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Subdivisions of the Spectra for the Operator D(r, 0, 0, s) over Certain
Sequence Spaces
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abstract: In this paper we have examined the approximate point spectrum, de-
fect spectrum and compression spectrum of the operator D(r, 0, 0, s) on the sequence
spaces c0, c, ℓp and bvp(1 < p < ∞).
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1. Preliminaries and Definition

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
The set of all bounded linear operators on X into itself is denoted by B(X). The
adjoint T ∗ : X∗ → X∗ of T is defined by (T ∗φ)(x) = φ(Tx) for all φ ∈ X∗ and
x ∈ X. Clearly, T ∗ is a bounded linear operator on the dual space X∗.

Let T : D(T ) → X a linear operator, defined on D(T ) ⊂ X , where D(T ) denote
the domain of T and X is a complex normed linear space. For T ∈ B(X) we asso-
ciate a complex number α with the operator (T − αI) denoted by Tα defined on
the same domain D(T ), where I is the identity operator. The inverse (T − αI)−1,
denoted by T−1

α is known as the resolvent operator of T . Many properties of Tα

and T−1
α depend on α and spectral theory is concerned with those properties. We

are interested in the set of all α in the complex plane such that T−1
α exists. Bound-

edness of T−1
α is another essential property. We also detemine α’s, for which the

domain of T−1
α is dense in X .
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A regular value is a complex number α of T such that
(R1)T−1

α exists,
(R2)T−1

α is bounded and
(R3)T−1

α is defined on a set which is dense in X .

The resolvent set of T is the set of all such regular values α of T , denoted
by ρ(T ). Its complement is given by C \ ρ(T ) in the complex plane C is called
the spectrum of T , denoted by σ(T ). Thus the spectrum σ(T ) consists of those
values of α ∈ C, for which Tα is not invertible.

The spectra of matrix operators has recently been investigated by Altay and
Başar ( [1], [2], [3]), Tripathy and Das [9], Tripathy and Paul ( [10], [11], [12]),
Tripathy and Saikia [13] and others from different aspects.

2. Subdivisions of the spectrum

In this section, we discuss about the point spectrum, continuous spectrum,
residual spectrum, approximate point spectrum, defect spectrum and compression
spectrum. There are many different ways to subdivide the spectrum of a bounded
linear operator.Some of them are motivated by applications to physics, in particu-
lar in quantum mechanics.

2.1. The point spectrum, continuous spectrum and residual spectrum

The spectrum σ(T,X) is partitioned into three disjoint sets as follows:

(i)The point(discrete) spectrum σp(T,X) is the set of complex numbers α
such that T−1

α does not exist. Further α ∈ σp(T,X) is called the eigen value of T .

(ii) The continuous spectrum σc(T,X) is the set of complex numbers α such
that T−1

α exists and satisfies (R3) but not (R2) that is T−1
α is unbounded.

(iii) The residual spectrum σr(T,X) is the set of complex numbers α such
that T−1

α exists (and may be bounded or not) but not satisfy (R3), that is, the
domain of T−1

α is not dense in X .

This is to note that in finite dimensional case, continuous spectrum coincides
with the residual spectrum and equal to the empty set and the spectrum consists
of only the point spectrum.

2.2. The approximate point spectrum, defect spectrum and compression
spectrum

Given a bounded linear operator T in a Banach space X , we call a sequence
(xk) in X as a Weyl sequence for T if ||xk|| = 1 and ||Txk|| → 0, as k → ∞.



Subdivisions of the Spectra for the Operator D(r, 0, 0, s) 77

Appell et al. [4], have given three more classification of spectrum called the ap-
proximate point spectrum, defect spectrum and compression spectrum.

(a) The approximate point spectrum:
σap(T,X) = {α ∈ C : there exist a Weyl sequence for T − αI}.

(b) The defect spectrum: σδ(T,X) = {α ∈ C : T − αI is not surjective}.

(c) The compression spectrum: σco(T,X) = {α ∈ C : R(T − αI) ̸= X}.

The two subspectra given by (a) and (b) form a (not necessarily disjoint) sub-
divisions σ(T,X) = σap(T,X) ∪ σco(T,X) of the spectrum.

The compression spectrum gives rise to another (subdivisions not necessarily
disjoint) decomposition σ(T,X) = σap(T,X) ∪ σco(T,X) of the spectrum.

Clearly σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X). Moreover, compar-
ing these subspectra with σ(T,X) = σp(T,X) ∪ σc(T,X) ∪ σr(T,X) we note that
σr(T,X) = σco(T,X) \ σp(T,X) andσc(T,X) = σ(T,X) \ [σp(T,X) ∪ σco(T,X)].

Proposition 2.1. [4, Proposition 1.3, p.28] Spectra and subspectra of an operator
T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(i)σ(T ∗, X∗) = σ(T,X).
(ii)σc(T ∗, X∗) ⊆ σap(T,X).
(iii)σap(T ∗, X∗) = σδ(T,X).
(iv)σδ(T ∗, X∗) = σap(T,X).
(v)σp(T ∗, X∗) = σco(T,X).
(vi)σco(T ∗, X∗) ⊇ σp(T,X).
(vii)σ(T,X) = σap(T,X) ∪ σp(T ∗, X∗) = σp(T,X) ∪ σap(T ∗, X∗).

2.3. Goldberg’s classification of spectrum

If X is a Banach space and T ∈ B(X), then there are three possibilities for R(T ):
(I)R(T ) = X ,
(II)R(T ) ̸= R(T ) = X ,
(III)R(T ) ̸= X .
and
(1)T−1 exists and is continuous.
(2)T−1 exists but is discontinuous.
(3)T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states
are created. These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3. If an
operator is in the state III2 for example, then R(T ) ̸= X and T−1 exists but is
discontinuous.
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By the definitions given above, we can illustrate the subdivisions in the follow-
ing table:

1 2 3
T−1
α exists and T−1

α exists and T−1
α does not

is bounded is unbounded exists
α ∈ σp(T,X)

I R(T − αI) = X α ∈ ρ(T,X) α ∈ σap(T,X)
α ∈ σc(T,X) α ∈ σp(T,X)

II R(T − αI) = X α ∈ ρ(T,X) α ∈ σap(T,X) α ∈ σap(T,X)
α ∈ σδ(T,X) α ∈ σδ(T,X)

α ∈ σr(T,X) α ∈ σr(T,X) α ∈ σp(T,X)
III R(T − αI) ̸= X α ∈ σδ(T,X) α ∈ σap(T,X) α ∈ σap(T,X)

α ∈ σco(T,X) α ∈ σδ(T,X) α ∈ σδ(T,X)
α ∈ σco(T,X) α ∈ σco(T,X)

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N0 = {0, 1, 2,−−−}. Then, we say that
A defines a matrix mapping from E into F , denote by A : E → F , if for every se-

quence x = (xn) ∈ E the sequence Ax = {(Ax)n} is in F where (Ax)n =
∞∑
k=0

ankxk,

provided the right hand side converges for every n ∈ N0 and x ∈ E.

Throughout the paper w, ℓ∞, c, c0, ℓp, bvp denote the space of all, bounded, con-
vergent and null, p-absolutly summable and p-bounded variation sequences respec-
tively. The zero sequence is denoted by θ = (0, 0, 0,−−−).

Let m ∈ N0 be fixed, then Esi and Tripathy [8] have introduced the follow-
ing type of difference sequence spaces Z(∆m) = {x = (xk) : (∆mxk) ∈ Z}, for
Z = ℓ∞, c and c0, where △mx = (△mxk) = (xk − xk+m)
Taking m = 1, we have the sequence spaces ℓ∞(△), c(△) and c0(△) studied by
Kizmaz [7].
Our main focus in this paper is on the operator D(r, 0, 0, s), where

D(r, 0, 0, s) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0 0 . . .
0 r 0 0 0 . . .
0 0 r 0 0 . . .
s 0 0 r 0 . . .
0 s 0 0 r . . .
. . . . . .
. . . . . .
. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remark: In particular if we consider r = −1 and s = 1 then D(r, 0, 0, s) = △3

The spectra of the difference operator has been investigated on different classes
of sequences by various authors in the recent past. Altay and Başar ( [1], [2], [3])
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studied the spectra of difference operator △ and generalized difference operator
B(r, s) on c0, c and ℓp. Tripathy and Paul [10,11] studied the spectra of the differ-
ence operator D(r, 0, 0, s) over the sequence spaces c0, c and ℓp and bvp. Recently
Tripathy and Paul [12] studied the spectrum of the operator B(f, g) on the vector
valued sequence space c0(X) . Başar et.al [5] have studied the subdivisions of the
spectra for the generalized difference operator B(r, s) over the sequence spaces c0, c
and ℓp and bvp.

Lemma 2.2. [10] σ(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| ≤ |s|}.

Lemma 2.3. [10] σp(D(r, 0, 0, s), c0) = φ.

Lemma 2.4. [10] σr(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| < |s|}.

Lemma 2.5. [10] σ(D(r, 0, 0, s), c) = {α ∈ C : |α− r| ≤ |s|}.

Lemma 2.6. [10] σp(D(r, 0, 0, s), c) = φ.

Lemma 2.7. [10] σr(D(r, 0, 0, s), c) = {α ∈ C : |α− r| < |s|} ∪ {r + s}.

Lemma 2.8. [11] σ(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| ≤ |s|}.

Lemma 2.9. [11] σp(D(r, 0, 0, s), ℓp) = φ.

Lemma 2.10. [11] σr(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| < |s|}.

Lemma 2.11. [11] σ(D(r, 0, 0, s), bvp) = {α ∈ C : |α− r| ≤ |s|}.

Lemma 2.12. The adjoint operator T ∗ of T is onto if and only if T has a bounded
inverse.

3. Subdivisions of the spectrum of D(r, 0, 0, s) over c0

In this section, we give the subdivisions of the spectrum of the difference oper-
ator D(r, 0, 0, s) over the sequence space c0.

Theorem 3.1. If α = r, then α ∈ III1σ(D(r, 0, 0, s), c0).

Proof: The operator D(r, 0, 0, s) − αI = D(0, 0, 0, s) for α = r, and since
R(D(0, 0, 0, s) ̸= c0, D(0, 0, 0, s) is not invertible and hence D(0, 0, 0, s) ∈ III1
or III2. To verify that D(0, 0, 0, s) has a bounded inverse, it is enough to show
that D(0, 0, 0, s) is bounded below. One can easily prove that for all x ∈ c0 that
||D(0, 0, 0, s)|| ≥ |s|

2 ||x|| which means that D(0, 0, 0, s) is bounded below. Hence
α ∈ III1σ(D(r, 0, 0, s), c0). ✷

Theorem 3.2. σap(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| ≤ |s|} \ {r}.
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Proof: Since σap(D(r, 0, 0, s), c0) = σ(D(r, 0, 0, s), c0) \ III1σ(D(r, 0, 0, s), c0),
σap(D(r, 0, 0, s), c0) = {α ∈ C : |α − r| ≤ |s|} \ {r} is obtained by Lemma 2.2
and Theorem 3.1. ✷

Theorem 3.3. σδ(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| ≤ |s|}.

Proof: Since σδ(D(r, 0, 0, s), c0) = σ(D(r, 0, 0, s), c0) \ I3σ(D(r, 0, 0, s), c0).
Now, I3σ(D(r, 0, 0, s), c0) = II3σ(D(r, 0, 0, s), c0) = III3σ(D(r, 0, 0, s), c0) =
σp(D(r, 0, 0, s), c0) = φ is obtained by Lemma 2.3. Hence σδ(D(r, 0, 0, s), c0) =
σ(D(r, 0, 0, s), c0). ✷

Theorem 3.4. σco(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| < |s|}.

Proof: σco(D(r, 0, 0, s), c0) = III1σ(D(r, 0, 0, s), c0) ∪ III2σ(D(r, 0, 0, s), c0) ∪
III3σ(D(r, 0, 0, s), c0).
Now,
III1σ(D(r, 0, 0, s), c0) ∪ III2σ(D(r, 0, 0, s), c0) = σr(D(r, 0, 0, s), c0) = {α ∈ C :
|α− r| < |s|} is obtained by Lemma 2.4.
Again, III3σ(D(r, 0, 0, s), c0) = σp(D(r, 0, 0, s), c0) = φ is obtained by Lemma 2.3
Hence, σco(D(r, 0, 0, s), c0) = {α ∈ C : |α− r| < |s|}. ✷

As a consequence of Proposition 2.1 we have the following result.

Corollary 3.5. The following results hold:
(i)σap(D(r, 0, 0, s)∗, ℓ1) = {α ∈ C : |α− r| ≤ |s|}.
(ii)σδ(D(r, 0, 0, s)∗, ℓ1) = {α ∈ C : |α− r| ≤ |s|}\{r}.

4. Subdivisions of the spectrum of D(r, 0, 0, s) over c

In this section, we give the subdivisions of the spectrum of the difference oper-
ator D(r, 0, 0, s) over the sequence space c.

Theorem 4.1. If α = r, then α ∈ III1σ(D(r, 0, 0, s), c).

Proof: This is obtained in the similar way that is used in the proof of Theorem
3.1. ✷

Theorem 4.2. σap(D(r, 0, 0, s), c) = {α ∈ C : |α− r| ≤ |s|}\{r}.

Proof: Since σap(D(r, 0, 0, s), c) = σ(D(r, 0, 0, s), c)\III1σ(D(r, 0, 0, s), c),
σap(D(r, 0, 0, s), c) = {α ∈ C : |α − r| ≤ |s|}\{r} is obtained by Lemma 2.5 and
Theorem 4.1. ✷

Theorem 4.3. σδ(D(r, 0, 0, s), c) = {α ∈ C : |α− r| ≤ |s|}.
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Proof: Since σδ(D(r, 0, 0, s), c) = σ(D(r, 0, 0, s), c)\I3σ(D(r, 0, 0, s), c).
Now,
I3σ(D(r, 0, 0, s), c) = II3σ(D(r, 0, 0, s), c) = III3σ(D(r, 0, 0, s), c)
= σp(D(r, 0, 0, s), c) = φ is obtained by Lemma 2.6. Hence σδ(D(r, 0, 0, s), c) =
σ(D(r, 0, 0, s), c). ✷

Theorem 4.4. σco(D(r, 0, 0, s), c) = {α ∈ C : |α− r| < |s|} ∪ {r + s}.

Proof: σco(D(r, 0, 0, s), c) = III1σ(D(r, 0, 0, s), c) ∪ III2σ(D(r, 0, 0, s), c)
∪III3σ(D(r, 0, 0, s), c).
Now,
III1σ(D(r, 0, 0, s), c) ∪ III2σ(D(r, 0, 0, s), c) = σr(D(r, 0, 0, s), c)
= {α ∈ C : |α− r| < |s|} ∪ {r + s} is obtained by Lemma 2.7.
Again, III3σ(D(r, 0, 0, s), c) = σp(D(r, 0, 0, s), c) = φ is obtained by Lemma 2.6.
Hence, σco(D(r, 0, 0, s), c) = {α ∈ C : |α− r| < |s|} ∪ {r + s}. ✷

As a consequence of Proposition 2.1 we have have the following result.

Corollary 4.5. The following results hold:
(i)σap(D(r, 0, 0, s)∗, ℓ1) = {α ∈ C : |α− r| ≤ |s|}.
(ii)σδ(D(r, 0, 0, s)∗, ℓ1) = {α ∈ C : |α− r| ≤ |s|}\{r}.

5. Subdivisions of the spectrum of D(r, 0, 0, s) over ℓp(1 < p < ∞)

In this section, we give the subdivisions of the spectrum of the difference oper-
ator D(r, 0, 0, s) over the sequence space ℓp.

Theorem 5.1. If α = r, then α ∈ III1σ(D(r, 0, 0, s), ℓp).

Proof: By Lemma 2.10, α ∈ IIIσ(D(r, 0, 0, s), ℓp) whenever α = r. Again by
Lemma 2.12, α = r is not in σp(D(r, 0, 0, s), ℓp) and hence (D(r, 0, 0, s) − rI)−1

exists. But D(r, 0, 0, s) − rI may be continuous or not. We have to show that
(D(r, 0, 0, s) − rI)−1 must be continuous, for this it is sufficient to show that
D(r, 0, 0, s)∗ − rI = D(0, 0, 0, s)∗ is onto by Lemma 2.12. Given y = (yk) ∈ ℓq
we must find x = (xk) ∈ ℓq such that D(0, 0, 0, s)∗x = y. By direct calculation we
see that xn = 1

syn−2 which shows that D(0, 0, 0, s)∗ is onto.
This completes the proof. ✷

Theorem 5.2. σap(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| ≤ |s|}\{r}.

Proof: Since σap(D(r, 0, 0, s), ℓp) = σ(D(r, 0, 0, s), ℓp)\III1σ(D(r, 0, 0, s), ℓp),
σap(D(r, 0, 0, s), ℓp) = {α ∈ C : |α − r| ≤ |s|}\{r} is obtained by Lemma 2.8 and
Theorem 5.1. ✷

Theorem 5.3. σδ(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| ≤ |s|}.
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Proof: Since σδ(D(r, 0, 0, s), ℓp) = σ(D(r, 0, 0, s), ℓp)\I3σ(D(r, 0, 0, s), ℓp).
Now,
I3(D(r, 0, 0, s), ℓp) = II3σ(D(r, 0, 0, s), ℓp) = III3σ(D(r, 0, 0, s), ℓp)
= σp(D(r, 0, 0, s), ℓp) = φ is obtained by Lemma 2.9.
Hence σδ(D(r, 0, 0, s), ℓp) = σ(D(r, 0, 0, s), ℓp). ✷

Theorem 5.4. σco(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| < |s|}.

Proof: σco(D(r, 0, 0, s), ℓp) = III1σ(D(r, 0, 0, s), ℓp) ∪ III2σ(D(r, 0, 0, s), ℓp) ∪
III3σ(D(r, 0, 0, s), ℓp).
Now, III1σ(D(r, 0, 0, s), ℓp) ∪ III2 ∪ (D(r, 0, 0, s), ℓp) = σr(D(r, 0, 0, s), ℓp)
= {α ∈ C : |α− r| < |s|} is obtained by Lemma 2.10.
Again, III3σ(D(r, 0, 0, s), ℓp) = σp(D(r, 0, 0, s), ℓp) = φ is obtained by Lemma 2.9.
Hence,σco(D(r, 0, 0, s), ℓp) = {α ∈ C : |α− r| < |s|}. ✷

As a consequence of Proposition 2.1 we have the following result.

Corollary 5.5. Let p−1 + q−1 = 1 then, the following are true.
(i)σap(D(r, 0, 0, s)∗, ℓq) = {α ∈ C : |α− r| ≤ |s|}.

(ii)σδ(D(r, 0, 0, s)∗, ℓq) = {α ∈ C : |α− r| ≤ |s|}\{r}.

6. Subdivisions of the spectrum of D(r, 0, 0, s) over bvp(1 < p < ∞)

In this section, we give the subdivisions of the spectrum of the difference opera-
tor D(r, 0, 0, s) over the sequence space bvp. Since the subdivisions of the spectrum
of the operator D(r, 0, 0, s) on the sequence space bvp can be derived by analogy
to the space ℓp, we omit the detail and give the related results without proof.

Theorem 6.1. The followings hold:

(i)σap(D(r, 0, 0, s), bvp) = {α ∈ C : |α− r| ≤ |s|}\{r}.

(ii)σδ(D(r, 0, 0, s), bvp) = {α ∈ C : |α− r| ≤ |s|}.

(iii)σco(D(r, 0, 0, s), bvp) = {α ∈ C : |α− r| < |s|}.

As a consequence of Proposition 2.1 we have the following result.

Corollary 6.2. The following results hold:
(i)σap(D(r, 0, 0, s)∗, bv∗p) = {α ∈ C : |α− r| ≤ |s|}.

(ii)σδ(D(r, 0, 0, s)∗, bv∗p) = {α ∈ C : |α− r| ≤ |s|}\{r}.
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Conclusion: We can generalize our operator

(D(r, 0, 0, ..(n− 1)times, s) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0 0 0 . . .
0 r 0 0 0 0 . . .
. . . . . . . . .
. . . . . . . . .
s 0 . . r 0 . . .
0 s 0 . . r . . .
. . . . . . .
. . . . . . .
. . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If we take r = −1 and s = 1, then the operator D(r, 0, 0, ..(n− 1)times, s) will
be the same as the generalized difference operator △n.Further on considering the
operator D(r, 0, 0, ..(n− 1)times, s) in place of D(r, 0, 0, s), one can get parallel all
our results obtained in this paper.
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