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Solving Two Point Boundary Value Problems for Ordinary Differential
Equations Using Exponential Finite Difference Method

P.K.Pandey

abstract: In this article, a new exponential finite difference scheme for the
numerical solution of two point boundary value problems with Dirichlet’s boundary
conditions is proposed. The scheme is based on an exponential approximation of the
discretized derivative. The local truncation error and the convergence of the scheme
under appropriate condition discussed. The theoretical and numerical results show
that this new scheme is efficient and at least fourth order accurate.
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1. Introduction

In this article, we implement an exponential finite difference method for solving
the two point non-linear boundary value problem of the form

y′′(x) = f(x, y), a < x < b (1.1)

subject to boundary conditions y(a) = α and y(b) = β.
The existence and uniqueness of the solution to problem (1) is assumed. Further
we assume that problem (1) is well posed with continuous derivatives and that the
solution depends differentially on the boundary conditions. The specific assumption
on f(x, y) to ensure existence and uniqueness will not be considered [1,2,3].

In this article, we develop a new algorithm capable of solving equation of form
(1). To best of our knowledge, no similar method for the solution of problem (1)
has been discussed in literature so far. In this paper we discuss exponential finite
difference, a new method of at least order four based on local assumption. Its
development and analysis are based on Taylor and exponential series expansion.
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In the next section we discuss the derivation of the exponential finite differ-
ence method. Local truncation error and convergence of the method are discussed
in Section 3. The application of the developed method to the problem (1.1) has
been presented and illustrative numerical results have been produced to show the
efficiency of the new method in Section 4. Discussion and conclusion on the per-
formance of the method are presented in section 5.

2. Derivation of the method

We defineN +1,the finite numbers of nodal points of the interval [a,b], in which
the solution of the problem (1) is desired as xj = a + jh, j = 0, 1, 2, ........, N
using uniform step length where h = b−a

n
, x0 = a and xN = b. Suppose we have to

determine a number yj, which is the numerical approximation of the theoretical so-
lution y(x) of the problem (1) at the nodal point xj , j = 1, 2, ....., N−1 and other
similar notations like fj defined as f(xj , yj). Assuming the local assumption that
no previous truncation error has been made in computation of solution at mesh
point xj , i.e. yj±1 = y(xj ± h). Following the ideas in [4,5], we propose an ap-
proximation to the theoretical solution y(xj) of the problem (1)by the exponential
finite difference scheme as,

a0yj+1 + a1yj + a2yj−1 = b0h
2fj exp(φ(xj + h)), (2.1)

where a0, a1, a2 and b0 are unknown constants and φ(xj + h), is an unknown suffi-
ciently differentiable function of x. Let us define a function Fj(h, y) and associate
it with (2) as,

Fj(h, y) ≡ a0yj+1 + a1yj + a2yj−1 − b0h
2fj exp(φ(xj + h)) = 0, (2.2)

Assume that φ(xj + h) can be expand in Taylor series about point x = xj . Hence
we write φ(xj + h) in Taylor series we have,

φ(xj + h) = φ(xj) + hφ′(xj) +
h2

2
φ′′(xj) + O(h3), (2.3)

The application of (4) in the expansion of exp(φ(xj + h)) will provide an O(h3)
approximation of the form as,

exp(φ(xj + h)) = 1 + φ(xj) +
1

2
φ2(xj) + h(1 + φ(xj))φ

′(xj)

+
h2

2
((φ′(xj))

2 + (1 + φ(xj))φ
′′(xj)) +O(h3), (2.4)

Expand Fj(h, y) in Taylor series about mesh point x = xj and using (5)in it, we
have

Fj(h, y) ≡ {(a0 + a1 + a2)yj + h(a0 − a2)y
′
j +

h2

2
(a0 + a2)fj +

h3

6
(a0 − a2)f

′
j

+
h4

24
(a0 + a2)f

′′
j } − b0h

2fj{1 + φ(xj) +
1

2
φ2(xj) + (2.5)

h(1 + φ(xj))φ
′(xj) +

h2

2
((φ′(xj))

2 + (1 + φ(xj))φ
′′(xj))}
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where f ′
j = y

(3)
j and f ′′

j = y
(4)
j . On comparing the coefficients of hp, p = 0, 1, 2, 3, 4

in (6), we get the following system of nonlinear equations

a0 + a1 + a2 = 0,

a0 − a2 = 0,

a0 + a2 − 2b0(1 + φ(xj) +
1

2
φ2(xj)) = 0,

1

6
(a0 − a2)f

′
j − b0fj(1 + φ(xj))φ

′(xj) = 0,

1

12
(a0 + a2)f

′′
j − b0fj((φ(xj))

2 + (1 + φ(xj))φ
′′(xj)) = 0, (2.6)

To determine the unknown constants in (7), we have to assign arbitrary values to
some constants . To simplify the system of equationsin (7), we have considered the
following assumptions:

φ(xj) = 0,

and

φ′(xj) = 0, (2.7)

Using (8) in (7) and solved the reduced system of equations, we obtained

a1 = −2a0,

b0 = a0,

φ′′(xj) =
f ′′
j

6fj
. (2.8)

Substituting the values of φ(xj), φ
′(xj), and φ′′(xj) from (8) and (9) in (4), we

have

φ(xj + h) =
h2f ′′

j

12fj
. (2.9)

Finally substitute the values of a1, a2, b0 and φ(xj + h) from (9) and (10) in (2),
we obtain our proposed exponential finite difference method as

yj+1 − 2yj + yj−1 = h2fj exp(
h2f ′′

j

12fj
). (2.10)

For each nodal point, we will obtain the nonlinear system of equations given by
(11) or a linear system of equations if the source function is f(x). For computa-
tional purpose reported in Section 4, we have used second order finite difference
approximation in place of f ′′

j i.e.

h2f ′′
j = fj+1 − 2fj + fj−1.
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3. Local Truncation Error and Convergence

The truncation error Tj at the nodal point xj may be written as in [6,7,8,9],

Tj = yj+1 − 2yj + yj−1 − h2fj exp(
h2f ′′

j

12fj
)

= −
h6

240
{y

(6)
j +

5

6

(y(4))2

y′′j
}+O(h7) (3.1)

The exact solution y(x) of (1) satisfies the equation

y(xj+1)− 2y(xj) + y(xj−1)

= h
2
f(xj , y(xj)) exp(

f(xj+1, y(xj+1)) + f(xj−1, y(xj−1))

12f(xj , y(xj))
−

1

6
) + Tj , i ≤ j ≤ N − 1.

(3.2)

Subtracting (13) from (12) and applying the mean value theorem, we obtained

− 2(yj − y(xj)) = h2{fj exp(
fj+1 + fj−1

12fj
−

1

6
)

− f(xj , y(xj)) exp(
f(xj+1, y(xj+1)) + f(xj−1, y(xj−1))

12f(xj , y(xj))
−

1

6
)} − Tj

= h2 exp(
−1

6
(f(xj , yj)− f(xj , y(xj))) − Tj

= h2 exp(
−1

6
(yj − y(xj))

∂f(θj)

∂y
− Tj, yj < θj < y(xj).

(3.3)

Let us substitute εj = yj − y(xj) in (14) and simplify, we have

(2 + h2 exp(
−1

6
)
∂f(θj)

∂y
)εj = Tj. (3.4)

Let us write (15) in matrix form

(J+Q)E=T,

where E = (ε1, ε2, .........., εN−1)
T ,T = (T1, T2, ........TN−1)

T ,

Q = h2 exp(−1
6 )













∂f(θ1)
∂y

0
∂f(θ2)

∂y

. . .

0 ∂f(θN−1)
∂y













and J =











2 0
2
. . .

0 2











.
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We also have
∂f(θj)

∂y
> 0, j = 1, 2, ....., N − 1, so Q > 0 and J+Q > J. So we

have

0 < (J+Q)
−1

< J−1

‖E‖ ≤ ‖(J+Q)
−1

‖‖T‖ ≤ ‖J−1‖‖T‖

‖E‖ ≤
h6

480
{y

(6)
j +

5

6

(y(4))2

y′′j
} (3.5)

It follows from (16) that ‖E‖ → 0 as h → 0. Thus we conclude that method (11)
converges and the order of convergence is at least four.

4. Numerical Results

To illustrate our method and demonstrate its computationally efficiency, we
consider some model problems. In each case we took uniform step size h. In
table 1 - table 4, we have shown maximum absolute error (MAU) and l2 -norm of
the error (ERR), computed for different values of N and these are defined as,

MAU = max
1≤j≤N−1|y(xj)−yj |

ERR =
1

N − 1

√

√

√

√

N−1
∑

j=1

(y(xj)− yj)2

We have used Newton-Raphson iteration method to solve the system of nonlinear
equations and Gauss Seidel iterative method to solve linear system of equations,
both arised from equation (11). All computations were performed on a MS Window
2007 professional operating system in the GNU FORTRAN environment version 99
compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz PC .The solutions are computed
on N-1 nodes and iteration is continued until either maximum difference between
two successive iterates is less than 10(−16) or number of iteration reached 103.
Table 1- Table 4 also showed the number of iterations performed to achieve desired
accuracy for each model problem.
Problem 1. The first model problem is a nonlinear problem given by

y′′(x) =
3

2
y2(x), y(0) = 4, y(1) = 1, x ∈ [0, 1].

The analytical solution is y(x) = 4.0
(1+x)2 . The MAU and ERR for different values

of N are presented in Table 1.
Problem 2. The second model problem is linear problem

y′′(x) = −K2y(x) + (K2 − π2) sin(πx), y(0) = 0, y(1) = 0, x ∈ [0, 1].

The analytical solution is found to be y(x) = sin(πx).For K2 = 10 the MAU and
ERR for different values of N are presented in Table 2.
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Problem 3. The third model problem is highly sensitive nonlinear, well known as
the Troesch’s equation [10],which is given by

y′′(x) = λ sinh(λyλ(x)) + g(x), y(0) = 1, y(1) =
sinh(λ)

λ
1, x ∈ [0, 1].

The analytical solution is y(x) = sinh(λx)
λ

. For each value of λ = 10, 20, 30 the
MAU for different values of N are presented in Table 3.
Problem 4. The fourth and final model problem is a nonlinear problem given by

y′′(x) = y2(x) + 2π2 cos(2πx)− sin4(πx) y(0) = 0, y(1) = 0, x ∈ [0, 1].

The analytical solution is considered to be y(x) = sin2(πx). The MAU and ERR
for different values of N are presented in Table 4.

Table 1: Maximum absolute error in y(x) = 4.0
(1+x)2 for problem 1.

N
Method(11)

MAU ERR Iterations

4 .35644150(-2) .39054255(-2) 12

8 .23323059(-3) .26143758(-3) 27

16 .13647080(-4) .11079033(-4) 38

32 .12704658(-6) .13229610(-7) 2

Table 2: Maximum absolute error in y(x) = sin(πx) for problem 2.

N
Method(11)

MAU ERR Iterations

4 .27641535(-1) .10031415(0) 123

8 .12654066(-2) .44306965(-2) 259

16 .60677528(-4) .12922547(-3) 296

32 .59604645(-7) .88322334(-8) 3
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Table 3: Maximum absolute errors in y(x) = sinh(λx)
λ

for problem 3.

N

Method(11)

λ = 10 λ = 20 λ = 30

MAU Iterations MAU Iterations MAU Iterations

8 .33518672(-3) 4 ***** ***** ***** *****

16 .34719706(-4) 7 .16759336(-3) 3 .52547678(-2) 1

32 .10840595(-5) 15 .17359893(-4) 6 .78815967(-4) 4

64 .11920929(-6) 12 .54202974(-6) 14 .27474016(-5) 8

128 .29802322(-7) 5 .59604645(-7) 12 .83819032(-7) 21

Table 4: Maximum absolute error in y(x) = sin2(πx) for problem 4.

N
Method(11)

MAU ERR Iterations

4 .39065361(-1) .50859000(-1) 20

8 .25463104(-2) .37111132(-2) 54

16 .16093254(-3) .24020411(-3) 129

32 .53644180(-5) .34110020(-5) 79

64 .11992816(-6) .21216829(-7) 17

5. Conclusion

A new approach to obtain the numerical solution of second order boundary value
problems has been developed. The new scheme has advantages and disadvantages
when considered individually. For example the scheme based on exponential ap-
proximation, if the source function is f(x) then the system of equation from (11)is
linear otherwise we will obtain nonlinear system of equations, which is always dif-
ficult to be solved. On the other hand the new method has a good rate high order
of convergence which yield smaller discretization error. We can deduce the royal
Numerov method from this new method by second order expansion of exponential
function. It is an advantage of the method that we consider exponential func-
tion without any approximation in computation in contrasts to Numerov method.
This means method depends on machine epsilon and software used in computation
when solving the problem . It may be noted that method can be avoided in the case
where the source function vanishes in the computational domain of the problem.
The decision to use a certain difference scheme does not only depend on the given
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order of the method but also on its computational efficiency. The numerical results
for model problems show that the new method is computationally efficient. Also it
is observed from the results that method has high accuracy i.e. small discretization
error. In the present article finite difference method of high order has been derived
on the basis of exponential function and local assumption. It is not clear how this
local assumption affect the overall solution of the problem. Investigation in this
direction will be done in the future. The new method lead to possibility to develop
difference methods to solve third order and forth order boundary value problems
in ODEs. Work in this direction is in progress.
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