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Subordination and superordination results of p−valent analytic

functions involving a linear operator

T. M. Seoudy

abstract: In this paper we derive some subordination and superordination results
for certain p−valent analytic functions in the open unit disc, which are acted upon
by a class of a linear operator. Some of our results improve and generalize previously
known results.
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1. Introduction

Let H(U) denotes the class of analytic functions in the open unit disc U =
{z ∈ C : |z| < 1} and let H [a, p] denotes the subclass of the functions f ∈ H(U) of
the form:

f(z) = a+ apz
p + ap+1z

p+1 + ...(a ∈ C; p ∈ N = {1, 2, ..}).

Also, let A(p) be the subclass of the functions f ∈ H(U) of the form:

f(z) = zp +

∞∑

k=p+1

akz
k (p ∈ N), (1.1)

and set A ≡ A(1). For functions f(z) ∈ A(p), given by (1.1), and g(z) given by

g(z) = zp +

∞∑

k=p+1

bkz
k (p ∈ N), (1.2)

the Hadamard product (or convolution) of f(z) and g(z) is defined by

(f ∗ g)(z) = zp +
∞∑

k=p+1

akbkz
k = (g ∗ f)(z). (1.3)
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For f, g ∈ H(U), we say that the function f is subordinate to g, if there exists
a Schwarz function w, i.e, w ∈ H(U) with w(0) = 0 and |w(z)| < 1, z ∈ U,
such that f(z) = g(w(z)) for all z ∈ U. This subordination is usually denoted
by f(z) ≺ g(z). It is well-known that, if the function g is univalent in U , then
f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(U) ⊂ g(U) (see [6] and [11]).

Supposing that h and k are two analytic functions in U , let

φ(r, s, t; z) : C3 × U → C.

If h and ϕ(h(z), zh
′

(z), z2h
′′

(z); z) are univalent functions in U and if h satisfies
the second-order superordination

k(z) ≺ ϕ(h(z), zh
′

(z), z2h
′′

(z); z), (1.4)

then h is called to be a solution of the differential superordination (1.4). A function
q ∈ H(U) is called a subordinant of (1.4), if q(z) ≺ h(z) for all the functions h
satisfying (1.4). A univalent subordinant q̃ that satisfies q(z) ≺ q̃(z) for all of the
subordinants q of (1.4), is said to be the best subordinant.

Recently, Miller and Mocanu [12] obtained sufficient conditions on the functions
k, q and ϕ for which the following implication holds:

k(z) ≺ ϕ(h(z), zh
′

(z), z2h
′′

(z); z) ⇒ q(z) ≺ h(z).

Using these results, Bulboaca [4] considered certain classes of first-order dif-
ferential superordinations, as well as superordination-preserving integral operators
[5]. Ali et al. [1], using the results from [4], obtained sufficient conditions for
certain normalized analytic functions to satisfy

q1(z) ≺
zf

′

(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent normalized functions in U .
For complex parameters α1, ..., αq and β1, ..., βs (βj /∈ Z

−
0 = {0,−1,−2, ...} ;j =

1, 2, ..., s), we now define the generalized hypergeometric function qFs(α1,..., αq;β1,
..., βs; z) by (see, for example, [18, p.19])

qFs(α1, ..., αq;β1, ..., βs; z) =

∞∑

k=0

(α1)k...(αq)k
(β1)k...(βs)k

.
zk

k!
(1.5)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function Γ,
by

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0}),
θ(θ + 1)....(θ + ν − 1) (ν ∈ N; θ ∈ C).

(1.6)
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Let

h(α1, ..., αq;β1, ..., βs; z) = zpqFs(α1, ..., αq;β1, ..., βs; z)

= zp +

∞∑

k=p+1

Γp,q,s (α1) z
k,

where

Γp,q,s (α1) =
(α1)k−p...(αq)k−p

(β1)k−p...(βs)k−p(1)k−p

, (1.7)

and using the Hadamard product, El-Ashwah and Aouf [8] defined the following
operator

Im,ℓ
p,λ (α1, ..., αq;β1, ..., βs) : A(p) → A(p)

by

I0,ℓp,λ(α1, ..., αq;β1, ..., βs)f(z) = f(z) ∗ h(α1, ..., αq;β1, ..., βs; z);

I1,ℓp,λ(α1, ..., αq;β1, ..., βs)f(z) = (1− λ)(f(z) ∗ h(α1, ..., αq;β1, ..., βs; z))

+
λ

(p+ ℓ)zℓ−1
(zℓf(z) ∗ h(α1, ..., αq;β1, ..., βs; z))

′

;

and

Im,ℓ
p,λ (α1, ..., αq;β1, ..., βs)f(z) = I1,ℓp,q,s,λ(I

m−1,ℓ
p,q,s,λ(α1, ..., αq;β1, ..., βs)f(z)). (1.8)

If f ∈ A(p), then from (1.1) and (1.8), we can easily see that

Im,ℓ
p,λ (α1, ..., αq;β1, ..., βs)f(z) = zp +

∞∑

k=p+1

[
p+ ℓ+ λ(k − p)

p+ ℓ

]m
Γp,q,s (α1) akz

k.

(1.9)
(p ∈ N; m ∈ N0 = N ∪ {0}; ℓ ≥ 0;λ ≥ 0; z ∈ U)

It can be easily verified from the definition (1.9) that:

z(Im,ℓ
p,q,s,λ(α1)f(z))

′

= α1I
m,ℓ
p,q,s,λ(α1 + 1)f(z)− (α1 − p)Im,ℓ

p,q,s,λ(α1)f(z), (1.10)

where
Im,ℓ
p,q,s,λ(α1)f(z) = Im,ℓ

p,λ (α1, ..., αq;β1, ..., βs)f(z).

It should be remarked that the linear operator Im,ℓ
p,q,s,λ(α1) is a generalization of

many other linear operators considered earlier. In particular, we have

I0,ℓp,q,s,λ(α1)f(z) = Hp,q,s(α1)f(z),

where the linear operator Hp,q,s(α1) was investigated by Dziok and Srivastava [9]
(see also [13], [10] and [2]), and also we have

I0,ℓp,2,1,λ(a, 1; c)f(z) = Lp(a, c)f(z)(a ∈ R; c ∈ R\Z−
0 ),

where the linear operator Lp(a, c) was studied by Saitoh [16] which yields the
operator L(a, c)f(z) introduced by Carlson and Shaffer [7] for p = 1.



226 T. M. Seoudy

2. Preliminaries

In order to prove our subordination and superordination results, we make use
of the following known definition and results.

Definition 2.1. [12] Denote by Q the set of all functions f(z) that are analytic
and injective on U\E(f), where

E(f) =

{
ζ : ζ ∈ ∂ and lim

z→ζ
f(z) = ∞

}
(2.1)

and are such that f
′

(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Lemma 2.2. [11] Let the function q(z) be univalent in the unit disc U and let θ
and ϕ be analytic in a domain D containing q(U) with ϕ(w) 6= 0 when w ∈ q(U).
Set Q(z) = zq

′

(z)ϕ(q(z)) and h(z) = θ(q(z)) +Q(z). Suppose that

(i) Q(z) is starlike univalent in U ,

(ii) ℜ

(
zh

′

(z)

Q(z)

)
> 0 for z ∈ U.

If p is analytic with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp
′

(z)ϕ(p(z)) ≺ θ(q(z)) + zq
′

(z)ϕ(q(z)), (2.2)

then p(z) ≺ q(z) and q(z) is the best dominant.

Lemma 2.3. [6] Let q(z) be convex univalent in the unit disc U and let θ and ϕ
be analytic in a domain D containing q(U). Suppose that

(i) ℜ

{
θ

′

(q(z))

ϕ(q(z))

}
> 0 for z ∈ U ;

(ii) zq
′

(z)ϕ(q(z)) is starlike univalent in U .
If p(z) ∈ H [q(0), 1]∩Q, with p(U) ⊆ D, and θ(p(z))+ zp

′

(z)ϕ(p(z)) is univalent in
U , and

θ(q(z)) + zq
′

(z)ϕ(q(z)) ≺ θ(p(z)) + zp
′

(z)ϕ(p(z)), (2.4)

then q(z) ≺ p(z) and q(z) is the best subordinant.

The following lemma gives us a necessary and sufficient condition for the uni-
valence of a special function which will be used in some particular case.

Lemma 2.4. [15] The function q(z) = (1 − z)−2ab (a, b ∈ C∗) is univalent in the
unit disc U if and only if |2ab − 1 | ≤ 1 or |2ab + 1 | ≤ 1.

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that p ∈ N,m ∈
N0, ℓ ≥ 0, λ ≥ 0 and the power understood as principal values.
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Theorem 3.1. Let q(z) be univalent in U such that q(0) = 1, q(z) 6= 0 and zq
′

(z)
q(z)

is starlike in U. Let f ∈ A(p) and suppose that f and q satisfy the next conditions:

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
6= 0 (µ ∈ C

∗; z ∈ U), (3.1)

and

ℜ

{
1 +

ζ

γ
q (z) +

2δ

γ
[q (z)]2 −

zq
′

(z)

q(z)
+

zq
′′

(z)

q′(z)

}
> 0 (ζ, δ ∈ C; γ ∈ C

∗; z ∈ U).

(3.2)
If

Ψ(z) ≺ χ+ ζq (z) + δ [q (z)]
2
+ γ

zq
′

(z)

q(z)
, (3.3)

where

Ψ(z) = χ+ ζ

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
+ δ

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]2µ

+ γµα1

[
Im,ℓ
p,q,s,λ(α1 + 1)f(z)

Im,ℓ
p,q,s,λ(α1)f(z)

− 1

]
, (3.4)

then [
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
≺ q (z) ,

and q is the best dominant of (3.3).

Proof: Let

h(z) =

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
(z ∈ U). (3.5)

According to (3.1) the function h(z) is analytic in U , and differentiating (3.5)
logarithmically with respect to z, we obtain

zh
′

(z)

h(z)
= µ

[
z(Im,ℓ

p,q,s,λ(α1)f(z))
′

Im,ℓ
p,q,s,λ(α1)f(z)

− p

]
.

By using the identity (1.10), we obtain

zh
′

(z)

h(z)
= µα1

[
Im,ℓ
p,q,s,λ(α1 + 1)f(z)

Im,ℓ
p,q,s,λ(α1)f(z)

− 1

]
.
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In order to prove our result we will use Lemma 2.2. In this lemma consider

θ(w) = χ+ ζw + δw2 and ϕ(w) =
γ

w
,

then θ is analytic in C and ϕ(w) 6= 0 is analytic in C∗.Also, if we let

Q(z) = zq
′

(z)ϕ(q(z)) = γ
zq

′

(z)

q(z)
,

and

g(z) = θ(q(z)) +Q(z) = χ+ ζq (z) + δ [q (z)]
2
+ γ

zq
′

(z)

q(z)
.

We see that Q(z) is starlike function in U . From (3.2), we also have

ℜ

{
zg

′

(z)

Q(z)

}
= ℜ

{
1 +

ζ

γ
q (z) +

2δ

γ
[q (z)]

2
−

zq
′

(z)

q(z)
+

zq
′′

(z)

q′(z)

}
> 0 (z ∈ U),

and then, by using Lemma 2.2 we deduce that the subordination (3.3) implies
h(z) ≺ q(z), and the function q is the best dominant of (3.3).

Putting q = 2, s = p = 1,m = 0, α1 = a + 1 (a ∈ C) , α2 = 1 and β1 = c
(c ∈ C\Z−

0 ) in Theorem 3.1, we obtain the following result which improves the
corresponding work of Shammugam et al. [17, Theorem 3]. ✷

Corollary 3.2. Let q(z) be univalent in U such that q(0) = 1, q(z) 6= 0 and zq
′

(z)
q(z)

is starlike in U. Let f ∈ A such that

[
L (a+ 1, c) f(z)

z

]µ
6= 0 (µ ∈ C

∗; z ∈ U), (3.6)

and suppose that q satisfies (3.2).If

Λ (z) ≺ χ+ ζq (z) + δ [q (z)]
2
+ γ

zq
′

(z)

q(z)
, (3.7)

where

Λ (z) = χ+ ζ

[
L (a+ 1, c) f(z)

z

]µ
+ δ

[
L (a+ 1, c) f(z)

z

]2µ

+ γµ (a+ 1)

[
L (a+ 2, c) f(z)

L (a+ 1, c) f(z)
− 1

]
, (3.8)

then [
L (a+ 1, c) f(z)

z

]µ
≺ q (z) ,

and q is the best dominant of (3.7).
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Putting q (z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Corollary 3.2, we obtain the fol-
lowing result which improves the corresponding work of Shammugam et al. [17,
Corollary 1].

Corollary 3.3. Assume that

ℜ

{
1− ABz2

(1+Az) (1+Bz)
+

ζ

γ

[
1+Az

1+Bz

]
+
2δ

γ

[
1+Az

1+Bz

]2}
>0 (ζ, δ ∈ C; γ ∈ C

∗; z ∈ U)

holds. Let f ∈ A such that (3.6) holds. If

Λ (z) ≺ χ+ ζ
1 +Az

1 +Bz
+ δ

[
1 +Az

1 +Bz

]2
+

γ (A−B) z

(1 +Az) (1 +Bz)
, (3.9)

where Λ (z) is given by (3.8), then

[
L (a+ 1, c) f(z)

z

]µ
≺

1 +Az

1 +Bz
,

and 1+Az
1+Bz

is the best dominant of (3.9).

Putting q (z) =
(

1+z
1−z

)ϑ
(0 < ϑ ≤ 1) in Corollary 3.2, we obtain the following

result which improves the corresponding work of Shammugam et al. [17, Corollary
2].

Corollary 3.4. Assume that

ℜ

{
1− 3z2

1− z2
+

ζ

γ

[
1 + z

1− z

]ϑ
+

2δ

γ

[
1 + z

1− z

]2ϑ}
> 0 (ζ, δ ∈ C; γ ∈ C

∗; z ∈ U)

holds. Let f ∈ A such that (3.6) holds. If

Λ (z) ≺ χ+ ζ

(
1 + z

1− z

)ϑ

+ δ

(
1 + z

1− z

)2ϑ

+
2γϑz

(1− z2)
(0 < ϑ ≤ 1) , (3.10)

where Λ (z) is given by (3.8), then

[
L (a+ 1, c) f(z)

z

]µ
≺

(
1 + z

1− z

)ϑ

,

and
(

1+z
1−z

)ϑ
is the best dominant of (3.10).

Putting q (z) = eµAz (|µA| < π) in Corollary 3.2, we obtain the following result
which improves the corresponding work of Shammugam et al. [17, Corollary 3].
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Corollary 3.5. Assume that

ℜ

{
1 +

ζ

γ
eµAzq (z) +

2δ

γ
e2µAz

}
> 0 (ζ, δ ∈ C; γ ∈ C

∗; z ∈ U)

holds. Let f ∈ A such that (3.6) holds. If

Λ (z) ≺ χ+ ζeµAz + δe2µAz + γAµz (|µA| < π) , (3.11)

where Λ (z) is given by (3.8), then
[
L (a+ 1, c) f(z)

z

]µ
≺ eµAz,

and eµAz is the best dominant of (3.11).

Putting q = s + 1, αi = 1(i = 1, .., s + 1), βj = 1(j = 1, .., s),m = ζ = δ =

0, χ = p = 1, γ = 1
ab
(a, b ∈ C∗), µ = a, and q(z) = (1 − z)−2ab in Theorem 3.1,

then combining this together with Lemma 2.4 we obtain the next result due to
Obradovic et al. [14, Theorem 1].

Corollary 3.6. [14] Let a, b ∈ C∗ such that |2ab − 1 | ≤ 1 or |2ab + 1 | ≤ 1. Let

f ∈ A and suppose that f(z)
z

6= 0 for all z ∈ U. If

1 +
1

b

(
zf ′(z)

f(z)
− 1

)
≺

1 + z

1− z
,

then (
f(z)

z

)a

≺ (1− z)−2ab (3.12)

and (1 − z)−2ab is the best dominant of (3.12).

Remark 3.7. For a = 1, Corollary 3.6 reduces to the recent result of Srivastava
and Lashin [19].

Putting q = s+1, αi = 1(i = 1, .., s+1), βj = 1(j = 1, .., s),m = ζ = δ = 0, χ =

p = γ = 1, and q(z) = (1 + Bz)
µ(A−B)

B in Theorem 3.10, and using Lemma 2.3 we
obtain the next result.

Corollary 3.8. Let −1 ≤ A < B ≤ 1 with B 6= 0, and suppose that
∣∣∣µ(A−B)

B
− 1
∣∣∣ ≤

1 or
∣∣∣µ(A−B)

B
+ 1
∣∣∣ ≤ 1 . Let f ∈ A such that f(z)

z
6= 0 for all z ∈ U , and let

µ ∈ C∗. If

1 + µ

(
zf ′(z)

f(z)
− 1

)
≺

1 + [B + µ(A−B)]z

1 +Bz
,

then (
f(z)

z

)µ

≺ (1 +Bz)
µ(A−B)

B , (3.13)

and (1 +Bz)
µ(A−B)

B is the best dominant of (3.13).
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Putting q = s + 1, αi = 1(i = 1, .., s + 1), βj = 1(j = 1, .., s),m = ζ = δ =

0, χ = p = 1, γ = eiτ

ab cos τ (a, b ∈ C∗; |τ | < π
2 ), µ = a, and q(z) = (1 − z)−2ab cos τe−iτ

in Theorem 3.1, we obtain the following result due to Aouf et al. [3, Theorem 1].

Corollary 3.9. [3] Let a, b ∈ C∗, |τ | < π
2 and let

∣∣2ab cos τe−iτ−1
∣∣ ≤ 1 or∣∣2ab cos τe−iτ+1

∣∣ ≤ 1. Let f ∈ A and suppose that f(z)
z

6= 0 for all z ∈ U. If

1 +
eiτ

b cos τ

(
zf ′(z)

f(z)
− 1

)
≺

1 + z

1− z

then (
f(z)

z

)a

≺ (1 − z)−2ab cos τe−iτ

(3.14)

and (1 − z)−2ab cos τe−iτ

is the best dominant of (3.14).

Theorem 3.10. Let q be convex in U such that q (0) = 1 and zq
′

(z)
q(z) is starlike in

U. Further assume that

ℜ

{
(ζ + 2δq (z))

q (z) q
′

(z)

γ

}
> 0 (ζ, δ ∈ C; γ ∈ C

∗) . (3.15)

Let f ∈ A(p) such that

0 6=

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
∈ H [q(0), 1] ∩Q. (3.16)

If Ψ(z) given by (3.4) is univalent in U and satisfies the following superordination
condition

χ+ ζq (z) + δ [q (z)]
2
+ γ

zq
′

(z)

q(z)
≺ Ψ(z) , (3.17)

then

q(z) ≺

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
,

and q is the best subordinant of (3.17).

Putting q = 2, s = p = 1,m = 0, α1 = a + 1 (a ∈ C) , α2 = 1 and β1 = c
(c ∈ C\Z−

0 ) in Theorem 3.10, we obtain the following result which improves the
corresponding work of Shammugam et al. [17, Theorem 4].

Corollary 3.11. Let q be convex in U such that q (0) = 1 and zq
′

(z)
q(z) is starlike in

U. Further assume that

ℜ

{
(ζ + 2δq (z))

q (z) q
′

(z)

γ

}
> 0 (ζ, δ ∈ C; γ ∈ C

∗) . (3.18)
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Let f ∈ A such that

0 6=

[
L (a+ 1, c) f(z)

z

]µ
∈ H [q(0), 1] ∩Q. (3.19)

If Λ (z) given by (3.8) is univalent in U and satisfies the following superordination
condition

χ+ ζq (z) + δ [q (z)]
2
+ γ

zq
′

(z)

q(z)
≺ Λ (z) , (3.20)

then

q(z) ≺

[
L (a+ 1, c) f(z)

z

]µ
,

and q is the best subordinant of (3.20).

Combining Theorems 3.1 and 3.10, we obtain the following two sandwich results:

Theorem 3.12. Let qi be two convex functions in U such that qi(0) = 1 and
zq

′

i(z)
qi(z)

(i = 1, 2) is starlike in U. Suppose that q1(z) satisfies (3.18) and q2(z) satisfies

(3.2) . Let f ∈ A(p) and suppose that

[
I
m,ℓ
p,q,s,λ

(α1)f(z)

zp

]µ
∈ H [q(0), 1] ∩ Q. If Ψ(z)

given by (3.4) is univalent in U , and

χ+ζq1 (z)+δ [q1 (z)]
2
+γ

zq
′

1(z)

q1(z)
≺ Ψ(z) ≺ χ+ζq2 (z)+δ [q2 (z)]

2
+γ

zq
′

2(z)

q2(z)
, (3.21)

then

q1 (z) ≺

[
Im,ℓ
p,q,s,λ(α1)f(z)

zp

]µ
≺ q2 (z) ,

and q1 and q2 are, respectively, the best subordinant and the best dominant of (3.21).

Putting q = 2, s = p = 1,m = 0, α1 = a + 1 (a ∈ C) , α2 = 1 and β1 = c
(c ∈ C\Z−

0 ) in Theorem 3.12, we obtain the following result which improves the
corresponding work of Shammugam et al. [17, Theorem 5].

Corollary 3.13. Let qi be two convex functions in U such that qi(0) = 1 and
zq

′

i(z)
qi(z)

(i = 1, 2) is starlike in U. Suppose that q1(z) satisfies (3.18) and q2(z) satisfies

(3.2) . Let f ∈ A and suppose that
[
L(a+1,c)f(z)

z

]µ
∈ H [q(0), 1] ∩Q. If Λ (z) given

by (3.8) is univalent in U , and

χ+ζq1 (z)+δ [q1 (z)]
2
+γ

zq
′

1(z)

q1(z)
≺ Λ (z) ≺ χ+ζq2 (z)+δ [q2 (z)]

2
+γ

zq
′

2(z)

q2(z)
, (3.22)

then

q1 (z) ≺

[
L (a+ 1, c) f(z)

z

]µ
≺ q2 (z) ,

and q1 and q2 are, respectively, the best subordinant and the best dominant of (3.22).
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