) ≥ t(31, Cn(4))− 1 ≥ 5− 1 = 4, which is impossible.
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c. If t = 3, 4, 5 and 7, then applying the argument given for Subcase (ii)(b) for
r3(p) leads us to get a contradiction.

d. If t = 6, then p = 13 and since 61 | 133 − 1, 61 ∈ π(S) and similar to
Subcase (ii)(b), we can see that t(61, S) ≤ 3. On the other hand, 61 ∈ π(Cn(4)),

η(e(61, 4)) = e(61, 4)/2 = 15 and |Cn(4)| = 4n
2 ∏n

i=1(4
2i − 1). Therefore n ≥ 15

and by Lemma (2.7),

{r2(n−1)(4), r2(n−3)(4), r2(n−5)(4), r2(n−7)(4), r2(n−9)(4)} ⊆ ρ(61, Cn(4)).

Thus t(61, Cn(4)) ≥ 5 and hence, similar to Subcase (ii)(b), we get a contradiction.
e. For t ≥ 8, if t is an odd number, then set

ρ = {r2(n−1)(4), r2(n−3)(4), r2(n−5)(4), r2(n−7)(4)}.

Since n and t are odd numbers and n ≥ 17, by Lemma (2.7), we can see that
ρ ⊆ ρ(p, Cn(4)) \ {p} and since S ≤ G/K, by Lemma (2.2)(1,2),

ρ ∩ π(S) ⊆ ρ(p, S) \ {p}.

Thus by Table 4, |ρ ∩ π(S)| ≤ 2. But, by Lemma (2.1)(2), we conclude that
| ρ ∩ π(S) |≥| ρ | −1 = 3, which is a contradiction. Also, if t is an even number
except 10, 14, where t/2 is an odd number, then similar to the previous argument,
we get a contradiction. If t = 10, then p = 41 and now, repeating the argument
given for Subcase (ii)(b) leads us to get a contradiction. If t = 14, then p = 29
and since 67 | 293 − 1, 67 ∈ π(S) and similar to Subcase (ii)(b), we can see that
t(67, S) ≤ 3. On the other hand, 67 ∈ π(Cn(4)), η(e(67, 4)) = e(67, 4) = 33 and

|Cn(4)| = 4n
2

n
∏

i=1

(42i − 1).

Therefore n ≥ 33 and by Lemma (2.7), we see that

{r2(n−1)(4), r2(n−3)(4), r2(n−5)(4), r2(n−7)(4), r2(n−9)(4)} ⊆ ρ(67, Cn(4)).

This gives that t(67, Cn(4)) ≥ 5. Thus similar to Subcase (ii)(b), we get a contra-
diction. If t and t/2 are even, it is enough to replace ρ with the set

{rn(4), r2n(4), r(n−2)(4), r2(n−2)(4)}

in the previous argument and get a contradiction.
Hence, by (i) and (ii), we have shown that S can not be a simple group of type

An′−1(q). Similar argument shows that S can not be a simple group of type Dn′(q)
or 2Dn′(q). We omit the details here.

Case 2. S can not be a simple group of type 2An′−1(q).
If S ∼=2 An′−1(q), then since t(S) ≥ 13, by Table 8, we can see that n′ ≥ 25.

Thus by Tables 4 and 6, we consider the following possibilities:
(i) If p = 2, then by Table 4, we can assume four different cases for n′ as follows:
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If n′ ≡ 0 (mod 4), then ρ(2, S) = {2, r2n′−2(2
α), rn′(2α)} and since

ρ(2, Cn(4)) ⊆ ρ(2, S),

applying the argument given for Case 1(i) shows that α ≤ 0 or n′ ≤ 2, which is
impossible.

If n′ ≡ 1 (mod 4), then ρ(2, S) = {2, rn′−1(2
α), r2n′(2α)} and since

ρ(2, Cn(4)) ⊆ ρ(2, S),

we can see that α ≤ 0 or n′ ≤ 2, which is impossible.
If n′ ≡ 2 (mod 4), then ρ(2, S) = {2, r2n′−2(2

α), rn′/2(2
α)} and since

ρ(2, Cn(4)) ⊆ ρ(2, S),

{2, r2n(4), rn(4)} ⊆ {2, r2n′−2(2
α), rn′/2(2

α)} and hence, we can assume that either
rn(4) = r2n′−2(2

α) and r2n(4) = rn′/2(2
α) or r2n(4) = r2n′−2(2

α) and rn(4) =
rn′/2(2

α). Therefore, n′ ≤ 2 or α = 0, which is impossible.
If n′ ≡ 3 (mod 4), then ρ(2, S) = {2, r2n′(2α), r(n′−1)/2(2

α)} and similar to the
previous argument, we get a contradiction.

(ii) If p 6= 2, then by Table 6 and since n′ ≥ 25, we see that

2 < n′
2 = (q + 1)2

and ρ(2, S) = {2, r2n′−2(q), rn′(q)}. Similar to Case 1, we are going to get a
contradiction by considering t = e(p, 4) in different cases. We know that t ≥ 1 and
t 6= 2, 4, 6, 10 (for example if t = 2, then p = 5 and 4 does not divide 5α + 1) and
ρ(2, S) = ρ(2, G) = {2, rn(4), r2n(4)}.

a. If t = 3, then p = 7 and since 2 < n′
2 = (q+1)2, we have 4 divides 7α+1 and n′

and hence, α is odd. Thus by Table 4, t(7, S) = 3 and ρ(7, S)−{7} = ρ(2, S)−{2},
which shows that ρ(7, S) = {7, rn(4), r2n(4)}. Now applying Lemma (2.7) shows
that {7, r2n(4), rn(4), r2(n−1)(4), r2(n−2)(4)} ⊆ ρ(7, G), because e(7, 4) = 3. Thus
Lemma (2.1)(2) forces 3 = t(7, S) ≥ t(7, G)−1 ≥ 5−1 = 4, which is a contradiction.
Also, by the same procedure and those of used in Case 1(ii), we conclude that
t /∈ {1, 5, 7, 14}.

b. If t ≥ 8 and t 6= 14, then by Table 4, t(p, S) = 3 and similar to Subcase
(ii)(a) of Case 2, we get a contradiction. Hence, by (i) and (ii), we have shown that
S can not be a simple group of type 2An′−1(q).

Case 3. If S ∼= Cn′(q), then t(S) ≥ 13 and t(2, S) ≥ 3, so by Tables 4,6 and 8,
we have the following:

1. n′ is odd and n′ ≥ 17,
2. p = 2 and ρ(2, S) = {2, rn′(2α), r2n′(2α)}.
Since ρ(2, Cn(4)) ⊆ ρ(2, S), {r2n′(2α), rn′(2α)} = {rn(4), r2n(4)}.
If rn(4) = r2n′(2α) and r2n(4) = rn′(2α), then n = 0, which is impossible.

Therefore, rn(4) = rn′(2α), which implies that n′α = 2n.
On the contrary, suppose that α 6= 2. Let

ρ = {r2(n−1)(4), r2(n−2)(4), r2(n−4)(4)}.
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By Lemma (2.7), ρ ⊆ ρ(Cn(4)). We claim that ρ ∩ π(S) = ∅:

We know that |S| = 2αn
′2 ∏n′

i=1(2
2αi − 1). If r2(n−1)(4) ∈ π(S), then there

exists an integer 0 ≤ m < n′ such that r2(n−1)(4) | 22(n
′−m)α − 1. We can see

that e(r2(n−1)(4), 2) = 4(n − 1). Thus 4(n − 1) | 2(n′ − m)α. But n′α = 2n. So
4(n− 1) | 4n− 2mα and hence

2(n− 1) | 2n−mα = 2(n− 1)− (mα− 2) =⇒ 2(n− 1) | mα− 2.

But m < n′ and n′α = 2n, so we obtain that mα = 2. Since 2n = n′α and n
and n′ are odd, we deduce that α is even, so “α 6= 2” forces α = 0, which is a
contradiction. Therefore r2(n−1)(4) /∈ π(S). Also, by the same argument, we can
see that r2(n−2)(4), r2(n−4)(4) /∈ π(S). Thus |ρ| = 3 and ρ ∩ π(S) = ∅, which is
a contradiction with Lemma (2.1)(2). This contradiction shows that α = 2 and
hence, n = n′ which forces S ∼= Cn(4). So theorem follows. ✷

Corollary 3.1. Let n ≥ 17 be an odd number. Then the simple group Cn(4) is
quasirecognizable by its spectrum.

Proof. Let G be a finite group such that ω(G) = ω(Cn(4)). Then it is easy to see
that Γ(G) = Γ(Cn(4)), so corollary follows from the main theorem. ✷
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