

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 33** 1 (2015): **183–192**. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i1.22719

Remarks on soft ω -closed sets in soft topological spaces

Nirmala Rebecca Paul

ABSTRACT: The paper introduces soft ω -closed sets in soft topological spaces and establishes the relation between other existing generalised closed sets in soft topological spaces. It derives the basic properties of soft ω -closed sets. As an application it proves that a soft ω -closed set in a soft compact space is soft compact.

Key Words: soft open set, soft closed set, soft $\omega\text{-closed}$ set and soft $\omega\text{-open}$ set.

Contents

1	Introduction	183
2	Preliminaries	184
3	soft ω -closed sets	187
4	soft ω -open sets	190
5	Applications	191
6	Conclusion	192

1. Introduction

The soft set introduced by Molodtsov [8] is applied in many fields such as economics, engineering, social science, medical science etc. It is used as a tool for dealing with uncertain objects. It laid the platform for further research involving soft sets. The topological structures of set theories dealing with uncertainties was introduced by Chang [2]. Shabir and Naz [9] defined soft topological spaces over an universe . They investigated the basic properties of soft topological spaces. Aygunoglu et.al. [1] also discussed the properties of soft topological spaces. Chen [3] introduced soft semi-open and soft semi-closed sets. Topology is considered to be one of the main branches of Mathematics along with algebra and analysis. Levine [6] has introduced generalised closed sets in topology in order to extend the properties of closed sets to a larger family. In the recent past there has been considerable research in the study of various forms of generalised closed sets. Kannan [5] has introduced soft generalised closed set in soft topological spaces. In this paper soft ω -closed sets are introduced in soft topological spaces and some of its basic properties are discussed. Soft ω -open sets are also defined and the necessary and sufficient

 $2000\ Mathematics\ Subject\ Classification:\ 06D72, 54A40$

condition for a soft set to be soft ω -closed and soft ω -open are derived. The soft ω -closed set concept has been extended to subspaces.

2. Preliminaries

Definition 2.1. [8] Let X be an initial universe and E be a set of parameters. Let P(X) denote the power set of X and A be a non-empty subset of E. A pair (F,A) is called a soft set over X, where F is a mapping given by $F:A \to P(X)$. The family of all soft sets (F,A) over X is denoted by SS(X,A) For two soft sets (F,A) and (G,A) over a common universe X, (F,A) is said to be soft subset of (G,A) if (i) $F(p) \subseteq G(p)$ for all $p \in A$. Symbolically it is written as $(F,A) \sqsubseteq (G,A)$. The pair (F,A) and (G,A) are soft equal if $(F,A) \sqsubseteq (G,A)$ and $(G,A) \sqsubseteq (F,A)$. Symbolically it is written as (F,A)=(G,A) [8]

Definition 2.2. [8] Let I be an arbitrary index set and $\{(F_i, A) : i \in I\} \subseteq SS(X, A)$. The soft union of these soft sets is the soft set $(F, A) \in SS(X, A)$ where the map $F : A \to P(X)$ is defined as $F(p) = \bigcup \{F_i(p) : i \in I\}$ for every $p \in A$ and denoted as $(F, A) = \bigcup \{(F_i, A) : i \in I\}$.

Definition 2.3. [8] Let I be an arbitrary index set and $\{(F_i, A) : i \in I\} \subseteq SS(X, A)$. The soft intersection of these soft sets is the soft set $(F, A) \in SS(X, A)$ where the map $F : A \to P(X)$ is defined as $F(p) = \cap \{F_i(p) : i \in I\}$ for every $p \in A$ and denoted as $(F, A) = \cap \{(F_i, A) : i \in I\}$

Definition 2.4. [7] A soft set (F,A) over X is said to be null soft set denoted by ϕ if for all $p \in A$ $F(p) = \phi$. A soft set (F,A) over X is said to be an absolute soft set denoted by \tilde{A} if for all $e \in A$, F(e) = X.

Definition 2.5. [8]Let Y be a nonempty subset of X then \tilde{Y} denotes the soft set (Y,E) over X for which Y(e)=Y, for all $e \in E$. In particular (X,E) will be denoted by \tilde{X} .

Definition 2.6. [8] The difference (H,E) of two soft sets (F,E) and (G,E) over X denoted by $(F,E) \setminus (G,E)$ is defined as $H(e) = F(e) \setminus G(e)$ for all $e \in E$.

Definition 2.7. [9] The relative complement of a soft subset (F,E) is denoted by $(F,E)^c$ and is defined by $(F,E)^c = (F^c,E)$ where $F^c : E \to P(X)$ is a mapping given by $F^c(e) = X - F(e)$ for all $e \in E$.

Definition 2.8. [9] Let $\tilde{\tau}$ be the collection of soft sets over X, then $\tilde{\tau}$ is said to be a soft topology on X if

- (i) $\tilde{\phi}, \tilde{X} \in \tilde{\tau}$
- (ii)If $(F, E), (G, E) \in \tilde{\tau}$ then $(F, E) \cap (G, E) \in \tilde{\tau}$
- (iii) If $\{(F_i, E)\}_{i \in I} \in \tilde{\tau}$, for all $i \in I\}$, then $\sqcup_{i \in I} (F_i, E) \in \tilde{\tau}$

The triplet $(X, \tilde{\tau}, E)$ is called a soft topological space over X. Every member of $\tilde{\tau}$ is called a soft open set. A soft set (F,E) is called soft closed in X if $(F,E)^c \in \tilde{\tau}$. The soft closure of a soft set over X is defined as the intersection of all soft closed supersets of (F,E) and is denoted as $\overline{(F,E)}$ and it is the smallest soft closed set over X containing (F,E). The soft interior of the soft set (F,E) is defined as union of all soft open subsets of (F,E) and is denoted as $(F,E)^0$ and it is the largest soft open set over X which is contained in (F,E).

Theorem 2.9. [9] Let $(X, \tilde{\tau}, E)$ be a soft topological space over X, (F,E) and (G,E) be soft sets over X. Then

(i)
$$\overline{\tilde{\phi}} = \tilde{\phi}$$
 and $\overline{\tilde{X}} = \tilde{X}$

(ii)
$$(F, E) \sqsubseteq \overline{(F, E)}$$

(iii) (F,E) is a soft closed set if and only if (F,E) = $\overline{(F,E)}$

(iv)
$$\overline{(F,E)} = \overline{(F,E)}$$

$$(v)$$
 $(F, E) \sqsubseteq (G, E)$ implies $\overline{(F, E)} \sqsubseteq \overline{(G, E)}$

$$(vi) \ \overline{(F,E) \sqcup (G,E)} = \overline{(F,E)} \sqcup \overline{(G,E)}$$

$$(vii) \ \overline{(F,E) \sqcap (G,E)} \sqsubseteq \overline{(F,E)} \sqcap \overline{(G,E)}$$

Theorem 2.10. [3] Let $(X, \tilde{\tau}, E)$ be a soft topological space over X, (F,E) and (G,E) be soft sets over X. Then

(i)
$$\tilde{\phi}^0 = \tilde{\phi}$$
 and $\tilde{X}^0 = \tilde{X}$

(ii)
$$(F, E)^0 \sqsubseteq (F, E)$$

(iii) (F,E) is a soft open set if and only if $(F,E) = (F,E)^0$

(iv)
$$((F, E)^0)^0 = (F, E)^0$$

(v)
$$(F, E) \sqsubseteq (G, E)$$
 implies $(F, E)^0 \sqsubseteq (G, E)^0$

(vi)
$$((F, E) \sqcap (G, E))^0 = (F, E)^0 \sqcap (G, E)^0$$

(vii)
$$((F, E) \sqcup (G, E))^0 \supseteq F, E)^0 \sqcup (G, E)^0$$

Theorem 2.11. [3] Let $(X, \tilde{\tau}, E)$ be a soft topological space over X, (F,E) and (G,E) are soft sets over X. Then

$$(i)((F,E)^c)^0 = (\overline{(F,E)})^c$$

$$(ii)\overline{(F,E)^c} = ((F,E)^0)^c$$

Definition 2.12. [8] Let (F,E) be a soft set over X and Y be non-empty subset of X. Then the soft subset of (F,E) over Y denoted by (Y_F,E) is defined as $Y_{F(e)} = Y \cap F(e)$ for all $e \in E$. In other words $(Y_F,E) = \tilde{Y} \cap F(e)$

Definition 2.13. [8] Let $(X, \tilde{\tau}, E)$ be a soft topological space over X and Y be a nonempty subset of X. Then $\tilde{\tau}_Y = \{(Y_F, E) : (F, E) \in \tilde{\tau}\}$ is said to be the soft relative topology on Y and $(Y, \tilde{\tau}_Y)$ is called a soft subspace of $(X, \tilde{\tau})$. In fact $\tilde{\tau}_Y$ is a soft topology on Y

Theorem 2.14. [9] Let $(Y, \tilde{\tau}_Y)$ be a soft subspace of a soft topological space $(X, \tilde{\tau})$ and (F,E) be a soft set over X then

- (i)(F,E) is soft open in Y if and only if $(F,E) = \tilde{Y} \sqcap (G,E)$ for some $(G,E) \in \tilde{\tau}$
- (ii)(F,E) is soft closed in Y if and only if (F, E) = $\tilde{Y} \sqcap (G, E)$ for some soft closed set(G,E) in X.

Proposition 2.15. [8] Let (A,E) and (G,E) are soft sets over X then

- $(i)\ ((A,E)\sqcup (G,E))^c=(F,E)^c\sqcap (G,E)^c$
- (ii) $((A, E) \sqcap (G, E))^c = (F, E)^c \sqcup (G, E)^c$

Definition 2.16. [9] Let $(X, \tilde{\tau}, E)$ be a soft topological space.

- (i) A family $\mathfrak{C} = \{(F_i, E) : i \in I\}$ of soft open sets in X is called a soft open cover of X, if $\sqcup_{i \in I}(F_i, E) = \tilde{X}$. A finite subfamily of soft open cover of \mathfrak{C} of X is called a finite sub cover of X, it it is also a soft open cover of X.
- (ii)X is called soft compact if every soft open cover of X has a finite subcover.

Definition 2.17. [1] Let $(X, \tilde{\tau}, E)$ be a soft topological space, (F, E) and (G, E) are soft closed sets in X such that $(F, E) \sqcap (G, E) = \tilde{\phi}$ If there exists soft open sets (A, E) and (B, E) such that $(F, E) \sqsubseteq (A, E), (G, E) \sqsubseteq (B, E)$ and $(A, E) \sqcap (B, E) = \tilde{\phi}$, then X is called a soft normal space.

Theorem 2.18. [10] $Let(X, \tilde{\tau}, E)$ be a soft topological space If (F, E) is a soft closed set in X, then (F, E) is soft compact.

Definition 2.19. [5] Let $(X, \tilde{\tau}, E)$ be a <u>soft</u> topological space over X.A soft set (F,E) is called a <u>soft</u> generalized closed if $\overline{(F,E)} \subseteq (G,E)$ whenever $(F,E) \subseteq (G,E)$ and (G,E) is soft open in X.

Theorem 2.20. [3] A soft subset (A,E) in a soft topological space is soft semi-open if and only if $(A,E) \sqsubseteq \overline{(A,E)^0}$.

Theorem 2.21. [3] Let $\{(A_{\alpha}, E)\}_{\alpha \in \Delta}$ be a collection of soft semi open sets in a soft topological space. Then $\bigcup_{\alpha \in \Delta} (A_{\alpha}, E)$ is soft semi open.

Definition 2.22. [3] A soft set in a soft topological space is said to be soft semi closed if its relative complement is soft semi open.

Theorem 2.23. [3] A soft subset (B,E) in a soft topological space is soft semi closed if and only if $(\overline{(B,E)}^0) \sqsubseteq (B,E)$

Remark 2.24. [3] Every soft closed set in a soft topological space is soft semi closed. The converse is not true.

Theorem 2.25. [3] Let $\{(B_{\alpha}, E)\}_{\alpha \in \Delta}$ be a collection of soft semi closed sets in a soft topological space. Then $\bigcap_{\alpha \in \Delta} (B_{\alpha}, E)$ is soft semi closed.

3. soft ω -closed sets

In this section soft ω -closed set is introduced and some of its basic properties are derived. The necessary and sufficient condition for a soft set to be soft ω -closed is stated and proved.

Definition 3.1. A soft set (A,E) is called soft ω -closed in a soft topological space $(X, \tilde{\tau}, E)$, if $\overline{(A,E)} \sqsubseteq (G,E)$ whenever $(A,E) \sqsubseteq (G,E)$ and (G,E) is soft semi-open in X

Proposition 3.2. Every soft closed is soft ω -closed.

Proof: Let (F,E) be a <u>soft closed set</u> and (G,E) be a soft semi-open set in X containing (F,E). Then $\overline{(F,E)} = (F,E) \sqsubseteq (A,E)$. Hence (F,E) is soft ω -closed. \square

Remark 3.3. The converse of the proposition 3.2 is not true.

Example 3.4. Let $X = \{x, y, z\}$, $E = \{a, b\}$ The soft set (F, E) is defined as $F(a) = \{x\}$, $F(b) = \{y\}$ and the soft set (G, E) is defined as $G(a) = \{x, y\}$, $G(b) = \{y, z\}$ and $\tilde{\tau} = \{\tilde{\phi}, \tilde{X}, (F, E), (G, E)\}$. The soft set (H, E) defined by $H(a) = \{z\}$, $H(b) = \{\phi\}$ is soft ω -closed but not soft closed.

Proposition 3.5. Every soft ω -closed set is soft q-closed.

Proof: Let (H,E) be a soft ω -closed set and (U,E) be a soft open set containing(H,E). Since every soft open set is soft semi-open, $(H,E) \sqsubseteq (U,E)$. Hence (H,E) is soft ω -closed.

Remark 3.6. The converse of the proposition 3.5 is not true.

Example 3.7. Let $X = \{x, y, z\}, E = \{a, b\}$ The soft set (F, E) is defined as $F(a) = \{x\}, F(b) = \{y\}$ and the soft set (G, E) is defined as $G(a) = \{x, y\}, G(b) = \{y, z\}$ and $\tilde{\tau} = \{\tilde{\phi}, \tilde{X}, (F, E), (G, E)\}$. The soft set (H, E) defined by $H(a) = \{x, z\}, H(b) = \{x, y\}$ is soft g-closed but not soft ω -closed.

Theorem 3.8. If (A,E) and (B,E) are soft ω -closed sets then $(A,E) \sqcup (B,E)$ is also soft ω -closed.

Proof: Let (U,E) be a soft semi-open set containing $(A,E) \sqcup (B,E)$. Then $(A,E) \sqsubseteq (U,E)$ and $(B,E) \sqsubseteq (U,E)$. Since (A,E) and (B,E) are soft ω -closed sets $(A,E) \sqsubseteq (U,E)$, $(B,E) \sqsubseteq (U,E)$. Hence $(A,E) \sqcup (B,E) = (A,E) \sqcup (B,E) \sqsubseteq (U,E)$.

Proposition 3.9. If (A,E) is soft ω -closed and $(A,E) \subseteq (B,E) \subseteq \overline{(A,E)}$ then (B,E) is also soft ω -closed.

Proof: Suppose (A,E) is soft ω -closed and $(A,E) \sqsubseteq (B,E) \sqsubseteq \overline{(A,E)}$. Let $(B,E) \sqsubseteq (U,E)$ and (U,E) be soft semi-open, then $(A,E) \sqsubseteq (U,E)$. Since (A,E) is soft ω -closed, $\overline{(A,E)} \sqsubseteq (U,E)$ and $\overline{(B,E)} \sqsubseteq \overline{(A,E)} \sqsubseteq (U,E)$. Hence (B,E) is soft ω -closed.

Theorem 3.10. If a set (A,E) is soft ω -closed in X then $\overline{(A,E)} - (A,E)$ contains only null soft closed set.

Proof: Suppose (A, E) is soft ω -closed in X and (F, E) be a soft closed set such that $(F, E) \sqsubseteq \overline{(A, E)} - (A, E)$ Since (F, E) is soft closed its relative complement is soft open $(F, E) \sqsubseteq (A, E)^c$. Thus $(A, E) \sqsubseteq (F, E)^c$. Consequently $\overline{(A, E)} \sqsubseteq (F, E)^c$. Therefore $(F, E) \sqsubseteq \overline{((A, E))}^c$. Hence $(F, E) = \phi$ and thus $\overline{(A, E)} - (A, E)$ contains only null soft closed set.

Theorem 3.11. A soft set (A,E) is soft ω -closed if and only if $\overline{(A,E)} - (A,E)$ contains only null soft semi-closed set.

Proof: Suppose that (A,E) is soft ω -closed in X let (F,E) be a soft semi-closed set such that $(F,E) \sqsubseteq \overline{(A,E)} - (A,E)$. Since (F,E) is soft semi-closed its relative complement is soft semi-open with $(F,E) \sqsubseteq (A,E)^c$. Thus $(A,E) \sqsubseteq (F,E)^c$. Consequently $\overline{(A,E)} \sqsubseteq (F,E)^c$. Therefore $(F,E) \sqsubseteq (\overline{(A,E)})^c$. Hence $(F,E) = \phi$ and thus $\overline{(A,E)} - (A,E)$ contains only null soft semi-closed set.. Conversely suppose that $\overline{(A,E)} - (A,E)$ contains only null soft semi-closed set. Let $(A,E) \sqsubseteq (G,E)$ and (G,E) be soft semi-open. If $\overline{(A,E)}$ is not a subset of $\overline{(A,E)}$ then $\overline{(A,E)} \cap (G,E)^c$ is a non null soft semi-closed subset of $\overline{(A,E)} - (A,E)$ (since any soft closed set is soft semi-closed and arbitrary intersection of soft semi-closed sets is soft semi-closed set $\overline{(A,E)} \subseteq (G,E)$ and hence (A,E) is soft ω -closed.

Theorem 3.12. If (A,E) is soft semi-open and soft ω -closed then (A,E) is soft closed.

Proof: Since (A,E) is soft semi-open and soft ω -closed, $\overline{(A,E)} \sqsubseteq (A,E)$. Hence (A,E) is soft closed.

Definition 3.13. The intersection of all soft semi open sets containing (A,E) is called the semi-kernel of (A,E) and is denoted as sker(A,E).

Theorem 3.14. A soft set (A,E) of a soft topological space X is soft ω -closed if and only if $(A,E) \sqsubseteq sker(A,E)$.

Proof: The first part follows from the definition of sker(A,E). Conversely $\underline{let(A,E)} \sqsubseteq sker(A,E)$. If (U,E) is any soft semi-open set containing (A,E), then $\overline{(A,E)} \sqsubseteq sker(A,E) \sqsubseteq (U,E)$. Therefore (A,E) is soft ω -closed.

Theorem 3.15. Let (A,E) be a soft ω -closed set in X. Then (A,E) is soft closed if and only if $\overline{(A,E)} - (A,E)$ is soft semi-closed.

Proof: Suppose (A,E) is soft ω -closed which is also soft closed. Then $\overline{(A,E)} = (A,E)$ and so $\overline{(A,E)} - (A,E) = \tilde{\phi}$ which is soft semi-closed.

Conversely since (A,E) is soft ω -closed the by theorem 3.11 $\overline{(A,E)}$ – (A,E) contains no non null soft semi-closed. But $\overline{(A,E)}$ – (A,E) is soft semi-closed set. This implies that $\overline{(A,E)}$ – (A,E) = $\widetilde{\phi}$. That is $\overline{(A,E)}$ = (A,E). Hence (A,E) is soft closed. \square

Theorem 3.16. Let $(X, \tilde{\tau}, E)$ be a soft topological space and $Y \subseteq Z \subseteq X$ be nonempty subsets of X. If \tilde{Y} is a soft ω -closed set relative to $(Z, \tilde{\tau}_Z)$ and \tilde{Z} is a soft ω -closed set relative to $(X, \tilde{\tau})$, then \tilde{Y} is soft ω -closed relative to $(X, \tilde{\tau})$

Proof: Let $\tilde{Y} \sqsubseteq (F,E)$, (F,E) is soft semi-open in X. Since Y is a subset of Z, $\tilde{Y} \sqsubseteq \tilde{Z}$ then $\tilde{Y} \sqsubseteq \tilde{Z} \sqcap (F,E)$. Since \tilde{Y} is soft ω -closed relative to $(Z,\tilde{\tau}_Z)$ and $\tilde{Z} \sqcap (F,E)$ is a soft semi-open set in $(Z,\tilde{\tau}_Z)$, $\tilde{Y}_Z \sqsubseteq \tilde{Z} \sqcap (F,E)$ where \tilde{Y}_Z represents the soft closure of \tilde{Y} with respect to the relative topology $(Z,\tilde{\tau}_Z)$. It follows that $\overline{\tilde{Y}} \sqcap \tilde{Z} \sqsubseteq \tilde{Z} \sqcap (F,E)$ and $\overline{\tilde{Y}} \sqcap \tilde{Z} \sqsubseteq (F,E)$. Hence $\tilde{Z} \sqcap [\overline{\tilde{Y}} \sqcup (\overline{\tilde{Y}})^c] \sqsubseteq (F,E) \sqcap (\overline{\tilde{Y}})^c$ i.e $\tilde{Z} \sqcap \tilde{X} \sqsubseteq (F,E) \sqcup (\overline{\tilde{Y}})^c$. Since Z is subset of X, $\tilde{Z} \sqsubseteq \tilde{X}$. So $\tilde{Z} \sqsubseteq (F,E) \sqcup (\overline{\tilde{Y}})^c$ and $(F,E) \sqcup (\overline{\tilde{Y}})^c$ is soft semi-open in X. Since \tilde{Z} is soft ω -closed set relative to X and $\overline{\tilde{Y}} \sqsubseteq \tilde{Z}, \overline{\tilde{Y}} \sqsubseteq (F,E) \sqcup ((\overline{\tilde{Y}})^c)^c$. Therefore $\overline{\tilde{Y}} \sqsubseteq (F,E)$ since $\overline{\tilde{Y}} \sqcap (\overline{\tilde{Y}})^c = \tilde{\phi}$.

Corollary 3.17. If (A,E) is a soft ω -closed set and (F,E) is a soft closed set in X then $(A,E) \cap (F,E)$ is soft ω -closed set in X.

Proof: $(A, E) \sqcap (F, E)$ is a soft closed set in (A,E). By the Theorem 3.16 $(A, E) \sqcap (F, E)$ is soft ω closed in X.

Theorem 3.18. Let $(X, \tilde{\tau}, E)$ be a soft topological space and $Y \subseteq X$, (F,E) be a soft set in Y such that it is ω -closed in X. Then (F,E) is soft ω -closed relative to $(Y, \tilde{\tau}_Y)$

Proof: Let $(F, E) \subseteq \tilde{Y} \cap (G, E)$ and (G, E) is soft semi-open in X. Then $(F, E) \subseteq (G, E)$ and hence $(F, E) \subseteq (G, E)$ Hence $\tilde{Y} \cap (F, E) \subseteq \tilde{Y} \cap (G, E)$

Theorem 3.19. In a soft topological space SSO(X) = SC(X) if and only if evry soft set over X is a soft ω -closed set in X. SSO(X) represents the collection of all soft semi-open sets in X and SC(X) represents the collection of all soft closed sets in X.

Proof: Suppose that SSO(X) = SC(X). Let (A, E) be a soft set of X such that $(A, E) \sqsubseteq (G, E)$ where $(G, E) \in SSO(X)$. Then (G, E) = (G, E). Also $(A, E) \sqsubseteq (G, E) \subseteq (G, E)$. Hence (A, E) is soft ω -closed. Conversely suppose that every subset of X is soft ω -closed. Let $(G, E) \in SSO(X)$ Since $(G, E) \sqsubseteq (G, E)$, $(G, E) \sqsubseteq (G, E)$ Thus (G, E) = (G, E) and $(G, E) \in SC(X)$. Therefore $SSO(X) \sqsubseteq SC(X)$. If $(G, E) \in SC(X)$ then $(G, E)^c$ is soft open and hence soft semi-open. Therefore $(G, E)^c \in (SC(X))^c \sqsubseteq SC(X)$ and hence $(G, E) \in SSO(X)$. Thus SSO(X) = SC(X)

4. soft ω -open sets

Definition 4.1. A soft set (A,E) is called a soft ω -open in a soft topological space $(X, \tilde{\tau}, E)$ if the relative complement of (A,E) is soft ω -closed in X.

Theorem 4.2. A soft set (A,E) is soft ω -open if and only if $(F,E) \subseteq (A,E)^0$ whenever (F,E) is soft semi-closed and $(F,E) \subseteq (A,E)$

Proof: Let (A,E) be a soft ω -open set in X. Let (F,E) be soft semi-closed set such that $(F,E) \subseteq (A,E)$. Then $(A,E)^c \subseteq (F,E)^c$ where $(F,E)^c$ is soft semi-open. $(A,E)^c$ is soft ω -closed implies that $(A,E)^c \subseteq (F,E)^c$ i.e. $((A,E)^0)^c \subseteq (F,E)^c$. That is $(F,E) \subseteq (A,E)^0$.

Conversely Suppose (F,E) is soft semi-closed and $(F,E) \sqsubseteq (A,E)$. Also $(F,E) \sqsubseteq (A,E)^0$. Let $(U,E)^c \sqsubseteq (A,E)$ where $(U,E)^c$ is soft semi-closed. By hypothesis $(U,E)^c \sqsubseteq (A,E)^0$. That is $((A,E)^0)^c \sqsubseteq (U,E)$. i.e. $\overline{(A,E)^c} \sqsubseteq (U,E)$. This implies that $(A,E)^c$ is soft ω -closed. Hence (A,E) is soft ω -open.

Theorem 4.3. If $(A, E)^0 \subseteq (B, E) \subseteq (A, E)$ and (A, E) is soft ω -open then B is soft ω -open.

Proof: $(A, E)^0 \subseteq (B, E) \subseteq (A, E)$ implies $(A, E)^c \subseteq (B, E)^c \subseteq \overline{(A, E)^c}$ and $(A, E)^c$ is soft ω -closed. By the proposition 3.9 $(B, E)^c$ is soft ω -closed. Hence (B, E) is soft ω -open.

Theorem 4.4. If (A,E) and (B,E) are soft ω -open in X then $(A,E) \cap (B,E)$ is also soft ω -open.

Proof: Since (A,E) and (B,E) are soft ω -open their relative complements are soft ω -closed sets and by the Theorem $3.8(A,E)^c \sqcup (B,E)^c$ is soft ω -closed. Hence by The proposition 2.15 $(A,E) \sqcap (B,E)$ is soft ω -open.

Theorem 4.5. A soft set (A,E) is soft ω -open in X if and only if $(G,E) = \tilde{X}$ whenever (G,E) is soft semi-open and $(A,E)^0 \sqcup (A,E)^c \sqsubseteq (G,E)$.

Proof: Let (A, E) is soft ω -open and (G, E) is soft semi-open with $(A, E)^0 \sqcup (A, E)^c \sqsubseteq (G, E)$. Therefore $(G, E)^c \sqsubseteq ((A, E)^0)^c \sqcap ((A, E)^c)^c = \overline{(A, E)^c} - (A, E)^c$. Since $(A, E)^c$ is soft ω -closed and $(G, E)^c$ is soft semi-closed by the Theorem 3.11 $(G, E)^c = \tilde{\phi}$. Therefore $(G, E) = \tilde{X}$.

Conversely suppose that (F,E) is soft semi-closed and $(F,E) \sqsubseteq (A,E)$. Then $(A,E)^0 \sqcup (A,E)^c \sqsubseteq (A,E)^0 \sqcup (F,E)^c = \tilde{X}$. It follows that $(F,E) \sqsubseteq (A,E)^0$. Therefore (A,E) is soft ω -open by The theorem 4.2.

Theorem 4.6. Let $(X, \tilde{\tau}, E)$ be a soft topological space and $Y \subseteq Z \subseteq X$ are non empty subsets of X. If \tilde{Y} is a soft ω -open set relative to $(Z, \tilde{\tau}_Z)$ and \tilde{Z} is a soft ω -open set relative to X.

Proof: Let (F,E) be a soft semi-closed set in X and $(F,E) \sqsubseteq \tilde{Y}$. Then $(F,E) \sqcap \tilde{Z}$ is soft semi-closed set relative to $(Z,\tilde{\tau}_Z)$. But in \tilde{Y} is is a soft ω -open set relative to $(Z,\tilde{\tau}_Z)$, then $(F,E) \sqsubseteq (A,E)_Z^0$, where $(A,E)_Z^0$ is the soft open set relative to $(Z,\tilde{\tau}_Z),(F,E) \sqsubseteq (G,E) \sqcap \tilde{Z} \sqsubseteq (A,E)$. Since \tilde{Z} is soft ω -open relative to X, $(F,E) \sqsubseteq (\tilde{Z})^0 \sqsubseteq \tilde{Z}$. Therefore $(F,E) \sqsubseteq (\tilde{Z})^0 \sqcap (G,E) \sqsubseteq \tilde{Z} \sqcap (G,E) \sqsubseteq \tilde{Y}$. It follows that $(F,E) \sqsubseteq (\tilde{Y})^0$. Hence then \tilde{Y} is soft ω -open relative to X.

Theorem 4.7. A soft set (A,E) is soft ω -closed if and only if $\overline{(A,E)} - (A,E)$ is soft ω -open.

Proof: Suppose that (A,E) is soft ω -closed. Let $(F,E) \sqsubseteq \overline{(A,E)} - (A,E)$ where (F,E) is soft semi-closed. By the Theorem 3.11 $(F,E) = \tilde{\phi}$. Therefore $(F,E) \sqsubseteq (\overline{(A,E)} - (A,E))^0$. By the Theorem 4.2 (A,E) - (A,E) is soft ω -open. Conversely let $(A,E) \sqsubseteq (G,E)$ where (G,E) is a soft semi-open set. Then $\overline{(A,E)} \sqcap (G,E)^c \sqsubseteq \overline{(A,E)} \sqcap (A,E)^c = \overline{(A,E)} - (A,E)$. Since $\overline{(A,E)} \sqcap (G,E)^c$ is soft semi closed and $\overline{(A,E)} - (A,E)$ is soft ω -open, it follows by the Theorem 4.2 $\overline{(A,E)} \sqcap (G,E)^c \sqsubseteq \overline{(A,E)} \sqcap (A,E)^c)^0 = \overline{(A,E)} - (A,E)^0 = \overline{(A,E)} - \overline{(A,E)}^0 = \overline{(A,E)} - \overline{(A,E)}^0 = \overline{(A,E)} - \overline{(A,E)}^0 = \overline{$

Theorem 4.8. For a soft subset of a soft topological space the following are equivalent.

- (i) (A,E) is soft ω -closed.
- $(ii)\overline{(A,E)}$ (A,E) contains only null soft semi-closed set.
- (iii) $\overline{(A,E)}$ (A,E) is soft ω -open.

Proof: It follows from the theorems 3.11 and 4.7

5. Applications

Theorem 5.1. Let $(X, \tilde{\tau}, E)$ be a soft compact topological space .If(A, E) is a soft ω -closed set in X then (A, E) is soft compact.

Proof: Let $\mathfrak{C} = \{(F_i, E) : i \in I\}$ be a soft open cover of (A, E). Since (A, E) is soft ω -closed, $(A, E) \sqsubseteq \bigsqcup_{i \in I} (F_i, E)$. From the Theorem 2.18 (A, E) is soft compact and hence $(A, E) \sqsubseteq (A, E) \sqsubseteq ((F_1, E) \sqcup (F_2, E) ... (F_n, E))$ where $(F_i, E) \in \mathfrak{C}$ for i = 1, 2, ...n. Hence (A, E) is soft compact.

Theorem 5.2. Let $(X, \tilde{\tau}, E)$ be a soft topological space. Y be a nonempty subset of X and if \tilde{Y} be a soft ω -closed set in X then $(Y, \tilde{\tau_Y})$ is soft normal.

Proof: Let (A,E) and (B,E) be soft closed sets in X and $(\tilde{Y} \sqcap (A,E)) \sqcap (\tilde{Y} \sqcap (B,E)) = \tilde{\phi}$ This implies that $\tilde{Y} \sqsubseteq ((A,E) \sqcap (B,E))^c \in \tilde{\tau}$ and hence $\tilde{Y} \sqsubseteq ((A,E) \sqcap (B,E))^c$. Thus $(\tilde{Y} \sqcap (A,E)) \sqcap (\tilde{Y} \sqcap (B,E)) = \tilde{\phi}$. Since X is soft normal there

exists disjoint soft open sets (G,E) and (U,E) such that $(\overline{\tilde{Y}} \sqcap (A,E)) \sqsubseteq (G,E)$ and $(\overline{\tilde{Y}} \sqcap (B,E)) \sqsubseteq (U,E)$. Hence it follows that

 $(\overline{\tilde{Y}}\sqcap(A,E))\sqsubseteq \tilde{Y}\sqcap(G,E)$ and $(\overline{\tilde{Y}}\sqcap(B,E))\sqsubseteq \tilde{Y}\sqcap(U,E)$. Hence $(Y,\tilde{\tau_Y})$ is soft normal.

6. Conclusion

The class of soft ω -closed sets lies between the the class of soft closed sets and the class of soft g-closed sets. The union of two soft ω -closed sets is soft ω -closed. The necessary and sufficient condition for a soft set to be soft ω -closed are derived. The soft ω -closed set concept has been extended to subspaces. As an application it has been proved that a soft ω -closed set in a soft compact space is also soft compact.

References

- Aygunoglu A and Aygun H, Some Notes on Soft Topological Spaces, Neural Comput. and Applic., Vol.21, No.1(,2012),113-119.
- Chang C.L., Fuzzy Topological Spaces, Journal of Mathematics Analysis and Applications, 24(1968), 182-190.
- Chen B,Soft Semi-open sets and related properties in soft topological spaces, Appl.Math. Inf.Sci.,7,No.1(2013),287-294.
- Hussain S and Ahmad B,Some Properties of Soft Topological Spaces, Comput.Math.Appl.,Vol. 62(2011),4058-4067.
- 5. Kannan K, Soft Generalized Closed Sets in Soft Topological Spaces, Journal of Theoretical and Applied Information Technology, Vol. 37, No. 1 (2012), 17-21.
- Levine N,Generalized closed sets in Topology,Rend.Circ.Mat.Palermo, Vol.19,No2(1970),89-96.
- Maji P.K, Biswas and Roy A.R., Soft set Theory, Comput. Mat. Appl., Vol. 45 (2003), 555-562.
- 8. Molodtsov D,Soft set theory first results},Comput. Math.Appl., Vol. 45(1999),19-31.
- Shabir M and Naz M., On soft topological spaces, Comput.Math.Appl., Vol.61(2011),1786-1799
- 10. Yuksel S,Guzel Ergul Z and Tozlu N,On soft Compactness and Soft Separation Axioms,Applied Mathematics and Information Sciences,(2013).

Nirmala Rebecca Paul
Department of Mathematics, Lady Doak College,
Madurai 625002, Tamilnadu, India.
E-mail address: nimmi_rebecca@yahoo.com