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1 Introduction

A regular curve in Minkowski space-time, whose position vector is com-
posed by Frenet frame vectors on another regular curve, is called a Smaran-
dache curve [11]. Special Smarandache curves have been studied by some
authors . Ahmad T.Ali studied some special Smarandache curves in the Eu-
clidean space.He studied Frenet-Serret invariants of a special case [1]. M.
Cetin , Y. Tunger and K. Karacan investigated special smarandache curves
according to Bishop frame in Euclidean 3-Space and they gave some differ-
ential goematric properties of Smarandache curves [5]. Senyurt and Caligkan
investigated special Smarandache curves in terms of Sabban frame of spher-
ical indicatrix curves and they gave some characterization of Smarandache
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curves, [4]. O. Bektag and S. Yiice studied some special smarandache curves
according to Darboux Frame in E? [2]. M. Turgut and S. Yilmaz studied a
special case of such curves and called it smarandache T'By curves in the space
E} [11]. N. Bayrak , O. Bektag and S. Yiice studied some special smaran-
dache curves in F} [3]. K. Taskoprii , M. Tosun studied special Smarandache
curves according to Sabban frame on S? [10].

In this paper, the special smarandache curves such as CTg, To(C A
Tc), CTo(C NTe) created by Sabban frame , {C,T¢, C AT¢} , that belongs
to fixed pole of a a curve are defined. Besides, we have found some results.

2 Preliminaries
The Euclidean 3-space E® be inner product given by
() =ai+a5+23

where (1, xs,13) € E3. Let o : I — E? be a unit speed curve denote by
{T, N, B} the moving Frenet frame . For an arbitrary curve a € E?, with
first and second curvature, x and 7 respectively, the Frenet formulae is given
by [6]

T = kN
N =—-kT+71B (2.1)
B’ = —7N.

Accordingly, the spherical indicatrix curves of Frenet vectors are (77), (N)
and (B) respectively. These equations of curves are given by [7]

ar(s) =T(s)
ay(s) = N(s) (2.2)
ap(s) = B(s

Let v : I — S? be a unit speed spherical curve. We denote s as the arc-length
parameter of v. Let us denote by

Y
£(s) = /(s) (2.3)



We call t(s) a unit tangent vector of . {v,t,d} frame is called the Sabban
frame of v on S? . Then we have the following spherical Frenet formulae of

Yol
,:t

t'=—y+Kyd (2.4)
d = —rgt

where is called the geodesic curvature of k, on S? and

kg = (t',d) [8] (2.5)

3 Smarandache Curves According to Sabban
Frame of Fixed Pole Curve

In this section, we investigate Smarandache curves according to the Sabban
frame of fixed pole curve (C). Let a(s) = C(s) be a unit speed regular
spherical curves on S%2.We denote s¢ as the arc-lenght parameter of fixed
pole curve (C)

ac(s) = C(s) (3.1)
Differentiating (3.1) , we have
dOéC dSC . ,( )
dsc ds s
and
dsc
Tcd— = ¢’ cos T — ¢ sin pB (3.2)

From the equation (3.2)
Te = cos T —sinpB

and
CANTc=N

From the equation (2.3)

C(s) = C(s)
To(s) = cos T —sinpB

(CATe)(s) = N(s)

is called the Sabban frame of fixed pole curve (C) .From the equation (2.5)

\_/
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Then from the equation (2.4) we have the following spherical Frenet formulae

of (C):

lﬁg:<Té,C/\Tc>:>:‘€g:

' =Te
To' = —C+ Wl AT (3.3)
(CATe) = -ZlT

3.1 (CTc-Smarandache Curves

Definition 3.1 Let S? be a unit sphere in E* and suppose that the unit
speed regular curve ac(s) = C(s) lying fully on S?. In this case, CTg -
Smarandache curve can be defined by

= L
U(s") = \/§(C+Tc)- (3-4)

Now we can compute Sabban invariants of C'T- - Smarandache curves. Dif-
ferentiating (3.4) , we have

ds* 1 w
de_z = E((cosgp —sinp)T + %N — (cos ¢ +sin)B),
where
2
ds* B 2+ (”%”) (3.5)
ds 2 ' '
Thus, the tangent vector of curve 1 is to be
1 » Wil |
Ty = ———=((cos o — sin)T + =——N — (cos p + sinp)B). (3.6)
Iwiy2 2
2+ ( o’ )
Differentiating (3.6), we get
ds* 1
T{Z’di = ———(MT + XN + \3B) (3.7)
2+ (L)’
S0/



where

w|2

A1 = —2¢/(sinp + cos ) — /<;(2H Iy (”WH) ) — H@,

(sing + cos p) —

/ .
”@—,”(Hwﬂ,”) (cos p — sin )

A= (2+ (”W”) ) (K(cos ¢ — sin ) + 7(cos ¢ + sin p)) + 2(”W”)

2
As = 7L (2 4+ (1)) — 2/ (cos p — sin ) — 17 (cos o — sin ) +

W/ .
> (Hw—,”) (cosp +sin ).

Substituting the equation (3.5) into equation (3.7) , we reach

2
T, = \”CV ST + AoN + A3B). (3.8)
(2+ (L20y%)°
Considering the equations (3.4) and (3.6) , it easily seen that
1 W
(CATe)y = ( | /“ (cosp —sing)T +  (3.9)
4+ 2(1% 1y? v
+2N + (H H(cosgo—l—smgp))B)

From the equation (3.8) and (3.9) , the geodesic curvature of ¥(s*) is
kg = (T}, (C NTc)y)

= 1 %( Ll (cosp —sin)A\; + 2 + |

()T

3.2 T¢(C NTp)-Smarandache Curves

Definition 3.2 Let S? be a unit sphere in E® and suppose that the unit
speed reqular curve ac(s) = C(s) lying fully on S%. In this case, Tc(C NT¢)
- Smarandache curve can be defined by

IWH(

cos ¢ + sin @) A3).

W(s") = —(Te + C A Te). (3.10)

&%4



Now we can compute Sabban invariants of T¢(C'AT¢) - Smarandache curves.
Differentiating (3.10), we have

ds* 1 ||W||

HWH
Ty— = —((—sinp — —— cos
Vs \/5(( o= o) T

w
Wiy, Wl
¢’

sin ¢ — cos @) B)

where

ds 1+ 2(15)°

= 3.11
ds 2 ( )
In that case, the tangent vector of curve v is as follows
1 w
T, = e <(— sin p — | /H cos )T + (3.12)
Wi 2
1+2(°3)
w w
N HN+(H I i — COS@B>
¢ ¢
Differentiating (3.12), it is obtained that
ds* 1
45 (AT + AN + A3B) (3.13)
2

Y
T2t
where

A =~/ cosip +[|[W(sing + 285 cos o — & + 2151 sim p — 261545 -

W\’ w
(HW—,H) (cosp — pydl ”smgp)

Ao = K(—sinp — HWH cos p + Q(HW”) (—sinp — ”W” cos p))—

7'<H<p,” (sing — cos ) — 2(”%”)3(Sdng0 —cos ) + (L1)
A3 = ¢'sing + 1 H(T+<p cosgo—|—27'(HW”) —1—2(H H) @' cosp + 2||W|| sing) +

(Hwﬂ) (singp + 2” I cos ©).

Substituting the equation (3.11) into equation (3.13) , we get

2
T, = V2 5(MT + XN + A\3B) (3.14)

(1+2(0)
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Using the equations (3.10) and (3.12) , we easily find

1 w
(CATe)y = - <(2 | /H sinp —cosp)T'+  (3.15)
T
+N + (2 HW;” Cos ¢ + sin go)B)

So, the geodesic curvature of 1(s*) is as follows

kg” = (T}, (C A Tc)y)

- L (21 sin g — cos o)A + Ao + (215 cos o + sin ) As).

(e2(121)) ’
3.3 CT¢(C NTe)-Smarandache Curves

Definition 3.3 Let S? be a unit sphere in E3 and suppose that the unit speed
reqular curve ac(s) = C(s) lying fully on S?. In this case, CTo(C A Tg) -
Smarandache curve can be defined by

[y

1
V3

Let us calculate Sabban invariants of CT(C A T¢) - Smarandache curves.
Differentiating (3.16), we have

P(s") (C+Te+CNTg). (3.16)

ds* 1 w
T, dz — %((cosgo —sinp — Hap’” cos )T +
14 w
+u]\7 + (—singp —cosp + | /” sin go)B)
¥ ¥
where
2
dS*_\/2(1—”soﬂf”+(%”)> (3.17)
ds 3 . '
Thus, the tangent vector of curve v is
1 , W
T, = o e <(cos<p —siny — Hgo’H cos )T (3.18)
\/2<1 -5+ (5) )
w w
—i—” /HN + (—sinp — cosp + ”90/” singp)B)



Differentiating (3.18), it is obtained that

ds* 1
145 _ (MT 4 AN + A3B) (3.19)

Yds 9 a0 - Wy (L))

(NI

where
A= (1 HW” + (”WH) )( —2¢/(sin ¢ + cos ) + 2||W|| sin p — 2/1”WH) -

o (cosp —sing) + Z(HWH) (—cosp + ”};V—,”singp)

Ay = (1 - H%” + (%)2) (2m(cosg0 —sinp — HW” coS cp)—l—

o7 (Sm@JrCOSSO H || COS¢>)+2(\|WH) (1—”—m)+(M)2

© ©
As=(1- HW” + (”WH) )(27”%” + 2¢/(sin g — cos @) + 2[|W || cos p) +

IIWII(

o (sin ¢+ cos ©).

(Hwﬂ,”) sin ¢ + 2( ”W”) (sinp + ”W” cos p) —
Substituting the equation (3.17) into equation (3.19) , we reach

3
T} = V3 (MT + AN + A3 B). (3.20)

Wl w2
4(1 -+ (5 )
Using the equations (3.16) and (3.18) , we have

1
(CATc)y = Wl (w2 (<2|me singp— 121
\/6\/1 - 7 + ( 7y ) ¥y

Wi

W
—cosp)T + (1 — %)N + (sinp + 27 Cos ¢

Wil .
+—H90/H smgp)B)

osp (3.21)

From the equation (3.20) and (3.21), the geodesic curvature of 1(s*) is
1 (2 || ||

421 — WL (W 2)?
|| I

cosp — cos ) + Ap(1 — =—=) +
@'

w W
Ag(sin¢+2u cosp + Wil sin ¢)].
¥ ¢

kY = (T, (CATo)y) = sin ¢ —

IIWII




3.4 Example

Let us consider the unit speed spherical curve:

9 1 9 1 6
a(s) = {ﬁ sin 16s — T sin 36s, ~ 50 °° 165 + 77 08 36s, 6E sin 10s}.

It is rendered in Figure 1.

Figure 1: Fized Pole curve (T)

In terms of definitions, we obtain Smarandache curves according to Sabban
frame on S?, see Figures 2 - 4.

Figure 2: C'T - Smarandache Curve



Figure 3: T:(C ANT¢) - Smarandache Curve

Figure 4: CTe(C A T¢) - Smarandache Curve
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