

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 34** 2 (2016): 99–105. ISSN-00378712 in press doi:10.5269/bspm.v34i2.22997

X- dominating colour transversals in bipartite graphs

Y.B. Venkatakrishnan, C. Natarajan and S.K. Ayyaswamy

ABSTRACT: Let G=(X,Y,E) be a bipartite graph. A X-colouring of G is a partition of X into k X-independent sets $\{X_1,X_2,\cdots,X_k\}$. The X-chromatic number $\chi_X(G)$ is the smallest order of an X-colouring of G. An X-dominating set $D\subseteq X$ is called a X-dominating colour transversal set of a graph G if D is a transversal of at least one χ_X -partition of G. The minimum cardinality of a X-dominating colour transversal set is called X-dominating colour transversal number and is denoted by $\gamma_X dct(G)$. We find the bounds for X-dominating colour transversal number and characterize the graphs attaining these bounds.

Key Words: X—dominating set, X—dominating colour transversal set, X—chromatic partition.

Contents

1	Introduction	99
2	Preliminaries	100
3	X-Dominating colour transversal sets	100
4	X-dct number of certain known family of graphs	103
5	Bounds and characterization theorems	103

1. Introduction

Let G = (V, E) be a graph of order n and size m. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood.

A vertex of a graph is said to dominate itself and all its neighbors. A subset $D \subseteq V$ is a dominating set of G if every vertex of G is dominated by at least one vertex of G. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination in graphs, see [2,3].

All graphs considered here are simple and undirected. Given any problem, say P, on an arbitrary graph G, there is a corresponding problem Q on a bipartite graph G^* , such that a solution for Q provides a solution for P. The bipartite theory of graphs was introduced by Stephen Hedetniemi and Renu Laskar in [4,5] and some parameters like X-dominating set, Y-dominating set, X-independent

 $2000\ Mathematics\ Subject\ Classification:\ 05C69$

set and X-colouring were defined. For more details on bipartite theory of graphs, see [6,7].

Colouring concepts and dominating sets are well studied topics in graph theory. The two concepts was combined by Gera et al introducing the parameter dominator colouring number [1] of a graph G. Here we define a new parameter called X-dominating colour transversal number of a bipartite graph.

2. Preliminaries

Let G=(X,Y,E) denote a bipartite graph the partite set of which are X and Y. Two vertices u,v of X are X-adjacent if they have a common neighbor in Y. If $x\in X$, then the set $N_Y(x)=\{u\in X:u\text{ and }x\text{ are }X-\text{adjacent }\}$. The X-degree of x, denoted by $d_Y(x)$, is the cardinality of the set $N_Y(x)$. The minimum X-degree is denoted by $\delta_Y(G)$.

A subset D of X is an X-dominating set [4] if every vertex in $X \setminus D$ is X-adjacent to at least one vertex in D. The minimum cardinality of an X-dominating set of G is called the X-domination number of G and is denoted by $\gamma_X(G)$.

The X- chromatic number $\chi_X(G)$ of a graph G is the minimum number of colours required to colour the vertices of X(G) in such a way that no two X- adjacent vertices of G receive the same colour. A partition of X into $\chi_X(G)$ X- independent sets [4] (called X-colour classes) is said to be a χ_X- partition of G.

Let $S \subseteq X$ and let $u \in S$. The vertex u is called an Y-isolate of S if there exists no vertex $v \in S \setminus \{u\}$ such that u and v are X-adjacent. A vertex $v \in X \setminus S$ is called a Y-private neighbor of u with respect to S if u is the only point in S such that u and v are X-adjacent.

3. X-Dominating colour transversal sets

Unless otherwise stated, we consider bipartite graphs G=(X,Y,E) with |X|=p and |Y|=q.

Definition 3.1. Let Π be a χ_X -partition of a graph G. A subset D of X is said to be a transversal of Π if D intersects every X-colour class of Π .

We now define the X-dominating colour transversal number of a graph G.

Definition 3.2. A X-dominating set $D \subseteq X(G)$ is called a X-dominating colour transversal set $(X-dct\ set)$ of a graph G if D is a transversal of at least one χ_X -partition of G.

An X-dct set is minimal if none of its proper subsets is an X-dct set. The minimum cardinality of a X-dct set is called X-dominating colour transversal number and is denoted by $\gamma_X dct(G)$.

Observation 3.3. For any graph G, $(i) \gamma_X(G) \leq \gamma_X dct(G)$.

 $(ii)\chi_X(G) \le \gamma_X dct(G).$

Example 3.4.

Consider the graph G

The χ_X -partition of G is $\{\{x_1, x_2\}\}, \{x_3, x_5\}, \{x_4, x_6\}\}$. Consider the sets $D_1 = \{x_1, x_3, x_6\}$ and $D_2 = \{x_1, x_2, x_5, x_6\}$. The two sets are X-dct sets. The set D_1 is a minimal X-dct set.

The following theorem provides existence of graphs for which $\gamma_X(G)=a$ and $\gamma_X dct(G)=b$.

Theorem 3.5. Given any two positive integers a and b where $a \leq b$, then there exists a bipartite graph G with $\gamma_X(G) = a$ and $\gamma_X dct(G) = b$.

Proof: Consider $K_{b,1}$ and attach a path of length six to some of a-1 vertices of $X(K_{b,1})$. The resulting graph is G. Let $X(G) = \{x_1, x_2, \cdots, x_b, x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, \cdots, x_{(a-1)1}, x_{(a-1)2}, x_{(a-1)3}\}$. Let $Y(G) = \{y, y_{11}, y_{12}, y_{13}, y_{21}, y_{22}, y_{23}, \cdots, y_{(a-1)1}, y_{(a-1)2}, y_{(a-1)3}\}$. The edges are $E(G) = \{x_iy : 1 \le i \le b\} \cup \{x_{i1}y_{i1} : 1 \le i \le a-1\} \cup \{x_{i2}y_{i1} : 1 \le i \le a-1\} \cup \{x_{i2}y_{i2} : 1 \le i \le a-1\} \cup \{x_{i2}y_{i3} : 1 \le i \le a-2\} \cup \{x_{i3}y_{i3} : 1 \le i \le a-1\}$. The set $\{x_{12}, x_{22}, \dots, x_{(a-1)2}, x_a\}$ is a minimum X-dominating set. Therefore, $\gamma_X(G) = a$. The partition $\pi = \{\{x_1, x_{12}\}, \{x_2, x_{22}\}, \cdots, \{x_{a-1}x_{(a-1)2}\}, \{x_a, x_{11}, x_{13}, x_{21}, x_{23}, \cdots, x_{(a-1)1}, x_{(a-1)3}\}, \{x_{a+1}\}, \{x_{a+2}\}, \cdots, \{x_b\}\}$ is a χ_X -partition of G. Therefore, $\chi_X(G) = b$ and $\gamma_X dct(G) \ge b$.

The set $D = \{x_{12}, x_{22}, x_{32}, \dots, x_{(a-1)2}, x_a, x_{a+1}, x_{a+2}, \dots, x_b\}$ is a X- dct set. Hence, $\gamma_X dct(G) \leq |D| = b$. Therefore, $\gamma_X dct(G) = b$.

We now show the existence of graphs for which $\gamma_X(G)=\chi_X(G)=\gamma_X dct(G)=a.$

Theorem 3.6. For any positive integer $a \ge 2$, there exists a graph G with $\gamma_X(G) = \chi_X(G) = \gamma_X dct(G) = a$.

Proof: We construct a graph G as follows:

Consider $K_{a,1}$. Between any two vertices of $X(K_{a,1})$, attach a path of length six. This graph G satisfies the property $\gamma_X(G) = \chi_X(G) = \gamma_X dct(G) = a$.

 $\begin{array}{l} \text{Let } X(G) = \{x_1, x_2, \cdots, x_a, x_{12}, x_{21}, x_{23}, x_{32}, \cdots, x_{a1}, x_{1a}\}. \text{ Let } Y(G) = \{y, y_1, y_{12}, y_{21}, y_2, y_{23}, y_{32}, \cdots, y_a, y_{a1}, y_{1a}\} \text{ and } E(G) = \{x_i y : 1 \leq i \leq a\} \cup \{x_i y_i : 1 \leq i \leq a\} \cup \{x_{(i+1)} y_i : 1 \leq i \leq a-1\} \cup \{x_{(i+1)} y_{i(i+1)} : 1 \leq i \leq a-1\} \cup \{x_{(i+1)} i y_{i(i+1)} : 1 \leq i \leq a-1\} \cup \{x_i y_{i(i-1)} : 2 \leq i \leq a\} \cup \{x_{a1} y_a, x_{a1} y_{a1}, x_{1a} y_{a1}, x_{1a} y_{1a}, x_{1y} y_{a1}\}. \end{array} \\ \text{Clearly, } D = \{x_{i(i+1)} : 1 \leq i \leq a-1\} \cup \{x_{a1}\} \text{ is a X-dominating set with minimum cardinality. Therefore, } \gamma_X(G) = a. \end{array}$

Since the vertex x_1 is X-adjacent to a vertices, $\chi_X(G) \ge a$. Let $X_1 = \{x_1, x_{21}, x_{a1}\}$, $X_i = \{x_i, x_{(i+1)i}, x_{(i-1)i}\}(2 \le i \le a-1)$ and $X_a = \{x_a, x_{1a}, x_{(a-1)a}\}$. Then, $\{X_1, X_2, ..., X_a\}$ is a X-chromatic partition of G. Therefore, $\chi_X(G) \le a$. Hence, $\chi_X(G) = a$.

Since $\gamma_X(G) \leq \gamma_X dct(G)$, we have $\gamma_X dct(G) \geq a$. The set $D = \{x_{12}, x_{23}, x_{34}, ..., x_{a1}\}$ is a transversal of the above partition and is also a X-dominating set. Hence, $\gamma_X dct(G) \leq a$. Therefore, $\gamma_X dct(G) = a$.

Example 3.7.

Graph with $\gamma_X(G) = \chi_X(G) = \gamma_X dct(G) = 4$.

The set $D = \{x_{12}, x_{23}, x_{34}, x_{41}\}$ is a minimum X-dominating set of G. The χ_X - partition of G is $\Pi = \{\{x_1, x_{21}, x_{41}\}, \{x_2, x_{32}, x_{12}\}, \{x_3, x_{43}, x_{23}\}, \{x_4, x_{14}, x_{34}\}\}$ and so D is also a minimum X-dct set of G.

We characterize minimal X-dct sets through the following theorem.

Theorem 3.8. An X-dct set D is minimal if and only if for every $u \in D$ any one of the following holds:

- (i) u is an Y-isolate of D.
- (ii) there exists a $v \in X \setminus D$ such that v is a Y-private neighbor of u with respect to D.
- (iii) For every χ_X -partition, $\Pi = \{X_1, X_2, ..., X_\chi\}$ there exists one X_i such that $X_i \cap D = \{u\}$ or ϕ .

Proof: Let D be an X-dct set. If D is minimal, then $D \setminus \{u\}$ is not an X-dct set for every $u \in D$. This implies that either $D \setminus \{u\}$ is not a X-dominating set or not a transversal of every χ_X -partition of G.

Case (i): Suppose $D \setminus \{u\}$ is not a transversal for every χ_X -partition $\{X_1, X_2, \cdots, X_\chi\}$. This implies that $(D \setminus \{u\}) \cap X_i = \phi$ for some i. That is $X_i \cap D = \{u\}$ or ϕ for some i. Hence (iii) is satisfied.

Case (ii): Suppose $D \setminus \{u\}$ is not a X- dominating set. Hence, some vertex $v \in X \setminus D \cup \{u\}$ is not X-adjacent to any vertex in $D \setminus \{u\}$. Then either v = u in which case u is an Y-isolate of D which is condition (i) or $v \in X \setminus D$ and v is

not X-adjacent to any vertex of $X \setminus D \cup \{u\}$. That is v is a Y-private neighbor of u which is (ii).

Conversely, assume any one of the three conditions holds.

Suppose D is not a minimal X-dct set of G.

There exists $u \in D$ such that $D \setminus \{u\}$ is a X-dct set of G.

Let $\{X_1, X_2, \cdots, X_X\}$ be a χ_X -partition of X for which $D \setminus \{u\}$ and D are transversals. Then $D \setminus \{u\}$) $\cap X_i \neq \phi$ and $D \cap X_i \neq \phi$ for every i. This implies $D \cap X_i \neq \{u\}$ or ϕ contradicting condition (iii).

Since $D - \{u\}$ is X-dct set for some $u \in D$, $D \setminus \{u\}$ is a X-dominating set of G. Hence u is X-adjacent to at least one vertex in $D \setminus \{u\}$, and so condition (i) does not hold for D. Also every vertex in $X \setminus D$ is X-adjacent to at least one vertex in $D \setminus \{u\}$, and so condition (ii) does not hold for u. Thus D does not satisfy (i) and (ii).

4. X-dct number of certain known family of graphs

Theorem 4.1. $\gamma_X dct(K_{m,n}) = m$.

Proof: Every vertex in $X(K_{m,n})$ is X-adjacent to other vertices in X. Therefore, $\chi_X(K_{m,n}) = m$. We know that $\chi_X(K_{m,n}) \leq \gamma_X dct(K_{m,n})$. Therefore, $\gamma_X dct(k_{m,n}) \geq m$. X is itself a X-dct set. Hence, $\gamma_X dct(K_{m,n}) \leq m$. Therefore, $\gamma_X dct(K_{m,n}) = m$.

Notation: Let S_p be a bipartite graph (X, Y, E), |X| = p; |Y| = p - 1 with a vertex x in X such that x is X-adjacent to all other vertices of X through different $y \in Y$ and all vertices in $X \setminus \{x\}$ are end vertices.

Theorem 4.2. $\gamma_X dct(S_p) = 2$.

Proof: The χ_X -partition of S_p is $\{\{x\}, X - \{x\}\}$. The vertex x X-dominates other vertices in X. Therefore, $\{x, z\}$ is a minimal X-dct set of S_p for any vertex z in $X \setminus \{x\}$. Hence, $\gamma_X dct(S_p) = 2$.

5. Bounds and characterization theorems

It is known that $1 \leq \gamma_X dct(G) \leq p$. We shall now characterize bipartite graphs with $\gamma_X dct(G) = p$. Let $x \in X$. Then $d_Y(x)$ is the number of vertices X-adjacent to x.

Theorem 5.1. For a connected bipartite graph G, $\gamma_X dct(G) = p$ if and only if $d_Y(x) = p - 1$, $\forall x \in X$.

Proof: Let $d_Y(x) = p - 1$, $\forall x \in X$. Then $\chi_X(G) = p$. Any X-dct set is a transversal of χ_X -partition, we have $\gamma_X dct(G) = p$.

Conversely, assume $\gamma_X dct(G) = p$.

Claim: $d_Y(x) = p - 1, \forall x \in X$.

If $d_Y(x) \neq p-1$ for some $x \in X$, then there exists at least one vertex $u \in X$ such that u and x are non X-adjacent and $D = X \setminus \{x\}$ is a X-dominating set. We can form a χ_X -partition with $\{x,u\}$ as a X-colour class. Thus we have a χ_X -

partition in which $\{x\}$ is not a X-colour class, for which D is a transversal. Hence, D is a X-dct set of G. So, $\gamma_X dct(G) \leq |D| = p-1$, which is a contradiction to $\gamma_X dct(G) = p$. Thus, $\gamma_X dct(G) = p$ if and only if $d_Y(x) = p-1$, $\forall x \in X$. \Box Now we give the upper bound of $\gamma_X dct(G)$ in terms of X-domination number and X-chromatic number.

Theorem 5.2. For every graph G, $\gamma_X dct(G) \leq \gamma_X(G) + \chi_X(G) - 1$ and the bound is sharp.

Proof: Let D be a γ_X -set in G. Since D is nonempty, D intersects at least one colour class of every χ_X -partition. For any χ_X -partition, by choosing at the most $\chi_X - 1$ vertices, D can be enlarged to an X-dct set. Hence, $\gamma_X dct(G) \leq \gamma_X(G) + \chi_X(G) - 1$.

Consider $K_{m,n}$. We have $\gamma_X(K_{m,n}) = 1$, $\chi_X(K_{m,n}) = m$ and $\gamma_X dct(K_{m,n}) = m$. Hence the bound is sharp.

Theorem 5.3. For a graph G, $\gamma_X dct(G) = \gamma_X(G) + \chi_X(G) - 1$ implies that one X-colour class of every χ_X -partition is a γ_X -set.

Proof: Let $\gamma_X dct(G) = \gamma_X(G) + \chi_X(G) - 1$. Suppose no colour class of some χ_X -partition π is a γ_X -set. Since no γ_X -set can be a proper subset of any X-colour class, it follows that any γ_X -set D has to intersect at least two colour classes of Π . From the remaining $\chi_X - 2$ X-colour classes, choosing one vertex, we get an X-dct set with $\gamma_X + \chi_X - 2$ vertices, which implies that $\gamma_X dct(G) \leq \gamma_X(G) + \chi_X(G) - 2$, a contradiction.

Observation 5.4. Converse of the above theorem need not be true.

Consider the cycle C_8 . $\gamma_X dct(c_8)=2=\chi_X(C_8)=\gamma_X(C_8)$. Therefore, $\gamma_X dct(G)=\gamma_X(G)+\chi_X(G)-1$ is not satisfied.

Theorem 5.5. If G is a graph, then $\gamma_X dct(G) = \gamma_X(G) + \chi_X(G) - 1$ implies that every γ_X -set is a colour class of every χ_X -partition of G.

Proof: Let D be a γ_X -set. Let Π be any χ_X -partition of G. Then D can neither be a proper subset of one X-colour class of Π nor intersects two or more X-colour classes of Π . Hence, D is exactly a X-colour class of Π .

Theorem 5.6. Let G be a graph. Then $\gamma_X dct(G) = \gamma_X(G) + \chi_X(G) - 1$ if and only if every γ_X -set is a X-colour class of every χ_X -partition of G and is contained in a $\gamma_X dct$ -set of G.

Proof: Let $\gamma_X dct(G) = \gamma_X(G) + \chi_X(G) - 1$. Then by the above theorem, every γ_X -set is a X-colour class of every χ_X -partition. Let D be a γ_X -set of G. Then D is a X-colour class of every χ_X -partition of G. By choosing one element from each of the remaining $(\chi_X - 1)$ colour classes, we get an X-dct set D' of cardinality $\gamma_X(G) + \chi_X(G) - 1$. Hence, D' is a $\gamma_X dct$ -set containing D.

Conversely, let D be a γ_X -set such that D is a X- colour class of every χ_X -partition of G and also is contained in some $\gamma_X dct$ -set say D'. Hence,

$$\begin{array}{l} \chi_X(G)-1 \leq \left|D^{'}-D\right| = \gamma_X dct(G) - \gamma_X(G). \ \ \text{Therefore, } \gamma_X(G)+\chi_X(G)-1 \leq \gamma_X dct(G). \ \ \text{But } \gamma_X dct(G) \leq \gamma_X(G)+\chi_X(G)-1. \ \ \text{Hence, } \gamma_X dct(G) = \gamma_X(G)+\chi_X(G)-1. \end{array}$$

References

- Gera.R, Horton.S and Ramussen. C, Dominator coloring and safe clique Partitions, Congressus Numerantium, Volume 181 (2006), 19-32.
- 2. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, 1998.
- 3. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topics, Marcel Dekker, New York, 1998.
- Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs I, Congressus Numerantium, Volume 55; December 1986, 5–14.
- 5. Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs II, Congressus Numerantium, Volume 64; November 1988, 137-146.
- V. Swaminathan and Y.B. Venkatakrishnan, Bipartite theory of irredundant set, Proyecciones Journal of Mathematics, Volume 30;2011, 19-28.
- 7. V. Swaminathan and Y.B. Venkatakrishnan, *Bipartite theory on domination in complement* of a graph, International Journal of Computational and Mathematical Sciences, Volume 3:2009.96-97.

Y.B. Venkatakrishnan, C.Natarajan and S.K.Ayyaswamy Department of Mathematics, School of Humanities and Sciences, SASTRA University, Tanjore, India E-mail address: venkatakrish2@maths.sastra.edu

 $E{-}mail\ address{:}\ \mathtt{venkatakrish2@maths.sastra.edu}$ $E{-}mail\ address{:}\ \mathtt{mathsnatarajan@gmail.com}$ $E{-}mail\ address{:}\ \mathtt{sjcayya@yahoo.co.in}$