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X− dominating colour transversals in bipartite graphs

Y.B.Venkatakrishnan, C.Natarajan and S.K.Ayyaswamy

abstract: Let G = (X, Y,E) be a bipartite graph. A X−colouring of G is a

partition of X into k X−independent sets {X1,X2, · · · ,Xk}. The X−chromatic

number χX(G) is the smallest order of an X−colouring of G. An X-dominating

set D ⊆ X is called a X−dominating colour transversal set of a graph G if D

is a transversal of at least one χX−partition of G. The minimum cardinality of

a X−dominating colour transversal set is called X−dominating colour transversal

number and is denoted by γXdct(G). We find the bounds for X−dominating colour

transversal number and characterize the graphs attaining these bounds.

Key Words:X−dominating set, X−dominating colour transversal set, X−
chromatic partition.
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1. Introduction

Let G = (V,E) be a graph of order n and size m. By the neighborhood of a
vertex v of G we mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a
vertex v, denoted by dG(v), is the cardinality of its neighborhood.

A vertex of a graph is said to dominate itself and all its neighbors. A subset
D ⊆ V is a dominating set of G if every vertex of G is dominated by at least
one vertex of D. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. For a comprehensive survey of domination in
graphs, see [2,3].

All graphs considered here are simple and undirected. Given any problem, say
P , on an arbitrary graph G, there is a corresponding problem Q on a bipartite
graph G∗, such that a solution for Q provides a solution for P . The bipartite
theory of graphs was introduced by Stephen Hedetniemi and Renu Laskar in [4,5]
and some parameters like X−dominating set, Y−dominating set, X−independent

2000 Mathematics Subject Classification: 05C69

99
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v34i2.22997


100 Y.B.Venkatakrishnan, C.Natarajan and S.K.Ayyaswamy

set and X−colouring were defined. For more details on bipartite theory of graphs,
see [6,7].

Colouring concepts and dominating sets are well studied topics in graph theory.
The two concepts was combined by Gera et al introducing the parameter dominator
colouring number [1] of a graph G. Here we define a new parameter called X−
dominating colour transversal number of a bipartite graph.

2. Preliminaries

Let G = (X,Y,E) denote a bipartite graph the partite set of which are X and
Y . Two vertices u, v of X are X−adjacent if they have a common neighbor in Y .
If x ∈ X , then the set NY (x) = {u ∈ X : u and x are X−adjacent }. The X−
degree of x, denoted by dY (x), is the cardinality of the set NY (x). The minimum
X−degree is denoted by δY (G).

A subset D of X is an X−dominating set [4] if every vertex in X \D is X−
adjacent to at least one vertex in D. The minimum cardinality of an X−dominating
set of G is called the X−domination number of G and is denoted by γX(G).

The X− chromatic number χX(G) of a graph G is the minimum number of
colours required to colour the vertices of X(G) in such a way that no two X−
adjacent vertices of G receive the same colour. A partition of X into χX(G) X−
independent sets [4] ( called X−colour classes) is said to be a χX−partition of G.

Let S ⊆ X and let u ∈ S. The vertex u is called an Y−isolate of S if there
exists no vertex v ∈ S \ {u} such that u and v are X−adjacent. A vertex v ∈ X \S
is called a Y−private neighbor of u with respect to S if u is the only point in S

such that u and v are X−adjacent.

3. X−Dominating colour transversal sets

Unless otherwise stated, we consider bipartite graphs G = (X,Y,E) with |X | =
p and |Y | = q.

Definition 3.1. Let Π be a χX−partition of a graph G. A subset D of X is said
to be a transversal of Π if D intersects every X−colour class of Π.

We now define the X−dominating colour transversal number of a graph G.

Definition 3.2. A X-dominating set D ⊆ X(G) is called a X−dominating colour
transversal set (X− dct set) of a graph G if D is a transversal of at least one
χX−partition of G.

An X−dct set is minimal if none of its proper subsets is an X−dct set. The
minimum cardinality of a X−dct set is called X−dominating colour transversal
number and is denoted by γXdct(G).

Observation 3.3. For any graph G,
(i) γX(G) ≤ γXdct(G).
(ii)χX(G) ≤ γXdct(G).

Example 3.4.
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Consider the graph G

s s s

s s s s

s s s

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4The χX−partition of G is {{x1, x2}, {x3, x5}, {x4, x6}}. Consider the sets D1 =
{x1, x3, x6} and D2 = {x1, x2, x5, x6}. The two sets are X−dct sets. The set D1 is
a minimal X−dct set.

The following theorem provides existence of graphs for which γX(G) = a and
γXdct(G) = b.

Theorem 3.5. Given any two positive integers a and b where a ≤ b, then there
exists a bipartite graph G with γX(G) = a and γXdct(G) = b.

Proof: Consider Kb,1 and attach a path of length six to some of a− 1 vertices of
X(Kb,1). The resulting graph is G. Let X(G) = {x1, x2, · · · , xb, x11, x12, x13,

x21, x22, x23, · · · , x(a−1)1, x(a−1)2, x(a−1)3}. Let Y (G) = {y, y11, y12, y13, y21, y22,
y23, · · · , y(a−1)1, y(a−1)2, y(a−1)3}. The edges are E(G) = {xiy : 1 ≤ i ≤ b} ∪
{xi1yi1 : 1 ≤ i ≤ a−1}∪{xiyi1 : 1 ≤ i ≤ a−1}∪{xi1yi2 : 1 ≤ i ≤ a−1}∪{xi2yi2 :
1 ≤ i ≤ a − 2} ∪ {xi2yi3 : 1 ≤ i ≤ a − 2} ∪ {xi3yi3 : 1 ≤ i ≤ a − 1}.The set
{x12, x22, ..., x(a−1)2, xa} is a minimum X−dominating set. Therefore, γX(G) = a.
The partition π = {{x1, x12}, {x2, x22}, · · · , {xa−1x(a−1)2}, {xa, x11, x13, x21,

x23, · · · , x(a−1)1, x(a−1)3}, {xa+1}, {xa+2}, · · · , {xb}} is a χX−partition of G. The-
refore, χX(G) = b and γXdct(G) ≥ b.
The set D = {x12, x22, x32, · · · , x(a−1)2, xa, xa+1, xa+2, · · · , xb} is a X− dct set.
Hence, γXdct(G) ≤ |D| = b. Therefore, γXdct(G) = b. �

We now show the existence of graphs for which γX(G) = χX(G) = γXdct(G) =
a.

Theorem 3.6. For any positive integer a ≥ 2, there exists a graph G with γX(G) =
χX(G) = γXdct(G) = a.

Proof:We construct a graph G as follows:
Consider Ka,1. Between any two vertices of X(Ka,1), attach a path of length six.
This graph G satisfies the property γX(G) = χX(G) = γXdct(G) = a.
Let X(G) = {x1, x2, · · · , xa, x12, x21, x23, x32, · · · , xa1, x1a}. Let Y (G)={y, y1, y12,
y21, y2, y23, y32, · · · , ya, ya1, y1a} and E(G) = {xiy : 1 ≤ i ≤ a} ∪ {xiyi : 1 ≤ i ≤
a} ∪ {xi(i+1)yi : 1 ≤ i ≤ a− 1} ∪ {xi(i+1)yi(i+1) : 1 ≤ i ≤ a− 1} ∪ {x(i+1)iyi(i+1) :
1 ≤ i ≤ a − 1} ∪ {x(i+1)iy(i+1)i : 1 ≤ i ≤ a − 1} ∪ {xiyi(i−1) : 2 ≤ i ≤ a} ∪
{xa1ya, xa1ya1, x1aya1, x1ay1a, x1y1a}. Clearly, D = {xi(i+1) : 1 ≤ i ≤ a−1}∪{xa1}
is a X−dominating set with minimum cardinality. Therefore, γX(G) = a.
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Since the vertex x1 is X−adjacent to a vertices, χX(G) ≥ a. Let X1={x1, x21, xa1},
Xi = {xi, x(i+1)i, x(i−1)i}(2 ≤ i ≤ a − 1) and Xa = {xa, x1a, x(a−1)a}. Then,
{X1, X2, ..., Xa} is a X−chromatic partition of G. Therefore, χX(G) ≤ a. Hence,
χX(G) = a.
Since γX(G) ≤ γXdct(G), we have γXdct(G) ≥ a. The set D = {x12, x23, x34, ...,

xa1} is a transversal of the above partition and is also a X−dominating set. Hence,
γXdct(G) ≤ a. Therefore, γXdct(G) = a. �

Example 3.7.

Graph with γX(G) = χX(G) = γXdct(G) = 4.

The set D = {x12, x23, x34, x41} is a minimum X−dominating set of G. The
χX− partition of G is Π = {{x1, x21, x41}, {x2, x32, x12}, {x3, x43, x23}, {x4, x14,

x34}} and so D is also a minimum X−dct set of G.

We characterize minimal X−dct sets through the following theorem.

Theorem 3.8. An X−dct set D is minimal if and only if for every u ∈ D any
one of the following holds:
(i) u is an Y−isolate of D.
(ii) there exists a v ∈ X \D such that v is a Y−private neighbor of u with respect
to D.
(iii) For every χX−partition, Π = {X1, X2, ..., Xχ} there exists one Xi such that
Xi ∩D = {u} or φ.

Proof: Let D be an X−dct set. If D is minimal, then D \ {u} is not an X−dct
set for every u ∈ D. This implies that either D \ {u} is not a X−dominating set
or not a transversal of every χX−partition of G.
Case (i): Suppose D\{u} is not a transversal for every χX−partition {X1, X2, · · · ,
Xχ}. This implies that (D \ {u}) ∩Xi = φ for some i. That is Xi ∩D = {u} or φ

for some i. Hence (iii) is satisfied.
Case (ii): Suppose D \ {u} is not a X− dominating set. Hence, some vertex
v ∈ X \D ∪ {u} is not X−adjacent to any vertex in D \ {u}. Then either v = u

in which case u is an Y−isolate of D which is condition (i) or v ∈ X \D and v is
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not X−adjacent to any vertex of X \D ∪ {u}. That is v is a Y−private neighbor
of u which is (ii).

Conversely, assume any one of the three conditions holds.
Suppose D is not a minimal X−dct set of G.
There exists u ∈ D such that D \ {u} is a X−dct set of G .

Let {X1, X2, · · · , Xχ} be a χX−partition of X for which D \ {u} and D are
transversals. Then D \ {u}) ∩ Xi 6= φ and D ∩ Xi 6= φ for every i. This implies
D ∩Xi 6= {u} or φ contradicting condition (iii).

Since D−{u} is X−dct set for some u ∈ D, D \{u} is a X-dominating set of G.
Hence u is X-adjacent to at least one vertex in D \ {u}, and so condition (i) does
not hold for D. Also every vertex in X \D is X-adjacent to at least one vertex in
D \ {u}, and so condition (ii) does not hold for u. Thus D does not satisfy (i) and
(ii). �

4. X−dct number of certain known family of graphs

Theorem 4.1. γXdct(Km,n) = m.

Proof: Every vertex in X(Km,n) is X−adjacent to other vertices in X . There-
fore, χX(Km,n) = m. We know that χX(Km,n) ≤ γXdct(Km,n). Therefore,
γXdct(km,n) ≥ m. X is itself a X−dct set. Hence, γXdct(Km,n) ≤ m. Therefore,
γXdct(Km,n) = m. �

Notation: Let Sp be a bipartite graph (X,Y,E), |X | = p; |Y | = p − 1 with a
vertex x in X such that x is X-adjacent to all other vertices of X through different
y ∈ Y and all vertices in X \ {x} are end vertices.

Theorem 4.2. γXdct(Sp) = 2.

Proof: The χX−partition of Sp is {{x}, X − {x}}. The vertex x X−dominates
other vertices in X . Therefore, {x, z} is a minimal X−dct set of Sp for any vertex
z in X \ {x}. Hence, γXdct(Sp) = 2. �

5. Bounds and characterization theorems

It is known that 1 ≤ γXdct(G) ≤ p. We shall now characterize bipartite graphs
with γXdct(G) = p. Let x ∈ X . Then dY (x) is the number of vertices X−adjacent
to x.

Theorem 5.1. For a connected bipartite graph G, γXdct(G) = p if and only if
dY (x) = p− 1, ∀x ∈ X.

Proof: Let dY (x) = p − 1, ∀x ∈ X . Then χX(G) = p. Any X− dct set is a
transversal of χX−partition, we have γXdct(G) = p.

Conversely, assume γXdct(G) = p.
Claim: dY (x) = p− 1, ∀x ∈ X .
If dY (x) 6= p− 1 for some x ∈ X , then there exists at least one vertex u ∈ X such
that u and x are non X−adjacent and D = X \ {x} is a X−dominating set. We
can form a χX−partition with {x, u} as a X−colour class. Thus we have a χX−
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partition in which {x} is not a X−colour class, for which D is a transversal. Hence,
D is a X−dct set of G. So, γXdct(G) ≤ |D| = p − 1, which is a contradiction to
γXdct(G) = p. Thus, γXdct(G) = p if and only if dY (x) = p− 1, ∀x ∈ X . �

Now we give the upper bound of γXdct(G) in terms of X-domination number and
X-chromatic number.

Theorem 5.2. For every graph G, γXdct(G) ≤ γX(G)+χX(G)−1 and the bound
is sharp.

Proof: Let D be a γX−set in G. Since D is nonempty, D intersects at least
one colour class of every χX−partition. For any χX−partition, by choosing at the
most χX − 1 vertices, D can be enlarged to an X−dct set. Hence,γXdct(G) ≤
γX(G) + χX(G)− 1.

Consider Km,n. We have γX(Km,n) = 1, χX(Km,n) = m and γXdct(Km,n) =
m. Hence the bound is sharp. �

Theorem 5.3. For a graph G, γXdct(G) = γX(G) + χX(G)− 1 implies that one
X−colour class of every χX−partition is a γX−set.

Proof: Let γXdct(G) = γX(G) + χX(G) − 1. Suppose no colour class of some
χX−partition π is a γX−set. Since no γX−set can be a proper subset of any
X−colour class, it follows that any γX−set D has to intersect at least two colour
classes of Π. From the remaining χX − 2 X−colour classes, choosing one vertex,
we get an X−dct set with γX + χX − 2 vertices, which implies that γXdct(G) ≤
γX(G) + χX(G)− 2, a contradiction. �

Observation 5.4. Converse of the above theorem need not be true.

Consider the cycle C8. γXdct(c8) = 2 = χX(C8) = γX(C8). Therefore,
γXdct(G) = γX(G) + χX(G)− 1 is not satisfied.

Theorem 5.5. If G is a graph, then γXdct(G) = γX(G)+χX(G)− 1 implies that
every γX−set is a colour class of every χX−partition of G.

Proof: Let D be a γX−set. Let Π be any χX−partition of G. Then D can neither
be a proper subset of one X−colour class of Π nor intersects two or more X−colour
classes of Π. Hence, D is exactly a X−colour class of Π. �

Theorem 5.6. Let G be a graph. Then γXdct(G) = γX(G)+χX(G)−1 if and only
if every γX−set is a X−colour class of every χX−partition of G and is contained
in a γXdct−set of G.

Proof: Let γXdct(G) = γX(G) + χX(G) − 1. Then by the above theorem, every
γX−set is a X− colour class of every χX−partition. Let D be a γX−set of G.
Then D is a X−colour class of every χX−partition of G. By choosing one element
from each of the remaining (χX − 1) colour classes, we get an X−dct set D

′

of
cardinality γX(G) + χX(G) − 1. Hence, D

′

is a γXdct−set containing D.
Conversely, let D be a γX−set such that D is a X− colour class of every

χX−partition of G and also is contained in some γXdct−set say D
′

. Hence,
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χX(G) − 1 ≤
∣

∣

∣

D
′

−D
∣

∣

∣

= γXdct(G) − γX(G). Therefore, γX(G) + χX(G) − 1 ≤

γXdct(G). But γXdct(G) ≤ γX(G) + χX(G) − 1. Hence, γXdct(G) = γX(G) +
χX(G)− 1. �
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