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The Order of Minimal Realization of Jordan Canonical Form Systems

Kameleh Nassiri Pirbazari and Mehdi Azari

abstract: This paper presents a new method based on controllability and observ-
ability of Jordan canonical form systems useful in determining the order of minimal
realization. Since any standard system is equivalent to a Jordan canonical form
system, this method is applicable to any standard system.
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1. Introduction

Consider the standard time invariant linear system:

{

ẋ (t) = Ax (t) +Bu(t)
y (t) = Cx (t) +Du (t)

, (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are the coefficient
matrices of the system and x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state,
input and output vectors respectively. The dimention of x(t) is called the order of
the system. The order of system (1.1) is equal to n.

The matrix G(s) = C(sI − A)−1B +D is called the transfer matrix of system
(1.1). The system (1.1) is controllable if and only if rank [B AB ... An−1B] = n,

and is observable if and only if rank
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= n. For the sake of brevity, we
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show system (1.1) as [A,B,C,D]. The system [A,B,C,D] is called a realization
for transfer matrix G(s) if G(s) = C(sI −A)−1B+D. The realization [A,B,C,D]
is minimal if it has the smallest possible order [4, 7]. The realization of [A,B,C,D]
is minimal if and only if it is controllable and observable [1, 2, 3, 5, 8].

Two systems [A,B,C,D] and [Ā, B̄, C̄, D̄] are equivalent if they have the same
order and the number of inputs and outputs is equal and there exists nonsingular
matrices P and Q such that:

Ā = QAP, B̄ = QB, C̄ = CP, D̄ = D.

Equivalent systems have the same minimal order, since their transfer matrices are
the same [2, 3].
Selecting matrices P and Q properly, each standard system [A,B,C,D] will be
equivalent to a system [J, B̄, C̄, D̄] in which matrix J is in Jordan canonical form
[6].

2. Recognizing the controllability and observability of a system using
Jordan canonical form

Consider the system [J, B̄, C̄, D̄] in which J is in the Jordan canonical form and
suppose:
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, (2.1)

C̄ =
[

CP1
· · · CPα

Ck+1 · · · Cn

]

,

where eigenvalue λ1 has multiplicity k and other eigenvalues λk+1, ..., λn are dis-
tinct. The matricesBP1

, ..., BPα
, Bk+1, ..., Bn and matrices CP1

, ..., CPα
, Ck+1, ..., Cn

are classified corresponding to Jordan blocks in J . The following theorems are as-
sociated with the controllability and observability of system [J, B̄, C̄, D̄].

Theorem 2.1. System (2.1) is controllable if and only if

1. The last rows of submatrices B̄ corresponding to Jordan blocks which correspond

to the same eigenvalues are linearly independent.

2. If a frequent eigenvalue has only one Jordan block, the last row of its corre-

sponding submatrix in B̄ is nonzero.

3. The rows of B̄ corresponding to distinct eigenvalues are nonzero.

Proof: See [2] and [3]. ✷
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Theorem 2.2. System (2.1) is observable if and only if

1. The first columns of submatrices C̄ corresponding to Jordan blocks which corre-

spond to the same eigenvalues are linearly independent.

2. If a frequent eigenvalue has only one Jordan block, the first column of the cor-

responding submatrix in C̄, is a nonzero vector.

3. The columns in C̄ corresponding to distinct eigenvalues are nonzero.

Proof: See [2] and [3]. ✷

Consider system (2.1), the linearly dependent number of uncontrollability (un-
observability), for two Jordan blocks with the same eigenvalues in which the last
rows (the first columns) of submatrices in B̄ (C̄) corresponding to the two Jordan
blocks are linearly dependent is defined as follows:

Definition 2.1. The number of linearly dependent consecutive rows with the last

rows of submatrices B̄, corresponding to Jordan blocks having the same eigenvalues

is called linearly dependent number of uncontrollability in that block.

Definition 2.2. The number of linearly dependent consecutive columns with the

columns of submatrices C̄, corresponding to Jordan blocks having the same eigen-

values is called linearly dependent number of unobservability in that block.

3. Determining the order of minimal realization of standard systems

In this section, the system is considered in the form of [J, B̄, C̄, D̄] in which J

is in Jordan canonical form. The following two states are considered:

I) The Jordan matrix J includes Jordan blocks with distinct eigenvalues

If the system [J, B̄, C̄, D̄] satisfies the conditions of theorems 2.1 and 2.2, the
dimension of matrix J is equal to the order of minimal realization. Otherwise steps
1 and 2 are applied in order to determine the order of minimal realization:

Step 1 (elimination of uncontrollable factors in system [J, B̄, C̄, D̄])
Considering the last rows of submatrices in B̄ corresponding to Jordan block for
each eigenvalue. If they are equal to zero, then the rows in submatrices B̄ are
eliminated together with their corresponding rows and columns in matrix J and
their corresponding columns in submatrices C̄. The process is continued as long as
the last rows of submatrices in B̄ corresponding to Jordan block of that eigenvalue
are nonzero. This process is repeated for all the eigenvalues. Finally the resultant
matrices from the elimination of the rows in B̄ and the rows and columns in J and
the columns in C̄ are called B̄1, J1, C̄1 respectively.

Step 2 (elimination of unobservability factors in system [J1, B̄1, C̄1, D̄])
Considering the first columns of submatrices C̄1 which correspond to the jordan
block for each eigenvalue. If the columns are zero then the columns in submatrices
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C̄1, together with their corresponding rows and columns in matrix J1 and their
corresponding rows in submatrices B̄1 are eliminated. The process is continued
as long as the first columns of submatrices in C̄1 corresponding to Jordan block
of that eigenvalue are nonzero. The process is repeated for all the eigenvalues.
Finally, the resultant matrix from the elimination of the rows and columns in J1 is
called J2. The dimension of matrix J2 is termed the order of minimal realization
of [J, B̄, C̄, D̄].

II) The Jordan matrix J includes Jordan blocks with repetitive eigen-
values

Consider the case in which at most two blocks of submatrices in B̄ (C̄) have
the last rows (the first columns) which are linearly dependent.

Step 1 (elimination of uncontrollable factors in [J, B̄, C̄, D̄])
If one Jordan block with the size of n1 has linearly dependent number of uncon-
trollability and linearly dependent number of unobservability n1, then the block is
eliminated. If one other block with the size of n2 possesses the same property, then
the smaller sized block is eliminated and Stage (I) adopted, otherwise the following
step is adopted:
First two blocks with the same eigenvalues containing the last rows of submatrices
B̄ which correspond to the blocks which are linearly dependent, are considered. If
at least one of the rows is a zero vector then (1-1) is applied, otherwise (2-1) is
applied.

(1-1): The zero row (two rows) in submatrix B̄, its corresponding row and column
in J and its corresponding column in C̄ are eliminated. The process continues as
long as the last rows of submatrices B̄ corresponding to two Jordan blocks are not
zero vectors. (The names of the matrices B̄, J , C̄ in which elimination operation
is performed are not changed). Now, if with the elimination of zero vectors in the
submatrices of B̄ corresponding to the two Jordan blocks, the last rows of subma-
trices B̄ corresponding to the two Jordan blocks are linearly dependent, then (2-1)
is applied, otherwise step 2 is applied.

(2-1): Between two Jordan blocks, the block which has the less linearly dependent
number of uncontrollability (If the numbers are equal, the choice is arbitrary) is
selected. Being equal to the linearly dependent number of uncontrollability, elimi-
nation is made from the last rows of submatrices B̄ corresponding to that Jordan
block, together with its corresponding rows and columns in the block of Jordan
matrix J and the corresponding columns in submatrices C̄. The aforementioned
process is performed for both the Jordan blocks with the same eigenvalues in which
the last rows of submatrices B̄ corresponding to the two Jordan blocks are linearly
dependent. Stage (I) is performed for Jordan blocks with distinct eigenvalues. Fi-
nally, the resultant matrices from the eliminations are called B̄1, J1, C̄1.
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Step 2 (elimination of unobservable factors [J1, B̄1, C̄1, D̄])
Considering the two Jordan blocks with the same eigenvalues containing linearly
dependent first columns of submatrices in C̄1 which correspond to the two Jordan
blocks, if at least one of the columns is zero then (1-2) is applied, otherwise (2-2)
is applied.

(1-2): The column (two columns) in submatrix C̄1, together with its corre-
sponding row and column in J1 and its corresponding column in B̄1 is eliminated.
The process is continued as long as the first columns of submatices in C̄1 corre-
sponding to two Jordan block are not zero vectors. (The names of the matrices
B̄1, J1, C̄1 in which elimination operation is performed, are not changed). Now,
if with the elimination of zero vectors in the submatrices of C̄1 corresponding to
the two Jordan blocks, the first columns of submatrices C̄1 corresponding to the
two Jordan blocks are linearly dependent, then step (2-2) is applied, otherwise the
process is finished.

(2-2): Between two Jordan blocks, the block containing the less linearly depen-
dent number of unobservability is selected (If the numbers are equal, the choice
is arbitrary). Being equal to the linearly dependent number of unobservability,
elimination is made from the first column of submatrix C̄1 corresponding to that
of Jordan block, together with its corresponding rows and columns in J1 and the
corresponding rows in submatrices B̄1. The aforementioned process is performed
for both Jordan blocks containing the same eigenvalues, in which the first columns
of submatrices C̄1 corresponding to the two Jordan blocks are linearly dependent.
For Jordan blocks with distinct eigenvalues, step 2 of (I) is applied. Finally, the
resultant matrix from the elimination of rows and columns in J1 is called J2. The
dimension of matrix J2 is the order of minimal realization of the system [J, B̄, C̄, D̄].

Example 3.1. We consider system [J, B̄, C̄, D̄] in which
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Eliminating zero vector in submatrix B̄1, its corresponding row and column in J

and its corresponding column in C1 leads to:
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Linearly dependent number of uncontrollability of B̄2 is less than B̄1, consequently

the last row of submatrix B̄2 is eliminated, also its corresponding row and column

in J and its corresponding column in C̄ which leads to:
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The linear dependent number of unobservability of C̄2 is equal to 1 and the linear

dependent number of unobservability of C̄1 is equal to 2, consequently the first col-

umn of C̄2 and its corresponding row and column in J1 and its corresponding row

in B̄1 are eliminated:
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The aforementioned system is of the 3rd order and, the minimal realization of the

first system is also of the 3rd order.
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4. Algorithm

Algorithm: Determining the order of minimal realization of standard systems
using Jordan canonical form

Input: A standard system [A,B,C,D].
Output: The order of minimal realization of [A,B,C,D].
Step 1: Converting the system [A,B,C,D] to the system[J, B̄, C̄, D̄] in which J

is in Jordan canonical form.
Step 2: Elimination of zero vector from the last rows in submatrices B̄ and also
elimination of the corresponding columns in submatrices C̄ and the corresponding
rows and columns in J .
Step 3: Elimination of zero vector from first columns in submatrices C̄ and also
elimination of the corresponding rows in submatrices B̄ and the corresponding rows
and columns in J .
Step 4: If the resultant matrix J from previous step lacks Jordan blocks with
the same eigenvalues, then the dimension of J is the order of minimal realization,
otherwise step 5 is applied.
Step 5: If one Jordan block with the dimension of n1 has linearly dependent num-
ber of uncontrollability and linearly dependent number of unobservability n1, the
block is eliminated. (If there is another block with the dimension of n2 which has
similar property, the block with fewer dimension is eliminated).
Step 6: If the last rows of submatrices B̄ corresponding to Jordan blocks with the
same eigenvalues are linearly independent then step 8 is applied, otherwise step 7
is applied.
Step 7: Between two Jordan blocks containing the same eigenvalues, the block
which has the less linear dependent number of uncontrollability is selected and
equal to the number, the rows of B̄ from the last row in B̄ corresponding to that
Jordan block and the corresponding columns in C̄ and the corresponding rows and
columns in J are eliminated.
Step 8: If the first column of submatrix C̄ corresponding to Jordan blocks with
the same eigenvalues are linearly dependent, then the dimension of J is the order
of minimal realization, otherwise step 9 is applied.
Step 9: Between two Jordan blocks containing the same eigenvalues, the block
which has the less linear dependent number of unobservability is selected and equal
to the number, the columns of C̄ from the first column in C̄ corresponding to that
Jordan block and the corresponding rows in B̄ and the corresponding rows and
columns in J are eliminated.

The dimension of matrix J which resulted from these steps is the order of minimal
realization of the initial system.
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5. Conclusion

This paper, by applying a new method and defining two new concepts, has
demonstrated that with the elimination of unobservable and uncontrollable factors
of a system in which the state matrix is in Jordan form, the system order can be
decreased and this decrease can continue in order to remove all unobservable and
uncontrollable components and the minimal order of the system can be determined.
Since each system is equivalent to a system in which the state matrix is in Jordan
form, then this method is efficient to achieve the minimal order of each standard
system.

References

1. Astolfi, A., Sassano, M., Dynamic generalized controllability and observability functions
with applications to model reduction and sensor deployment, Automatica, 50 (5), 1349-1359,
(2014).

2. Chen, C. T., Introduction to Linear System Theory, Holt Rinehart and Winston, (1984).

3. Chen, C. T., Linear Systems Theory and Design, 3rd Edition, Oxford University Press,
(1999).

4. Datta, B. N., Numerical Methods for Linear Control Systems, Elsevier Science & Technology
Books, (2003).

5. Guo, T. L., Controllability and observability of impulsive fractional linear time-invariant
system, Computers & Mathematics with Applications, 64 (10), 3171-3182, (2012).

6. Ogata, K., Modern Control Engineering, 5th Edition, Prentice Hall, (2009).

7. Schutter, B. D., Minimal state-space realization in linear system theory: an overview, J.
Comput. Appl. Math., 121, 331-354, (2000).

8. Zhou, T., On the controllability and observability of networked dynamic systems, Automatica,
52, 63-75, (2015).

Kameleh Nassiri Pirbazari

Department of Applied Mathematics, Faculty of Mathematical Sciences,

University of Guilan

Iran.

E-mail address: k-nasiri@guilan.ac.ir

and

Mehdi Azari

Department of Applied Mathematics, Faculty of Mathematical Sciences,

University of Guilan

Iran.

E-mail address: mr.mehdiazari@yahoo.com


	Introduction
	Recognizing the controllability and observability of a system using Jordan canonical form
	Determining the order of minimal realization of standard systems 
	Algorithm
	Conclusion

