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On limit behavior in space-time

Josiney A. Souza

ABSTRACT: This article presents an interpretation of cosmic evolution. Concepts
of general topology, geometry, and topological dynamics are used in the construction
of a mathematical model for limit behavior in space-time. The S-compactification
plays a role in the formation of a transcendent setting which covers the limits of
space-time.
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1. Introduction

The concept of cosmological singularity is one of the main questioning in modern
science. The expansion of the universe and the evidence for black holes indicate
that the singularities in fact exist. But one says that the laws of nature break
down into a singularity, since it is a location where the measure of temperature
and density of matter become infinite. In other words, the singularities transcend
space-time.

The general theory of relativity published by Albert Einstein in 1916 is the
current description of gravitation in modern physics. Einstein’s theory implies the
existence of black holes and gravitational singularities, where the quantities that are
used to measure the gravitational field become infinite in such a way that does not
depend on the coordinate system. According to general relativity, the initial state
of the universe at the beginning of the Big Bang was a singularity ([11]). Another
type of singularity would be formed inside a black hole ([5]). On the other hand

2000 Mathematics Subject Classification: 37B25,37B35

Typeset by Bsg&style.
127 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v33i1.23011

128 JOSINEY A. Souza

of the history, the ultimate fate of the universe might also be a singularity, the Big
Crunch, in which the metric expansion of space eventually reverses and the universe
collapses, ultimately ending as a black hole singularity or causing a reformation of
the universe starting with another Big Bang ([12],[13],[14]). If the universe is
finite in extent, the cosmological principle does not apply, and the expansion speed
does not exceed the escape velocity, then the mutual gravitational attraction of
all its matter will eventually cause it to contract. Eventually all matter would
collapse into black holes, which would then coalesce producing a unified black hole
or Big Crunch singularity. The Hubble Constant measures the current state of
expansion in the universe, and the strength of the gravitational force depends on
the density and pressure of the matter in the universe, that is, the critical density
of the universe. By assuming that there is no repulsive force such as a cosmological
constant, if the density of the universe is greater than the critical density, then the
strength of the gravitational force will stop the universe from expanding and the
universe will collapse back on itself. Otherwise, since the nature of the dark energy
that is postulated to drive the acceleration is unknown, it is still possible that the
expansion of the universe might eventually reverse sign and cause a collapse ([19]).

Nevertheless, some theories such as the theory of loop quantum gravity suggest
that singularities may not exist. Based on the quantum gravity effects, there is
a minimum distance beyond which the force of gravity no longer continues to
increase as the distance between the masses becomes shorter. Stephen Hawking
showed that the Big Bang has infinite density. But Hawking later revised his
position in [8] where he stated that there was no singularity at the beginning of
the universe. This revision followed from quantum mechanics, in which general
relativity must break down at times less than the Planck time. Hence general
relativity can not be used to show a singularity. By assuming that matter carries
out the dominant energy condition, which means that the energy is bigger than
the pressure, Roger Penrose has stated that the universe violates the stronger
dominant energy condition during inflation, and inflationary cosmologies avoid the
initial Big Bang singularity, rounding them out to a smooth beginning. One can
extend general relativity to a unified field theory, such as the Einstein-Maxwell-
Dirac system, where no such singularities occur.

The evidence for singularities indicates that human has many things to dis-
covery on the universe. The general theory of relativity is not complete without a
specification for what happens to matter that hits a singularity. The main question
concerns the infinite quantities in which the law of physics break down. However,
an asymptotically compact extension for the space-time could be a theoretical hy-
pothesis for an explanation about the infinite quantities and the singularities. The
space-time may be bigger than one knows on or may be embedded into a larger
space.

There are various mathematical methods of embedding the space-time in a com-
pact space. The Stone-Cech compactification is the greatest process of embedding
the space-time as a dense subset of some compact space. The central useful fact
about the Stone-Cech compactification is the extension property. Assuming the
galilean space-time structure, the action of the four-dimensional euclidean group
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on the space-time extends to an action on the Stone-Cech compactification of the
space-time. By considering the asymptotical behavior on the time direction, the
action in the compactification admits only one nontrivial Morse decomposition,
which consists of an attractor and a repeller. The limit behavior of the action is
completely determined, since all limit sets of events lie in the attractor-repeller
pair. This fact means that all events start asymptotically backward at the repeller
and terminate asymptotically forward at the attractor.

2. The Stone-Cech compactification

In this section we recall the definition of Stone-Cech compactification. We refer
to [7] and [20] for the details of this process of compactification.

Let X be a Tychonoff space, that is, a completely regular and Hausdorff space.
Let C* (X)) denote the collection of all bounded continuous real-valued functions
on X. The range of each f € C* (X)) can be taken as a compact interval Iy in the

real line R. By the Tychonoff theorem, the product — [[ Iy is a compact space.
fec*(X)
Define the evaluation map e : X —  [[ Iy by [e(z)]; = f(z). Since X is
fecx(X)
Tychonoff, the collection C* (X) separates points from closed sets in X and thus,

the evaluation map is an embedding of X into  [[ Iy.
fec(X)

Definition 2.1. The Stone-Cech compactification (or B-compactification) of X is

the closure BX of e (X) in the product ] Iy.
fec=(x)

The Stone-Cech compactification is the greatest compactification of a Tychonoff
space because of the extension property, given by the following theorem.

Theorem 2.2. If K is a compact Hausdorff space and f : X — K 1is continuous,
there is a continuous F : X — K such that Foe= f.

Note that the evaluation map is an embedding of X into SX. Then X is
often written for e (X), so that X C SX, and the above theorem becomes: every
continuous function from X to a compact space K can be extended to X . Actually,
Theorem 2.2 characterizes the Stone-Cech compactification, up to what is called
topological equivalence.

2.1. The filter description of SX

A zero set in X is a set of the form f=1(0) for f : X — [0,1] continuous. A
nonempty collection F of nonempty zero sets in X is a z-filter on X if

1. 71,7y € F implies Z1 N Z5 € F,
2. Z € F and Z’' is a zero set containing Z, then Z’' € F.

A z-ultrafilter is a z-filter which is contained in no strictly z-filter. Let BX
be the set of all z-ultrafilters in X. For each zero set Z C X, define h(Z) =
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{u € BX : Z € u}. The sets of the form h(Z) can be used as a base for closed
sets to obtain a topology on BX. This topology is compact and Hausdorff. For
each x € X, let u, be the unique z-ultrafilter converging to x, that is, the z-
ultrafilter containing all the neighborhoods of . Then x € X — u, € BX is an
embedding of X as a dense subset of BX. Moreover, each continuous map f of X
into a compact Hausdorff space K can be extended to BX. Hence, BX has the
extension property, and therefore BX is topologically equivalent to the Stone-Cech
compactification SX. As usual in topology, we may consider BX = 8X.

If X is a Ty (normal Hausdorff) space, then we can use closed sets instead of
zero sets to define the ultrafilters. In this case, 5X identifies with the space of all
closed ultrafilters in X.

3. Limit behavior of group actions

We now present the basic definitions and results which enable the study of limit
behavior of group actions. We introduce the notions of limit sets, attractors, and
chain recurrence. We refer to papers [2], [3], [6], [17], and [18] for unexplained
dynamical concepts for general semigroup actions.

Definition 3.1. Let M be a topological space and let G be a topological group with
identity e. A right group action (M, Q) is defined by a jointly continuous in each
variable separately map o : M x G — M: (x,9) — xg, satisfying (i) xe = x, and
(i7) z (gh) = (zg) h, for allx € M and g,h € G.

Let (M,G) be a fixed group action. For given sets X C M and S C G, we
define the set XS ={zg: 2 € X,g € S}. A set X C M is said to be S-invariant if
XS cX.

Definition 3.2. The subsemigroup S C G is said to be centric if sS = Ss for
every s € S.

If the semigroup S is centric and generates G, then G = S~1S, which is well-
known as Ore’s conditions (see [4]). In this case, a subset X C M is G-invariant
if and only if it is S-invariant and S~'-invariant. Note that any subsemigroup of
G is centric if G is abelian.

From now on, there is a fixed generating centric subsemigroup S C G.

Definition 3.3. The following relation in S is defined:
fort,se S, lett > s if and only ift =s ort e Ss.

The relation > is the reverse of the well-known Green’s L-preorder of semigroup
theory: t <. s if and only if t = s or t € Ss ([4]). Since S is centric, the preorder
> is directed, because the family of translates F = {St : ¢t € S} is a filter basis on
the subsets of S. We consider the limit behavior of (M, G) in this direction, which
means that F is used to define the dynamical concepts, as follows.
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Definition 3.4. The w-limit set of a nonempty subset X C M 1is defined as

w(X) = (") cls(XSt),

tes

and the w*-limit set (or a-limit set) of X as

w*(X) = ﬂ cs (XS~

tes

If M is a compact Hausdorff space, then the limit sets w (X) and w* (X) are
nonempty, compact, and G-invariant (see [2, Propositions 2.10, 2.12]).

Definition 3.5. An attractor for the group action (M, G) is a set A which admits a
neighborhood V' such that w (V) = A. A repeller is a set R that has a neighborhood
U with w* (U) = R. The neighborhoods V' and U are called attractor neighborhood
of A and repeller neighborhood of R, respectively. We consider both the empty set
and the whole set M as trivial attractors and repellers.

For an attractor A, the complementary repeller of A is define as
A* ={zeM:w(z)NnA =0} The pair (A,A*) is called an attractor-repeller
pair. The main property of an attractor-repeller pair is stated in the following
result ([2, Proposition 3.6]).

Proposition 3.6. Assume that M is a compact space. Let A be an attractor and
suppose that © ¢ AUA*. Then w* () C A* and w(z) C A.

Now we define the concept of chain recurrence. We refer to [16] for the definition
and properties of admissible family of open coverings of M.

Definition 3.7. For z,y € M, an open covering W of M and t € S, we define
a (U, t)-chain from x to y as a sequence xg = x,x1,....,x, = y in M, elements
to,...,tn—1 = t and open sets Uy,...,U,_1 € WU, such that x;t;,x;41 € U;, for
i=0,....,n—1.

Definition 3.8. Let O be an admissible family of open coverings of M. The -
chain limit set of X is defined as

Q(X) = ﬂ Q(X, U t),
UeO,tes

where Q (X, U, t)={y € M: there is a point t€ X and a (U,t) -chain from x to y},
and the 2*-chain limit set of X is defined as

QO(X)= [ (XU,
UEO teS

where Q* (X, U, t)={y € M: there is a point x€X and a (U,t) -chain from y to x}.
A point x € M is chain recurrent if x € Q (). A subset Y C M is chain recurrent
if all the points in' Y are chain recurrent. A subset Y C M is chain transitive if
Y CQ(x) foralxz €Y.
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Let 2R be the chain recurrence set, that is, the set of all chain recurrent points
of (M,G). If M is a compact Hausdorff space, the Conley theorem for semigroup
actions proved in [2, Theorem 4.1] says that R = [ {AUA* : A is an attractor}.
If M is a (noncompact) Tychonoff space, there is an admissible family of open
coverings of M such that R = ({AUA* : A is a B-attractor} ([17, Theorem 2]).
If z € R, then the maximal chain transitive set containing x is the set M, =
Q(z) N Q* (z). The chain transitivity is an equivalence relation in R whose the
equivalence classes are the maximal chain transitivity sets. In general, the limit
sets w () and w* (x) are chain transitive for every x € M. Hence, if y € w () and
z € w* (z), then y,z € R, w(z) C My, and w* () C M., although M, may be
different from M,. Maximal chain transitive sets are G-invariant (see [15]).

We now introduce the important concept of isomorphism.

Definition 3.9. A homomorphism of the group action (M, G) into the group action
(N, G) is a continuous map ¢ : M — N such that ¢ (xg) = ¢ (x) g for all x € M
and g € G. If a homomorphism ¢ is also a homeomorphism of M onto N, then it
is an isomorphism of (M, G) onto (N,G).

The limits sets, the attractor-repeller pairs, and the maximal chain transitive
sets are dynamical invariant, that is, they are invariant under isomorphisms.

3.1. The (-compactification of groups

We now recall the main result of [15] on limit behavior in the S-compactification
of a topological group.

Let G be a noncompact Ty topological group with identity e. Then the -
compactification SG is described as the set of all closed ultrafilters on G. For each
g € G, we have the ultrafilter u, = {A C G:g € A}. The mapping g € G —
ug € BG is an embedding of G as a dense subset of 8G. Thus, we may consider
G C BG. The group G acts on the right on G with the mapping o : G x G — BG:
(u,g) — ug, where ug = {Ag : A € u}.

Let S & G be a generating centric subsemigroup and assume that it is closed
and has nonempty interior in G. Consider the direction as stated in Definition 3.3.

Definition 3.10. A subsemigroup H of G is called total if HU H~' = G; it is
called semitotal if there is an element h € H such that h~'H UhH™ ! = G.

Note that a total subsemigroup is semitotal. The main theorem in [15, Theorem
3.9] relates an algebraic property of S to a dynamical property of S, and describes
completely the limit behavior of (8G, G), as follows.

Theorem 3.11. The semigroup S is semitotal if and only if w(e) and w* (e) are
the mazimal chain transitive sets in 8G. FEquivalently, S is semitotal if and only
if (w(e),w* (e)) is the only nontrivial attractor-repeller pair in BG.

In particular, if S is total, then (w (e),w* (e)) is the only nontrivial attractor-
repeller pair in SG. Since G is an invariant dense set in SG, it follows that G N
(w(e) Uw* (e)) = @, that is, there is no chain recurrent point in G.
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4. Compactification of space-time

In this section we present the main result of the paper. By assuming the galilean
space-time structure, we consider the extension of the four-dimensional euclidean
group action to the Stone-Cech compactification of the space-time. We refer to [1]
for the formulation of galilean space-time structure.

The special principle of relativity was first explicitly enunciated by Galileo
Galilei in 1632 in his Dialogue Concerning the Two Chief World Systems. The
space is three-dimensional and euclidean, and time is one-dimensional. The laws of
nature at all moments of time are the same in all inertial coordinate systems. Every
coordinate system in uniform rectilinear motion with respect to an inertial one is
itself inertial. This principle is a basic experimental fact that lie at the foundation
of mechanics.

Let A™ denote the affine n-dimensional space. The abelian group R™ acts on
the right on A™ as the group of parallel displacements:

A—A+u, AcecA"ueR" A+uecA”.

If A+ v = B, then we denote u = B — A. The distance between two points
X, Y € A" is defined as d(X,Y) = || X — Y|, where ||| is a norm in R™. The
affine space with this distance is well-known as the euclidean space E".

The galilean space-time structure consists of the following three elements:

1. The universe — a four-dimensional affine space A*. The points of A* are
called world points or events. The parallel displacements of the universe A*
constitute the abelian group R*.

2. Time — a non-trivial linear functional ¢ : R* — R from the group of parallel
displacements of the universe to the real "time axis". The time interval from
the event A € A to the event B € At is the number t (B — A). If t (B — A) =
0, then the events A and B are called simultaneous. Since the kernel of the
linear functional ¢ is a three-dimensional linear vector subspace R3 of the
vector space R*, the set of events simultaneous with a given event forms a
three-dimensional affine subspace in A%. It is called a space of simultaneous
events A3.

3. The distance between simultaneous events d (A, B) = |A — B||, A, B € A3, is
given by a norm ||-|| in R®. This distance makes every space of simultaneous
events into a three-dimensional euclidean space E3.

A space A* equipped with a galilean space-time structure is called a galilean
space.

By considering the self-action of R*, the group actions (R*,R*) and (A% ,R*)
are isomorphic. An isometric isomorphism between (R4, R4) and (A4, R4) may be
obtained by fixing a world point O € A* and then defining the mapping ¢ : R* —
A* as ¢ (u) = O + u. This isomorphism transferees the galilean structure of A*
to R*. In particular, the group action (A4,R4) has the same limit behavior as
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(R4, R4), and the S-commpactification of the galilean space A? coincides with the
B-compactification of the abelian group R*.

The limit behavior in the time direction is evidently the interest in the galilean
space-time structure. Let S C R* be the subsemigroup defined as

S={veR':t(v)>0}.

This semigroup establishes the time direction to the action of R*. It is easily seen
that S is total in R?. Furthermore, we have S+ u = {v € R : ¢ (v) >t (u)}, for
every v € R*. Thus, the limit sets of X C SR?* are described by

(x) x € BR? : there are sequences (u,) in S and (z,) in X
“ such that ¢ (u,) — +oo and z,u, — x ’
w* (X) x € BR* : there are sequences (u,) in S and (z,) in X

- such that ¢ (u,) - —oo and x,u, — '

If 0 is the origin of R*, then we have the limit sets

w(0) = {zepR*:thereist
w*(0) = {x€pBR*: thereist

(upn) — +oo with x,u, — z} ,

(up) — —oo with x,u, — z} .

By Theorem 3.11, w (0) is an attractor, w* (0) is its complementary repeller, and
(w (0),w* (0)) is the only nontrivial attactor-repeller pair in SR*. This fact means
that the dynamics in SR?* are totally described by w (0) and w* (0), since w (0)
contains all the w-limit sets and w* (0) contains all the w*-limit sets. Moreover,
w (0) and w™* (0) are the only maximal chain transitive sets, or in other words, they
are the only two equivalence class of the chain recurrence relation in SR?.

By fixing a world point O € A%, it follows that the limit sets w (O) and w* (O)
describe the global dynamical behavior in the [-compactification of the galilean
space A*. The trajectories which traverse the space-time are repelled from w* (O)
and attracted to w (0). As (w(O),w* (0)) is the only nontrivial attactor-repeller
pair in SA?*, it does not depend on the world point O. Thus we may denote
A =w*(0) and Q =w (0). The sets A and ) represents respectively the beginning
times and the end times.

4.1. Proceeding models

Notice that the sets A and € are regions of the compactification SA* outside
the space-time, that is, they do not intersect A%. In other words, the regions A
and ) transcend space-time. Although we can not illustrate these regions which
are outside the space-time, we may describe their projections on compact sets of
A* by using the extension property stated in Theorem 2.2.

Let O be a fixed world point in A*. Since A* is homeomorphic with the space
By (0O) x (0,1), where (0,1) C R and By (O) is the open 1-ball centered at O in
the space of simultaneous events A3, then there is a projection BA* — By [O] x
[0,1] of BA* onto By [O] x [0,1], where By [O] is the closed 1-ball centered at O.
The projections of A and € coincide respectively with the slices By [O] x {0} and
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By [0] x {1} (see Figure 1-(a)). This model comes near to the Penrose model of
closed universe dominated by radiation, where the cosmological singularity is a
c-boundary with the same spherical topology as the closed universe ([9],[10]).

—
Projection of C2

=T Projection of A
Projection of A MR

@ (L)) ©

Figure 1: (a) Projection of SA* onto By [O] x [0,1]. The time evolution of the
universe occurs inside the cylinder, on the vertical direction, from the projection of
the repeller A within the projection of the attractor Q. (b) Collapse of the projec-
tions of A and ) into the quotient space of SA* by the chain recurrence relation,
forming the suspension ) Bj [O]. The time evolution of the universe occurs inside
the suspension, from the initial point within the end point. (c) Identification of A
and (2 to a single point. The circles represent the expansion of the universe, which
collapses back on itself.

Another way of interpreting A and () is based on a quotient map. Since A
and Q are the only distinct chain recurrence classes in SA*, they identify with two
distinct single points in the quotient space of SA* by the chain recurrence relation.
The quotient space of By [O] x [0,1] by the induced chain recurrence relation is the
suspension »_ By [O] obtained by identifying the slice By [O] x {0} to a single point,
and the slice By [O] x {1} to another point (Figure 1-(b)). This model approaches
the Big Bang-Big Crunch model of space-time with point singularities.

We may also view A and Q by means of the projection of 3A* onto the closed
1-ball B; [O] in A%. The projections of A and 2 on By [O] form the two hemispheres
of the sphere S; [O] with intersection in the equator. Because of this intersection,
the quotient space of B; [O] by the induced chain recurrence relation is obtained
by identifying the whole sphere S; [O] to a single point (Figure 1-(c)). This model
suggests that the expansion of the universe reverses and it collapses ultimately
ending as a single point or restarting the expansion. One may include the idea of
a cyclic universe, in what it could collapse to the state where it began and then
initiate another expansion. In this way the universe would last forever, but would
pass through phases of expansion (Big Bang) and contraction (Big Crunch). The
peculiar aspect of this model is that the collapsed point is a limit point of the space
during all the phases of its evolution.
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5. Conclusion

The present paper contributes to the formal discussion about the limits of the

universe. The Stone-Cech compactification of the galilean space could be used as
a mathematical tool of studying the infinite quantities and the singularities in the
space-time. The theoretical existence of a universal attractor-repeller pair yields
a proceeding model of cosmology that approaches the hypothetical occurrence of
the Big Bang and the Big Crunch. This attractor-repeller pair describes the global
dynamics in such a way that all events in the space-time begin at the repeller and
terminate at the attractor.
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