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Common-Neighbourhood of a Graph

P. Dundar, A. Aytac and E. Kilic

Abstract: The vulnerability measures on a connected graph which are mostly
used and known are based on the Neighbourhood concept. Neighbour-integrity,
edge-integrity and accessibility number are some of these measures. In this work we
define and examine Common-neighbourhood of a connected graph as a new global
connectivity measure. Our measure examines the neighbourhoods of all pairs of
vertices of any connected graph. We show that, for connected graphs G1 and G2 of
same order, if the dominating number of G1 is bigger than the dominating number of
G2, then the common-neighbourhood of G1 is less than the common-neighbourhood
of G2. We give some theorems and obtain some results on common-neighbourhood
of a graph.

Key Words: Vertex-neighbourhood, connectivity, stability, common- neigh-
bourhood.
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1. Introduction

The stability and reliability of a network are of prime importance to network de-
signers. The vulnerability value of a communication network shows the resistance
of the network after the disruption of some centres or connection lines until the
communication breakdown. As the network begins losing connection lines or cen-
tres, eventually, there is a loss its effectiveness. If the communication network is
modelled as a simple, undirected, connected and unweighted graph G, determinis-
tic measures tend to provide a worst-case analysis of some expects of the overall
disconnection process.
A graph G is denoted by G = (V , E), where V and E are vertex and edge sets
of G, respectively. n denotes the number of vertices and m denotes the number
of edges of the graph G. The reliability of a graph can be measured by various
parameters. The best known reliability measure of a graph is connectivity, defined
as the minimum number of vertices whose deletion results in a disconnected or

2000 Mathematics Subject Classification: 05C40, 05C69, 05C85, 05C12, 68M10

23
Typeset by BSP

M
style.

c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v35i1.22464


24 P. Dundar, A. Aytac and E. Kilic

trivial graph. k(G) denotes the connectivity of graph G. This parameter has been
extensively studied.

Let G = (V , E) be a graph and v a vertex in G. The open neighborhood of v ∈V
is N (v) = { u: u ∈ V |uv ∈ E } and the closed neighborhood of v is N [v ] = { v }
∪ N (v). For a set S ⊆ V, its open neighborhood N (S ) =

⋃

v∈S N(v)and its closed
neighborhood N [S ] = N (S ) ∪ S [20].

The connectivity is considered as a worst-case measure since it does not always
reflect what happens throughout the graph. But other measures such as integrity,
toughness, neighbour-integrity give more information about the reliability of a
graph [1]- [19]. For example, a tree and a graph obtained by adding an end-vertex
to complete graph both have connectivity 1. But other vulnerability values of these
graphs differ from each other. Recent interest in the vulnerability and reliability
of networks has given rise to the importance of other measures, some of which are
more global in nature. In this paper we investigate the common-neighbourhood, a
new measure for reliability and stability of a graph.

Other measures have been found to be more useful than the corresponding mea-
sures, such as average connectivity, average degree and average distance of a graph
[7] in some circumstances. For example, the average distance between vertices in
a graph was introduced as a tool in architecture and later turned out to be more
valuable than the diameter when analyzing transportation networks.

While the ordinary connectivity is the minimum number of vertices whose removal
separates the graph into at least one connected pair of vertices and a isolated
vertex, the average connectivity is a measure for the expected number of vertices
that have to be removed to separate a randomly chosen pair of vertices.

Let G = (V, E ) be a simple graph of order n and let u and v be two distinct
vertices of G. Two vertices u and v in a graph G are said to be k -neighbour, if
there are k distinct vertices which are neighbours of both u and v. The k -neighbour
of u and v vertices of G is denoted by N (u, v).

The common-neighbourhood is a measure for vulnerability and reliability. The
common-neighbourhood gives the expected number of vertices to constitute tran-
sitive neighbourhood between a randomly chosen pair of vertices which are non-
adjacent. Although other global measures of reliability, such as the toughness and
integrity of a graph, are NP hard, the common-neighbourhood can be computed
in polynomial time, this makes it much more attractive for applications.

If the order of G is n, then the common-neighbourhood of G is denoted by N̄(G)
, is defined to be

N̄(G) =

∑

u,v∈V (G)N(u, v)

n− 1
for n > 3

where
∑

u,v∈V (G)N(u, v) is equal to the number of paths of length 2 occurring

in the graph G. For any vertex v there exist exactly

(

deg(v)
2

)

such paths, i.e.

paths of the form u1 v u2 with the vertex v in the middle. In order to determine
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the value N̄(G) one only needs O(n2) steps since

N̄ (G) =

∑

v∈V (G)

(

deg(v)
2

)

n− 1
.

We consider the two graphs in Figure 1. The connectivity number of these graphs
are 1, but the second graph would be a more reliable communication network than
the first one. This is obvious from the common-neighbourhood since N̄(G1)=3/4
and N̄(G2)=15/4.

Figure 1: P5=G1 G2

The two graphs in Figure 1 have the same number vertices as well as the same
connectivity, but not the same number of edges. The difference in common- neigh-
bourhood is in connection with increased number of edges.

In Figure 2 we show two graphs with the same numbers of vertices and edges, but
N̄(G1)= 6/4 while N̄(G2)= 7/4.

Figure 2: G1 G2

Definition 1.1. [20,21] For a connected graph G, let the nodes of G be labelled as
v1, v2, ..., vp. The adjacency matrix A=A(G)= [ai,j] of G is the binary matrix of
order p

aij =

{

1, if vi is adjacentwith vj
0, otherwise

Definition 1.2. [20,21] For a connected graph G, we define the distance d(u, v)
between two vertices u and v as the minimum of the lengths of the u-v paths in G.
Under the distance function, the set V (G) is a metric space.
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The eccentricity e(v) of a vertex v of connected graph G is the number max
u∈V (G)

d(v, u).

The radius rad (G) is defined as min
v∈V (G)

e(v) while the diameter diam (G) is

max
v∈V (G)

e(v).

It follows that diam (G) = max
v,u∈V (G)

d(v, u).

Definition 1.3. [20,21] An independent set of vertices of a graph G is a set whose
elements are pair wise nonadjacent. The independence number β(G) of G is the
maximum cardinality among all independent sets of vertices of G.

Definition 1.4. [20,21] A vertex is said to cover other vertices in a graph G if it
is incident to these vertices in G. A cover in G is a set of vertices that covers all
edges of G. The minimum cardinality of a cover in a graph G is called the covering
number of G is denoted by α(G).

The order of n in a graph is defined by α(G) + β(G) = n.

Definition 1.5. [20,21] A vertex dominating set for a graph G is a set S of ver-
tices such that every vertex of G belongs to S or is adjacent to a vertex of S. The
minimum cardinality of a vertex dominating set in a graph G is called the vertex
dominating number of G and is denoted by σ(G). For every graph G, σ(G)≤ β(G).

Lemma 1.6. Let u and v be two vertices of a connected graph G.
a) If the distance d(u, v)> 2 then N(u, v) = 0 and if d(u, v) = 2 then N(u, v) ≥

1.
b) If G is a connected graph, then 0 ≤ N(u, v) ≤ n− 2.

Lemma 1.7. For any connected graph with n vertices, n−2≤
∑

u,v∈V (G)N(u, v) ≤
n (n−1) (n−2)

2 for n >2.

Theorem 1.8. Let G be a graph of order n≥3.
a) N̄(G)= 0 if and only if G is a null graph.
b) N̄(G) > 0 if and only if G is a connected graph at least of order 3.

Proof is clear.

Lemma 1.9. Common–neighbourhood takes its minimum value at Pn path and its
maximum value at Kn complete graph. It can be easily seen from Lemma 1.6 b.

Theorem 1.10. For a connected graph G, the common-neighbourhood of G is
1
2 < N̄(G) ≤ n(n−2)

2

Proof: From the Lemma 1.6 and Theorem 1.8 G must be connected graph and at
least the path P3. Then N̄(P3) = 1

2 . G can be the complete graph order of n, Knat
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most. In complete graph Kn, N (u,v)=n-2 for each u, v∈V ( Kn). It is obtained
from the definition of common- neighbourhood and Lemma 1.7

N (Kn) =

(

n

2

)

(n− 2)

n− 1
=

n (n− 2)

2
.

Consequently, for any connected graph G, its common-neighbourhood is 1
2 <

N(G) ≤ n(n−2)
2 . ✷

Theorem 1.11. Let G be connected graph with n vertices which includes K1,n−1

as a spanning subgraph then
(

n− 1
2

)

n− 1
≤ N̄ (G) .

Proof: The left side of the inequality can be seen from K1,n−1. In K1,n−1, the num-

ber of the vertices (u, v) pairs which have the property d(u,v) = 2 is

(

n− 1
2

)

.

And from the definition of common-neighbourhood it can be obtained.
✷

Theorem 1.12. N̄(G) ≤ N̄(G+ e)

Proof: From the definition of (G + e), to add an e edge between any vertices,
these v i and vj verticesmust be disjoint. If we add an edge e = ( vi , vj ) to G,
then N (vi ,vj ) value increases at least one, for all vertices v of G.
In the definition common-neighbourhood, if

∑

u,v∈V (G)N(u, v) increases, then the

N̄(G)increases also. Hence, N̄(G) ≤ N̄(G+ e) ✷

Theorem 1.13. Let G1 be a graph of order n and Pn be a path graph. If diam
(G1) < diam (Pn ), then

N̄(G1) > N̄(Pn).

Proof: Let G1and Pn be two graphs whose orders are the same and diam (G1)
< diam (Pn ), from Lemma 1.9 it is obvious that Pn has the minimum value of
common-neighbourhood. Hence, this shows that the k -neighbourhoods in G1 are
grater than in Pn. By the definition of common-neighbourhood, if the number of
neighbourhoods in G1 is higher, then the number of N (u, v) in G1 will be high.
Then

N̄(G1) > N̄(Pn).

✷
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Theorem 1.14. Let G be connected graph except tree. Then, N̄(G) <
∑

n
i=1 deg(vi)

2(n−1) ,

for all vi vertices.

Proof: For the graph G max(
∑n

i=1 deg(vi)) = 2m, where m denotes the number

of edges of G. m gets its maximum value n(n−1)
2 only in complete graph.

∑

N(u, v) = (n− 2)
n(n− 1)

2
=

(n− 2)

2

n
∑

i=1

deg (vi) .

Thus,

N̄(G) =

(

n−2
2

)
∑n

i=1 deg (vi)

2 (n− 1)
=

(n− 2)
∑n

i=1 deg (vi)

2 (n− 1)
.

This value is the maximum value in Kn complete graph. If we remove any ei=
(ui, vi) edge from Kn , the neighbourhood values of the vertices ui and vi decrease
1. Consequently, for any connected graph G, the value of common-neighbourhood

N̄(G) >
∑

n
i=1 deg(vi)

2(n−1) .

Especially if G is a star then this inequality turns to equality. N̄(K1,n−1) =
∑

n
i=1 deg(vi)

2(n−1) ✷

2. Common-Neighbourhood and Other Measures on Graphs

Certainly other measures provide bounds on the common-neighbourhood of a graph.
In this section we give some theorems relating to common-neighbourhood and graph
parameters.

Definition 2.1. For any non-regular graph G, ∆(G) denotes maximum vertex
degree and δ(G) denotes minimum vertex degree of the graph G.

Theorem 2.2. Let G be tree graph, N̄(G) ≥ β(G)
n−1 .

Proof: From the Lemma 1.6, If d(u, v) =2, then N (u, v)≥1. For all (u,v) pairs
of the maximum independent set of G, d(u,v) ≥ 2. From Theorem 1.8 if u and v
is adjacent then N (u, v) =0.

Then, in the definition N (G) =
∑

u,v∈V (G) N(u,v)

n−1 ,
∑

u,v∈V (G)N(u, v) ≥ β(G)

We divide the both sides of this inequality by n-1, we obtain
∑

u,v∈V (G) N(u,v)

n−1 ≥
β(G)
n−1 . ✷

Theorem 2.3. Let G1 and G2 be graphs with n vertices .If σ(G1) < σ(G2), then
N (G1) > N (G2).

Proof: Let S 1and S 2 be the minimum vertex dominating sets of graphs G1 and
G2, respectively. If σ(G1) < σ(G2), then |S 1|<|S 2|. From the definition the
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dominating number, the number of vertices of G1 dominated by S 1 is bigger than
the number of vertices of G2 dominated by S 2. Then, it can be easily seen that
for each vertex u of S 1, N (u, v) is more than N (u∗, v) for each vertex u∗ of S 2.
Consequently,

∑

u∈S1
N(u, v) >

∑

u∈S2
N(u∗, v).

If we divide the both sides of the inequality by n-1, we obtain the following in-
equality.

∑

u∈S1
N(u, v)

n− 1
>

∑

u∗∈S2
N(u∗, v)

n− 1

and by the definition of common-neighbourhood, N (G1) > N (G2). ✷

3. Results on Common-Neighbourhood

In the following results for the common-neighbourhood of a variety of families of
graphs can be seen clearly.
1) The path Pn is N(Pn) =

n−2
n−1 = 1− 1

n−1

2) The cycle Cn is N(Cn) =
n

n−1 = 1 + 1
n−1

3) The complete graph Kn is N(Kn) =

(n−2)





n

2





n−1

4) The star graph K1,n−1 is N(K1,n−1) =

(

n− 1
2

)

1
n−1

5) The bipartite graph Km,n is N(Km,n) =

1
2 .





m

2



n+ 1
2





n

2



m

m+n−1

6) The wheel W1,n is N(W1,n−1) =





n− 1
2



+2(n−1)

n−1

The results of the common-neighbourhood of the above graphs relating with α, β,
∆ and d are given in the following.
1) N(Pn) =

d−1
n−1

2) N(Pn) ≤
β+d
n−1

3) N(Cn) =
α+β
n−1

4) N(Cn) =

{ ∆d+1
n−1 , if n is odd
∆d
n−1 , if n is even

5) N(K1,n) =







⌈ β

3 ⌉∆
n−1 , if n is odd
⌈ β

2 ⌉∆−3

n−1 , if n is even

Theorem 3.1. Let G be K1,n−1 graph. N̄ (G) ≥ ∆(G)−δ(G)
2 .

Proof: If we put this value in the common –neighbourhood definition for K1,n−1,

we obtain the following equality. N̄(K1, n−1) =
n−2
2 = n−1−1

2 = ∆(G)−δ(G)
2 .
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And this value is the minimum value that common –neighbourhood can get. To
be far away from K1,n−1 when we add edges to K1,n−1 , the value of ∆(G)is
still n-1 however δ(G) increases. From Theorem 1.12, N (G) increases and finally

N̄ (G) ≥ ∆(G)−δ(G)
2 is obtained. ✷

4. Algorithm for the Common-Neighbourhood Number of a Graph

In this section, we offer an algorithm for the common-neighbourhood number of
a graph. The complexity of this algorithm is O(n2). Data of this algorithm are
adjacency matrix and the order of the graph.

A [i, j]: The adjacency matrix of the graph.
CN: Common-Neighbourhood Number of the graph
n: the order of the graph G

sumneigh←−0
For i←−1 to n do

degv←−0
For j←−1 to n do
degv←−degv+A [i, j]
fact1←−1
fact2←−1
For j←−1 to degv do
fact1←−fact1*j
For j←−1 to (degv -2) do
fact2←−fact2*j
sumneigh←−sumneigh + (fact1)/(2-fact2)

Repeat
CN ←− sumneigh / (n-1)
END.

5. Conclusion

If we want to design a communications network, we wish it to be as stable as possi-
ble. Then, we model any communication network by a connected graph. In graph
theory, we have many stability measures called as toughness, neighbour-integrity,
edge-neighbour integrity. These stability measures also take neighbourhood con-
cept into consideration. But they are not interested in the total neighbourhoods of
the graph. In this paper we define a new stability measure .We called it common-
neighbourhood of the graph. It takes account the neighbourhoods of all pairs of
vertices. We prove that, for two connected graph G1 and G2, if the dominating
number of G1 is bigger than the dominating number of G2 then the common-
neighbourhood of G1 is less than the common-neighbourhood of G2. Also, we offer
an algorithm whose complexity is O (n2), to find the common-neighbourhood of a
graph. In the design of two networks having the same number of processors, if we
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want to choose the more stable one from these, we take their graph models and it
is enough to choose the model whose common-neighbourhood is greater.
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