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An Orlicz extension of difference modular sequence spaces
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ABSTRACT: In this paper we construct some new difference modular sequence
spaces defined by a sequence of Orlicz functions over n-normed spaces. We also study
several properties relevant to topological structures and interrelationship between
these spaces.
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1. Introduction and Preliminaries

Let X be a linear metric space. A function p : X — R is called paranorm, if
1. p(x) >0 for all z € X,
2. p(—z) =p(z) for all z € X,
3. plx+y) <px)+ply) for all z,y € X,

4. if (\,) is a sequence of scalars with \,, — A as n — oo and (x,,) is a sequence
of vectors with p(x, —x) — 0 as n — oo, then p(A,z, —Az) — 0 asn — oo.

A paranorm p for which p(z) = 0 implies = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2,
pp. 183).

The notion of difference sequence spaces was introduced by Kizmaz [16], who stud-
ied the difference sequence spaces I (A), ¢(A) and ¢o(A). The notion was further
generalized by Et and Colak [7] by introducing the spaces lo(A"), ¢(A™) and
co(A™). Later the concept have been studied by Bektas et al. [3] and Et et al. [8].
Another type of generalization of the difference sequence spaces is due to Tripathy
and Esi [29] who studied the spaces lo(A,), ¢(A,) and c¢o(A,). Recently, Esi et
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al. [9] and Tripathy et al. [30] have introduced a new type of generalized difference
operators and unified those as follows.
Let v, n be non-negative integers, then for Z a given sequence space, we have

Z(AY) ={x=(z) € w: (ALxy) € Z}

for Z = ¢, cg and lo where Az = (Alxy) = (APl — A2y ,) and Adzy, = 2y,
for all k£ € N, which is equivalent to the following binomial representation

n _ - _1\ym n
Avmk = Z:O( 1) ( m )-Tk-i-vm-
Taking v = 1, we get the spaces lo(A"), ¢(A™) and ¢o(A™) studied by Et and
Colak [7]. Taking v =n = 1, we get the spaces I (A), ¢(A) and ¢o(A) introduced
and studied by Kizmaz [16]. For more details about difference sequence spaces (see
(1], [4], [5], [19], [20], [27]) and references therein.

Let w be the family of all real or complex sequences, which is a vector space with
the usual pointwise addition and scalar multiplication. We write e (n > 1) for the
nt™ unit vector in w, i.e €” = {0p; }321 where d,; is the Kronecker delta, and ¢ for
the subspace of w generated by e™’s, n > 1, i.e, ¢ = span{e™ : n > 1}. A sequence
space 7 is subspace of w containing . The sequence space 7 is said to be solid if
(agxi) € n whenever () € n for all sequences () of scalars such that |ai| <1
for all k£ € N. A sequence space 7 is said to be monotone if 1 contains the canonical
pre images of all its step spaces. A Banach sequence space (7, 5) is called a BK-
space if the topology S of 7 is finer than the co-ordinatewise convergence topology,
or equivalently, the projection maps P, : n — K, P;(x) = x;, ¢ > 1 are continuous,
where K is the scalar field R or C. For x = (21, ..., Zp, ...) and n € N, we write the
nt" section of x as z(") = (1, ey 20, 0,0,..0). If 2™ = 2 in (n,S) for each x € 7,
we say that (7, 5) is an AK-space. The norm |||, generating the topology S of 7
is said to be monotone if ||z[, < ||y|l, for @ = {a;}, y = {v:} € n with |z;| < |y,
for all i > 1 (see [14]).

An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M (0) =0, M(x) > 0 for z > 0 and M(z) — o0 as & — 0.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the fol-
lowing sequence space:

EM:{xew: E M(M)<oo, forsomep>0}
p
k=1

which is called as an Orlicz sequence space. The space £, is a Banach space with
the norm
- ||
|| = mf{p >0: ZM(—) < 1}.
k=1 P

It is shown in [15] that every Orlicz sequence space £); contains a subspace iso-
morphic to £,(p > 1). In the later stage different Orlicz sequence spaces were
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introduced and studied by Parashar and Choudhary [25], Esi and Et [6], Tripathy
and Mahanta [31], Mursaleen [21] and many others. The As—condition is equiva-
lent to M (Lx) < kLM (x) for all values of > 0 and for L > 1.

A sequence M = (M) of Orlicz functions is called a Musielak-Orlicz function (see
[22], [23]). A sequence N = (N}) defined by

Ni(v) = sup{|v|u — My(u) :u >0}, k=1,2,---
is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space t)¢ and its sub-
space hy are defined as follows;
tyv = {x € w: Int(ex) < oo for some ¢ > 0},
hyw = {:I: €w: Iy(ex) < oo for all ¢ > 0},

where ) is a convex modular defined by
IM(:C) = ZMk(zk>; xr = (ZL'k> € ty.
k=1

We consider ¢y equipped with the Luxemburg norm
\|z|| = inf{k >0 IM(%) < 1}

or equipped with the Orlicz norm

2|l = inf{%(l +IM(k:c)) k> o}.

Any Orlicz function M}, can always be represented in the following integral form

M) = / (e,

where 7, is known as the kernel of My, is a right differentiable for ¢ > 0, 7, (0) =
0, n,(t) > 0, n,, is non-decreasing and 7, (t) — oo as t — oo.
Given an Orlicz function M}, with kernel 7, (t), define

vi(s) =sup{t : n,(t) < s,s > 0}.

Then v (s) possesses the same properties as 7, (t) and the function N, defined as

Ni(z) = /095 vi(s)ds

is an Orlicz function. The functions M}, and Ny, are called mutually complementary
Orlicz functions.
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For a sequence M = (Mj},) of Orlicz functions, the modular sequence class I (M) is
defined by

M) ={z = (zx) €w: Y My(|lzx|) < o0}
k=1

Using the sequence N = (N;) of Orlicz functions, similarly we define I(N). The
class [(M) is defined by

IM)y={z=(zp) Ew: szyk converges, for all y € I[(N)}.
k=1

For a sequence M = (M) of Orlicz functions, the modular sequence space [(M) is
also defined as

IM) ={z = (z) Ew: ZM’“(M) < oo, for some p > 0}.
k=1 P
The space {(M) is a Banach space with respect to the norm |[|z||5 defined as
ol = nt(p >0 3 3 (2 < 1.
k=1

These spaces were introduced by Woo [33] around the year 1973 and generalizes
the Orlicz sequence space [, and the modulared sequence spaces considered earlier
by Nakano [24]. For more details about modular sequence spaces (see [15], [28])
and references therein.

An important subspace of (M), which is an AK-space, is the space h(M) defined
as

ho) = (o € 100 Y 24 () < e, for some > 0}
k=1

A sequence (Mjy) of Orlicz functions is said to satisfy uniform Ay— condition at
'0" if there exist p > 0 and ko € N such that for all z € (0,1) and k > ko, we have

% < p, or equivalently, there exists a constant K > 1 and kg € N such that
A]ffk(éz)) < K for all z € (0, 3]. If the sequence (M) satisfy uniform As— condition,

then h(M) = (M) and vice-versa (see [33]).

Let M}, and Ni be mutually complementary Orlicz functions for each k£ and A =
(Ak) be a sequence of strictly positive real numbers. Bektag and Atici [2] define
the following sequence spaces:

|Am1'k|
RA™) = {z = (zk) : ZMk —— ) < oo, forsome p>0
k>1 ( )\kp )
and
Am
IN(A™) = {x = (ag) : ZNk(M) < 00, for some p > 0}.

k>1
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Let M = (M},) and N = (N},) be two sequences of Orlicz functions, p = (py) be any
bounded sequence of positive real numbers and A = (\) be a sequence of strictly
positive real numbers. In this paper we define the following sequence spaces:

mo [ : |AT @k [\ 17"
AR, p] {ac () €w g{Mk( )} < 0o, for some p>0}

Akp
and WA
m D
le\[[AZI,p] = {x = (zx) Ew: Z [Nk (M)} ' < 0o, for some p > 0}.
p
k>1
If we take (pi) , for all k& then
M A BV
Iy A {x ,; [Mk( \ep )} < 00, for some p>0}
and - S AT
lA Am = { Z [Nk(w)} < 0o, for some p > 0}.
E>1 P

If (A\x) =1 for all k € N, then
AT p| = {ac = (zp) €w: Z [Mk(%)rk < 00, for some p > 0}

k>1
and A
m Dh
In[AT, p] = {x = (z1) Ew: Z [Nk (%)} * < o0, for some p > 0}.
k>1

If we take (pr) = 1, for all £ and n=1 we get the spaces defined by Bektag and
Atici [2].

The following inequality will be used throughout the paper. Let p = (p) be a
sequence of positive real numbers with 0 < p, < sup,pr = H, and let D =
max{l,QHfl}. Then, for the factorable sequences (ar) and (by) in the complex
plane, we have

|lak, + 0[P < D(|ag[P* + [bx[P*). (1.1)

Throughout the paper we write My (1) =1 and N(1) =1 for all k£ € N.

The main purpose of this paper is to study some difference new modular sequence
spaces defined by a sequence of Orlicz functions over n—normed spaces. We shall
study some topological, algebraic properties of the sequence spaces li’f [A?, p} and
15\\[ [AZI, p] in the second section of the paper. In the third section we shall deter-
mine the dual spaces of h(M), (M, \,p) and (N, \,p). Finally, we shall study
some sequence spaces over n— normed spaces in the fourth section of the pa-
per. We have also made an attempt to study some topological, algebraic proper-
ties and inclusion relations between the sequence spaces I3 [A?, Dyl H] and

lZ/'\\F[A?’pa Ha ’lu
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2. Some topological properties of the spaces li"[ [AZL p] and lﬁ‘\f [AZL p}

The purpose of this section is to study the properties like linearity, paranorm,
solidity and relevant inclusion relations in the spaces [3'[A™", p| and I3 [A7, p].

Theorem 2.1. Let M = (My) and N = (Ny) be two sequences of Orlicz func-
tions, p = (px) be a bounded sequence of positive real numbers and X = () be a
sequence of strictly positive real numbers. Then the sequence spaces lf\"[ [Anm p} and

1:7\\r [Azl,p] are linear spaces over the complex field C.

Proof: Let z = () and y = (yx) € I3'[A”, p| and o, 8 € C. Then there exist
positive real numbers p; and p, such that

5~ o (5522 <o

and

5~ o (32" <

k>1

Define p; = max(2|a|py, 2|5|p,). Since Mj s are non-decreasing and convex function
so by using inequality (1.1), we have

Q{Mk<IAT(a;:p:ﬂyk)l)]Pk < I;[Mk(laiﬁp:kulﬂiﬁpgkl)rk
|AR | \ 1P+
< oy (52
| AR Yk |\ 17"
03 (3
< Q.

Therefore, ax + By € I3 [Anm p} and hence, 1" [Af,p] is a linear space. Similarly,
we can prove that 15\\[ [Aﬁ, p] is a linear space. This completes the proof. O

Theorem 2.2. Let M = (My,) be a sequence of Orlicz functions, p = (px) be a
bounded sequence of positive real numbers and X = (A\g) be a sequence of strictly
positive real numbers. Then the sequence space lf\V[ [Af,p} is a paranormed space
with paranorm defined by

9() inf{@)‘% : (Z [Mk('A;L;’C')m < 1}

k>1

T

where H = max(1,G), 0<py <supp; =G.
k
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Proof: Clearly g(z) > 0, for z = () € }'[AZ,p]|. Since M (0) = 0, we get
g(0) = 0. Again, if g(z) =0, then

g() inf{(p)%‘ : (Z [Mk(%)}pk>ﬁ < 1} =0,

k>1

this implies that for a given e > 0, there exist some p, (0 < p. < €) such that
1

(Sln(SEA)) <

k>1

Thus,

==

-
/N
bl
\2
-

(Sa7)"

< 1.

> [on (2]

Suppose that zj # 0 for each £ € N. This implies that A"z # 0 for each k € N.

Let ¢ — 0, then 222l 5 00 Tt follows that

1

(X (S]] o

k>1

which is a contradiction. Therefore, A"z, = 0 for each k£ and thus z; = 0 for each
k € N. Let p; > 0 and p, > 0 be such that

(b (5E)) <

k>1

T~

and
(x W%)T’“)é <1

Let p = p; + py. Then by Minkowski’s inequality, we have
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/N
T
>
5":3
R
=
N—
=
ol
~_—
)
INA
/N
v

(282

Am
P g (I nwkl)
p1+ P2 Akp1

IN

po

e (B2
Fem) ([ )
(a2m) (2]

1.

==

IN

Since p’s are non-negative, so we have

inf{(/)l + o) <Z [Mk(%)]m> H < 1}

k>1

g(r +y)

1

inf{(m)% : <Z {Mk(%)rk)ﬁ : 1}
k>1

(Shnsz)” <}

Therefore, g(z + y) < g(x) + g(y). Finally, we prove that the scalar multiplication
is continuous. Let p be any complex number, therefore, by definition

g(ux) = inf{(p)%k : <Z [Mk (M)rk> ) < 1} and

= Akp

IN

s

+M%J

thus,

==

gw>M%m%<ZW¢%ﬁﬁﬁg%

k>1

where ¢t = Wp‘. Since |p|P* < max(1, |u|sup pi). Hence,

ngmﬂMwMM%ﬁ(zww%?ﬁjg@

=
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So, the fact that scalar multiplication is continuous follows from the above inequal-
ity. This completes the proof. O

Theorem 2.3. Suppose M = (My,) be a sequence of Orlicz functions, p = (px) be
a bounded sequence of positive real numbers and A = (\) be a sequence of strictly
positive real numbers. If 0 < pp < g < oo, for each k € N, then 1" [Aﬁ,p} -
lz\w [AZL, q} .

Proof: Suppose that z = (x1) € lf\"t [Aﬁ,p]. This implies that
A P

> [an(SEH)] " <1

k>1 kP

for sufficiently large value of k say k > ko, for some fixed ko € N. Since M = (M)
is non decreasing, we have

> (S < 3 P (5]

k=ko k=ko
< Q.
Hence, z = (x5) € 31 [Anm, q}. This completes the proof. |

Theorem 2.4. (i) If0 < infpy < py <1 for each k, then It [Anm,p} M [Aﬁ]
(i3) If 1 < pp, < suppy, < 0o for each k, then I3 [Aﬁ} it [Aﬁ,p}.

Proof: (i) Let z = (2x) € I}'[AT, p|. Since 0 < infp, < 1, we have
3 A7 k] - | AR k] 1P

3 [ (5p0)) = X (e (550))
and hence, z = (zx) € ' [AT].

(ii) Suppose py, for each k supp, < oo and let z = (z)) € I3'[A”]. Then for
each 0 < e < 1, there exists a positive integer N such that

- |A™ g, |

Zl{ (e )]§e<1, for all k € N,
this implies that

S o (B2 < 5 o (B2

Thus, z = (x5) € J* [Af,p]. This completes the proof. |



40 SEEMA JAMWAL AND KuLDpIP RAJ

Theorem 2.5. The sequence space lg\"t [A?,p} is solid.

Proof: Let z = () € I)'[A™, p|. Then
N [AR k)17
$ o (BED]" <

Let (o) be a sequence of scalars such that |ay| <1 for all k¥ € N. Then the result
follows from the following inequality

> A = AT
> [ (=] <3 (SN
This completes the proof. O

Corollary 2.6. The sequence space li’f [A?,p] is monotone.

Proof: It is obvious so we omit the proof. O

Theorem 2.7. Let M = (My) and M’ = (M) be two sequences of Orlicz functions.
Then, we have

BUA™, p] A [A™, p] € R (AT p).

Proof: Let z = () € R'[AT, p] N li"[/ [A7, p]. Then

A’m
Z [Mk(ﬂ)rk < oo, for some p; >0
k>1 Akpy

and

LAY p
Z [Mk<ﬂ)} " < oo, for some p, > 0.
k>1 Akpo

Let p = max(py, py). The result follows from the inequality

Z[(MHM,;)(MAT”T')}” _ Z[Mk(IAAn’”wlkl)+M’;(|Anm:ckl)rk

= kP =1 kP Akp1
< o3 [ (5EH)]"
k>1 Ak
| AR @k
w03 (5]
k>1 Akpy
This completes the proof. O

The proof of the following theorems are easy so omitted.
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Theorem 2.8. The sequence space lg\"t [A?,p} 18 a mormed space with norm

I =3l + 01 {0 3 [ (BEZY™ <1},

Theorem 2.9. The sequence space lﬁ‘\f [Azl,p} 18 a mormed space with norm

], = ; e +inf {p> 0 kZZI [Nk(w)r’“ <1}.

Theorem 2.10. The spaces (lg\vE [A7 ], ||H1V[) and (l§‘\f [Anm,p},HHg\\[) are Ba-
nach spaces.

Theorem 2.11. The space I3 [Anm,p} equipped with the norm ||.| 3 and the space
N [Aﬁ,p] equipped with the norm ||.|% are BK-spaces.

Proof: The space (lg\vE [Anm,p}, H||§Vt) is a Banach space by the Theorem 2.10.

Now let ||#! — 2|3 — 0 as | — co. Then

|zt — x| =0 as [ — oo, for each k <m

{03 [ (B <o

= Akp

and

as | — oo for all £ € N.

m L Am Pk m_l _ Am
If Mk(m"m’“iw) < 1 then 2u2i=8u'2el < 1 for all k. Therefore, we also
Ak [z ]y A llz]ly

obtain
A7), — Antag] < Aglla! — |30

Since [|z! — x|} — 0, then |AT 2l — A™2;| — 0 and

!é(wv ( " ) (@4 — Thtno)

as | — oo for all £ € N. On the other hand, since we may write

+’(Tg)($§c_$k)’

m !
+ e 4+ ’ m—1 (zk-i-n(m-i-l) - xk-}-n(m—i—l))"

—0

v

m
m
EAES L) D(C I (AR [T
v=0

Then |2} — xx] — 0 as [ — oo foreach k € N. Hence, (lg\"[[Aﬁ,p},HHg\w)

is a BK-space. Similarly we can prove (lﬁ‘\f [A?,p}, H||3A¢) is a BK-space. This
completes the proof. O
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Theorem 2.12. If Z is a normal sequence space containing \, then 3! [Azl,p]
is a proper subspace of Z. In addition, if Z is equipped with the monotone norm
(quasi-norm) ||.||z. The inclusion R : Z'[AR, p] — Z[Am,p] is continuous with
B[ < [{ Ak} 2

Proof: Let z € I3 [Azl,p], then
Z [Mk(ﬂ)} ’ < 00, for some p > 0.
k=1 Ak
So there exists a constant K > 0 such that
Am
Mg}( for all k€ N.
Akp

Since Z is a normal sequence space containing A, we have [Anmzk}pk € Z and so
that x € Z[Azl,p]. Hence, I3 [Aﬁ,p] - Z[A?,p}. Further, since My (1) = 1 for

all £ € N then AT P
nz k
> [Mk(‘xknzniwf‘ﬂ <1

k>1
so that [A™zy| < Agl|z||3T. As ||.]|z is monotone, ||Rz||z = ||AT x|z <
[{ Ak Hlzl|z[1 3" and hence, || R|| < [[{Ax}||z- This completes the proof. O

Theorem 2.13. If Y is a normal sequence space containing \~' = {A_lk}v then

1:7\\r [Azl,p] 1s a proper subspace of Y. In addition, if Y is equipped with the monotone

norm (quasi-norm) ||.|ly. The inclusion S : I3 [AT,p] — Y[AR,p]| is continuous
, -1

with |5 < [{A; Hly-

Proof: The proof of the theorem is similar to that of Theorem 2.12 and so is
omitted. O

Theorem 2.14. If A = (\g) is a bounded sequence such that inf A, > 0 (i.e both
X and A" are in l ). Then Iy [AT, p] = B AT, p] = I [AT, p].

Proof: Let z = (1) € le[A7,p], then

AT P
Z [Mk(ﬂ)} ' < 0o, for some p > 0.
E>1 P

Since A = ()\g) is bounded, we can write a < A\ < b for some b > a > 0. Define
p1 = pb. Also since M s are increasing, it follows that

T (B < om0

E>1 P k>1 P
< 00.
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Hence, Iy [A?,p} C l§\vt [A?,p}. The other inclusion l%vt [A?,p} C I [A?,p} fol-
lows from the inequality

S = e CEET
< oo

Therefore, 13, [Azl,p] = Iy [Azl,p]. Similarly one can prove that (' [Af,p] =
Iv [A?,p}. This completes the proof. O

Theorem 2.15. If {\} € loo with ¢ = sup X, > 1 and {\;'} is unbounded,
k>1

then li"[ [Azl,p} s properly contained in l%vt [Azl,p] and the inclusion map U :
AT, p] — Iy [A, p] is continuous with ||U|| < ¢

Proof: For any p > 0 and p’ = pc?, we have

S (T < 3 [ (S5
< Q.

for z = {z1}. Hence, 13" [Af,p} C [Af,p]. We now show that the containment
1N [Af,p} C Iy [AT, p] is proper. From the unboundedness of the sequence {/\;1},
choose a sequence {k;} of positive integers such that )\,;1 > [. Now define

1

7, k=k, 1=1,2..;
ﬁ’m _ IR ) ) &y )
n Lk { 0, otherwise.

Then z € I}, [Af,p}, but z ¢ I [Af,p]. To prove the continuity of the inclusion
map U, let us first consider the case obtained for ¢ = 1. For = € li’f [A?,p}, we

write
A AT p] = {p >0:) [Mk(%)rk < 1}
k>1

and

B [AT,p] = {p >0:3 [Mk(M)rk < 1}.

k>1 P

Since M s are increasing and ¢ = 1, we get Ag\"[ [Azl,p] C ij‘/[ [Azl,p]. Hence,
2]l = inf By [A7, p] < inf A [AT, p] = [|2[]3 (2.1)

ie |U(z)||ae < llz|2%. Thus, U is continuous with |[U[] < 1 = ¢2. If ¢ # 1, define
dr = 2&, k€ N. Then §x < 1 and from (2.1), it follows that

15 < llz]3* for = € R [AT, p]. (2.2)
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Hence, from (2.2)
10 @) I3 = llzllae < [l

i.e. U is continuous with ||U]| < ¢2. This completes the proof. O

Theorem 2.16. If {\;} is unbounded with sup)\,zl =d>1, Ay > 0 for all
E>1

k, then 13\\,{ [A?,p} 18 properly contained in lg\"t [A?,p] and the inclusion map V :
L [AT p] — BY[A™, p| is continuous with ||V || < d?.

Proof: The proof of the theorem is similar to that of Theorem 2.15 and so is
omitted. a

3. Dual spaces of h(M), (M, \, p) and I(N, A, p)
Let n be a sequence space and defined

oo

n* = {a=(ar): Z lakzr| < oo, for all z € n},
k=1

o0
n® ={a=(a): Zakxk converges for all z € n},
k=1

n" = {a = (ax) : sup ’ Zakxk‘ < oo, forall z€n} (see [13]).
k=1

Then %, 1n°, 0" are called a—, S—, y— dual spaces of 7 respectively. It is easy
to show that ¢ C n® C n® C 7. If  C v, then v° C 7)° for 0 = a, 3,7. We shall
write n@® = (n®)*.
Let 7 be a sequence space. Then 7 is called perfect if n = n®® (see [15]).
For m = n = 0 we write [(M,\,p) and I(N,\,p) instead of I3 [Anm,p] and
1:7\\r [Aﬁ, p] repectively which we define as:

(M, \,p) = {ac = (z1) Ew: Z {Mk(%)rk < oo, for some p > 0}
k>1

IN, A\ p) = {x = (a) Ew: Z [Nk (%)}pk < oo, for some p > 0}.

k>1

In this section we shall obtain a—, S— and y— duals of the sequence space h(M)
and a— duals of (M, A\, p) and [(N, A, p).

Proposition 3.1. 7 is perfect = n is normal = 1 is monotone (see [15]).

Proposition 3.2. Let 7 be a sequence space. If n is monotone, then n® = n® and
if n is normal, then n® =n".
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Proposition 3.3. The sequence space h(M) is normal for any sequence (My) of
Orlicz functions.

Proof: Let z € h(M) and |yi| < |xg], for each k € N. Since M s are non-decreasing

we have
S Y| S ||
1R < i}
];Mk( P )_;Mk( P )<
Hence, y € h(M). Thus, h(M) is normal. O

Theorem 3.1. Let (M) and (Ny) for each k be mutually complementary Orlicz
functions. Then

[ROVO)7 = [RVO]™ = [RVO]T = I(N).
The proof is seen from Proposition 3.1, Proposition 3.2 and Proposition 3.3.

Theorem 3.2. If the sequence (M},) satisfies uniform Ag— condition, then
[Z(M, )\’p)]a = Z(N’ )‘ap)

Proof: Let the sequence (M) satisfies uniform As— condition, Then for any x €
(M, N\, p) and a € I(N, A\, p), we have

Slewnnl < 3 [ ()] 3 [W ()] <o

where p/ = % and p > 0. Thus, a € [[(M, A, p)]*. Hence, (N, \,p) C [[(M, A, p)]*.
To prove the inclusion [[(M, A, p)]* C I(N, \,p), let a € [[(M, A, p)]*. Then for all
{x1} with ( ) € (M) we have

Z lagzy| < oo. (3.1)
k=1

Since the sequence satisfies uniform As—condition, then /(M) = h(M) and so for
(yx) € h(M) we have Y _ [Meyrax| < oo by (3.1). Thus, (\eax) € [(M)]* = I(N)

k=1
and hence, (ai) € I(N, A, p). Therefore, [[(M, X, p)]* = (N, \,p). O

Theorem 3.3. If the sequence (M},) satisfies uniform Ag— condition, then
LN, A, p)]* = 1M, A\, p).

Proof: Immediate from Theorem 3.5. O
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4. Some new sequence spaces over n-normed space

The concept of 2-normed spaces was initially developed by Géhler [10] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [18]. Since then,
many others have studied this concept and obtained various results, see Gunawan
([11], [12]) and Gunawan and Mashadi [13]. Let n € N and X be a linear space
over the field K, where K is field of real or complex numbers of dimension d, where

d > n > 2. A real valued function ||-,--- || on X™ satisfying the following four
conditions:

1. ||z, 22, - ,2,|| = 0 if and only if xq, 29, , 2, are linearly dependent in

X,

2. ||z1, z2, -, x,|| is invariant under permutation,

3. |axy, e, ]| = |af ||z, 22, -, x,]| for any o € K, and

4. |z 4+ 2 a0, xn|| < oz, - x|+ |2 22, @]
is called an n-norm on X, and the pair (X, ||-,---,-||) is called a n-normed space

over the field K.
For example, we may take X = R" being equipped with the n-norm

||z1,x2, - ,2n||Eg = the volume of the n-dimensional parallelopiped spanned by
the vectors x1, s, -+ ,x, which may be given explicitly by the formula
||-T13-T2a e axn”E = |det(.’L'i_j)|,
where z; = (x41, 22, ,xin) € R™ for each ¢ = 1,2,--+ ' n. Let (X,||-,---,]])
be an n-normed space of dimension d > n > 2 and {a1,as2, - ,a,} be linearly
independent set in X. Then the following function ||, ,||sc on X"~1 defined
by
||SC1,SC2, o azn*1||00 = max{||x1,:p2, o wrnflaai” 1= 1725 e ,TL}
defines an (n — 1)-norm on X with respect to {ai,as, - ,an}.
A sequence () in a n-normed space (X, ||-,---,-||) is said to converge to some
LeXif
lim ||xp — L, 21, ,2n-1]| =0 for every z1,--+,z,-1 € X.
k—o0
A sequence (x1) in a n-normed space (X, ||-,---,-||) is said to be Cauchy if
lim ||z —xp, 21, -, 2Zn—1]| =0 for every z, -+, 2,1 € X.
k,p—o0

If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space. For more details about n— normed space (see [26]) and references
therein.
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Let (X,||-,---

,+||) be a n-normed space and W(n —

X)) denotes the space of X-

valued sequences. Let p = (pi) be a bounded sequence of positive real numbers,

A = (M) be a sequence of strictly positive real numbers.
(N%) is a complementary function of Orlicz
(My). In this section of the paper we define the following sequences:

sequence of Orlicz functions and N =
function M =

RUAR Dl ol = {xz(x)eW(n
Am
NA(ES
and
BAZp o] = {o=(@)ewn

k>1

If we take (pg) = 1 for all k then

XAT ] = o= @) ewn
AMx
[ (H )\kpk’
and
BAT ) = {o= @) eWm -

k>1

If (A\x) =1 for all k € N, then

PUAL D, e ol = {o = (@) e W
[
E>1

and

A7 ol = o= (@) e W

k>1

3 [Nk("%,zh...

Let M = (My) be a

- X):

Pk
,zn_lH)} < o0, for some p > 0}

- X):
$ [Nk(“%,zh...,

Pk
zn_lH)} < o0, for some p > 0}.

- X):

,zn_lH)} < o0, for some p > 0}

X):

,Zn—lu)} < oo, for some p > 0}.

- X):

Pk
zn,lH)] < o0, for some p > 0}

-X):
|25

Pk
zn_lH)} < oo, for some p > 0}
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respectively.

The main aim of this section is to study some topological properties and inclu-
sion relations between the spaces I3 [Anm,p, | R |H and I3 [Af,p, | R |H

Theorem 4.1. Let M = (M) and N = (Ni) be two sequences of Orlicz functions,
p = (pr) be a bounded sequence of positive real numbers and X\ = (\i) be a sequence

of strictly positive real numbers. Then the sequence spaces I3 [Azl,p, I« - ,H]
and 13, [A?,p, | R H] are linear spaces over the field C of complex numbers.
Proof: Let z = (2x) and y = (yx) € B'[A",p,|-,---,-||] and o, 8 € C. Then
there exist positive real numbers p; and p, such that
Aml'k Pk
> b )] <o
Akpr
and
Amyk Pk
> (|5 )] <o
Akpy
Define pq = max(2|a|p1,2|ﬂ|p2). Since ||+, ,-|| is a n-norm on X and Mj’s are

non-decreasing and convex function so by using inequality (1.1), we have

3 [Mk(,‘w,zh... ’Zn—lH)rk

i>1 Akps3
Az AM Pk
< |: (H ka 7"'7Z’nle+’ﬂ nykvzla"'vzn 1H):|
AePs3 AkpPs3
Amxk Pk
SN )]
Aepy
A Pk
+DZ (552 =)
k>1 kP2
< oo
Therefore, az + By € " [Azl,p, I« - ,|H and hence, I3 [Azl,p, I« - ,H] is a
linear space. Similarly, we can prove I3 [Aﬁ,p, [~ ,H] is a linear space. This
completes the proof. O

Theorem 4.2. Let M = (My,) be a sequence of Orlicz functions, p = (px) be a
bounded sequence of positive real numbers and A = (\) be a sequence of strictly pos-
itive real numbers. Then the sequence space I3 [A?,p, | ,H] s a paranormed
space with paranorm defined by

< 1}

s =t { ¥+ ( (420 )]

where H = max(1,G), 0<py <supp; =G.
k

==
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Proof: Clearly g(z) > 0, for z = (z1) € B [A",p,||-,--- ,-||]. Since M (0) = 0,
we get ¢(0) = 0. Again, if g(z) = 0, then

ooy =int {0 - (S (B2 ) 1) =0

this implies that for a given e > 0, there exist some p, (0 < p. < €) such that

I

T

Thus,

T

O CT—
-

1.

T

IN

IN

Suppose that zj # 0 for each k& € N. This implies that A"z # 0 for each k € N.

Let € — 0, then HA/\ZL”

Y21yt ,anlH — 00. It follows that

1

(,m[ (1552 ’Z"—lH)er%oo

which is a contradiction. Therefore, A"z, = 0 for each k£ and thus z; = 0 for each
k € N. Let p; > 0 and p, > 0 be such that

EA(E— N

T

and

(S (|3 )]
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Let p = p; + py. Then by Minkowski’s inequality, we have
1

(o o))

< (3 [ )
—_ 77217... 7Zn71
=1 Mi(p1 + po)
Am:ck

< a1, | o)

(l; P1 +P2 Akpr

w2 )] )
/)1 +/)2 Akpy '
1

<

Pk

() (B35 o] )
Pk

+ (525 (w05 o] )

Since p’s are non-negative, so we have

T~

IN
—

glz+ty) = inf{(mﬂh)?k
mlzetye) H )\
(el )]) <1)
. P Az Pk 7
< i {oo® (S (|55 n))) <1

-
IN
_
Y

e {2 (|3 )7

Therefore, g(z + y) < g(x) + g(y). Finally, we prove that the scalar multiplication
is continuous. Let u be any complex number, therefore, by definition

g(ux) :inf{(p)% : <Z [Mk(HAgT'[?,zl,--- ,zn_lu)rk) < 1} and

k>1

T~
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thus,

s = {0 (5 o[22 o)) 1)

k>1

where ¢t = ‘7’)‘. Since |p|P* < max(1, |u|sup pi). Hence,

Pi
i

g(uz) = max<1,|u|suppk>mf{<t>

(,m[ (| 2, ,...,WH)}“) gl}.

So, the fact that scalar multiplication is continuous follows from the above inequal-
ity. This completes the proof. O

|-

Theorem 4.3. Suppose M = (My) be a sequence of Orlicz functions, p = (pi)

be a bounded sequence of positive real numbers and X = (A\g) be a sequence of
strictly positive real numbers. If 0 < pp < qr < oo, for each k € N, then
liw [Agap’ H’ ) |H - liw [A?’qa Ha Tt |H
Proof: Suppose that 2 = (x) € lf\"t [Aﬁ,p, Il - ,-|H, this implies that
AT Pl
> (|55t w7 <
k>1 kP

for sufficiently large value of k say k > ko, for some fixed ko € N. Since M = (My,)
is non decreasing, we have

3 [ St )] < 3 (| St ]
DR an , DRI ,an
)\kp )y 2 ) 1 )\kp 1
< o0.
Hence, z = (zx) € I}'[AT, q,-,- - ,-||]. This completes the proof. O
Theorem 4.4. (i) If 0 < inf py, < p, <1 for each k, then I}'[AT p, |-, ,-||]] C

(i) If 1 < pp < suppr < oo for each k, then lf\V[[AZl, [ ,H] - lf\V[[AZl,p, II,

M)
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Proof: (i) Let z = (xx) € 3 [AT, p,[|-,--+,-||]. Since 0 < inf p < 1, we have
Amwk > Ammk Pk
<
S (|5t )] < 2 (|5 o)
and hence, z = (25) € AT, [|-,-- -]
(ii) Suppose py, for each k supp, < oo and let & = (z) € QAT ||-,--- -]

Then for each 0 < € < 1, there exists a positive integer N such that

o Am
Z [Mk(H"—zk,Zh--- ,zn_lu)} <e<l1, forall keN.
k=1 Akp

This implies that

>[5 e s )] X (5 )]

Thus, x = (x3) € )1 [Azl,p, II- - ,|H This completes the proof. O

=1

Theorem 4.5. The sequence space 13" [Anm,p, [ ,H] 1s solid.

Proof: Let z = (1) € li’f [Anm7p, [

5 (|32 ] <

] . Then

k=1

Let (o) be a sequence of scalars such that |ag| <1 for all k& € N. Then the result
follows from the following inequality

S [ e s )] 2 2 (|5 )

k=1 k=1
This completes the proof. O
Corollary 4.6. The sequence space 13" [Azl,p, I« - ,H] s monotone.
Proof: It is obvious so we omit the proof. O

Theorem 4.7. Let M = (My) and M’ = (M,,) be two sequences of Orlicz functions.
Then, we have

lg\w[Anmap’H'a"' aH] ml?\w [AnmapaH'a"' al” - lf\V[JrM [A:zn’pa ||’ ’lu
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Proof: Let z = (z1) € )" [Azlap; - ,H] Nt [Aw,p’ - ,H]
Then A
n Pk
Z [Mk(H nxk,m,... 7Z”71H)} < oo, for some p; >0
k>1 Akp1
and
AT »
[ (H CUk ,%4“)} ’ < 00, for some py > 0.
AkPo

Let p = max(pl, p5). The result follows from the inequality

> [on 4oy (|55 a1 )]

k>1 Akpy
A ’ Am P
= Y (|55 mml) (|55 )]
k>1 APy APy
< oY (| St )]
Akpy
A:L'k Pk
+DZ[Mk(H ez )]
k>1 Akpy
This completes the proof. O

Theorem 4.8. If Z is a normal sequence space containing A, then lf\"[ [Aﬁ,p, Il

,||} s a proper subspace of Z. In addition, if Z is equipped with the monotone

norm (quasi-norm) ||.||z. The inclusion R : Y [AT p |-+, ||| = Z[AZ,p, |-,
-, |l] is continuous with || R|| < [[{ A}z

Proof: Let o € R'[AT, p, |-, . [|], then
AT Do
[ (H xk’ 1,7 ,Zn—lH)i| ' < 00, for some p > 0.
k=1 Akp

So there exists a constant K > 0 such that
H Ay,

21zt S K forall keN.
Akp

Since Z is a normal sequence space containing A\, we have [HAnmxk, Z1,
zn,lmpk € Z and so that z € Z[Anm,p, I« - ,H] Hence, li’f [Anm,p, [~ ,H] -
Z[A™, p, ||, ,-||]. Further, since My(1) =1 for all k € N then

> |m (H)\AH :ﬁgﬁ 1"""2”‘1")}”

k>1
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so that |ATxy, 21, -+, zn—1| < Ail|z||2F. As |||z is monotone, ||Rz|z = [|AMzy,
21, s znellz < {2l ]|3 and hence, ||R|| < [|[{\k}]|z. This completes the
proof. O
Theorem 4.9. If Y is a normal sequence space containing \~' = {i}, then
N [Azl,p, I« - ,|H is a proper subspace of Y. In addition, if Y is equipped with
the monotone norm (quasi-norm) ||.|ly. The inclusion S : IN[AZ,p, |-, ,-[|] —
H[A?,p, [~ ,H] is continuous with ||S]| < H{)\gl}Hy

Proof: The proof of the theorem is similar to that of Theorem 4.8 and so is
omitted. a

Theorem 4.10. If A = (\;) is a bounded sequence such that inf Ay, > 0 (i.e

both A and \~" are in lo ). Then I3 [AT,p, |-+ ,-[]] = BUAT p, -+ .-[] =
ba[A7p el
Proof: Let z = (z1) € b [A7,p, |-+ ,+[|]]. Then

Z {Mk(HA?mk,zh“- ’Z"_lH)rk < 00, for some p > 0.

k>1 P

Since A = (Ag) is bounded, we can write a < Ay < b for some b > a > 0. Define
p1 = pb. Also since M) s are increasing, it follows that

S (|0 )] X (|2 )]
P1 k>1

k>1 P

< o0.
Hence, I [AZ,p, |-+ -[l] € B [AZ, p, |-, ,-||]. The other inclusion I3 [AT, p,
[ o-ll] € lv[Am,p, |-, ,||] follows from the inequality

A™ P AR AT P
> (|25 )] < X ([P )]
a E>1 P

k>1

< o0
Therefore, 13, [Aﬁ,p, I« - ,H] = Iy [Azl,p, [ ,|H Similarly one can prove
that
AT p -l = I [AT, p, ||, -+, +||]. This completes the proof. O

Theorem 4.11. If {\;} € loo with ¢ = sup X, > 1 and {\;'} is unbounded,

k>1
then I3 [A?,p, [~ ,H] is properly contained in I3 [Azl,p, I« - ,|H and the
inclusion map U : BY[AT, p, |-, -+ || = B [AZp, |-+ ,-||] is continuous with

U]l < .
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Proof: For any p > 0 and p’ = pc?, we have

A AT Pk A P
> [ (]| )] < 0 (]| Sz
k>1 P k>1 kP

< 090,
for x = {ay}. Hence, B [AT, p, ||+ ,-I] C B [AT,p, |-+ ,-]|]. We now show
that the containment I} [AT p, ||, -+ ,-[]] € I3 [A™,p, |-, ,-||]] is proper. From

the unboundedness of the sequence {\; '}, choose a sequence {k;} of positive inte-
gers such that )\,;1 > [. Now define

1
1ok—ky, 1=1,2, ..
m — 19 ) y Ly ey
ATk { 0, otherwise.
Then z € I3 [A7, p, ||-,--- ,-||] but @ ¢ B[A™,p,||-,---,-[|]. To prove the conti-

nuity of the inclusion map U, let us first consider the case obtained for ¢ = 1. For
x € lift [A?,p, | ,'H], we write

AJAW[Anm,p, - -l] = {p > 0- Z [Mk(HA”mxk,zh'“ ’zn_lH)}Pk - 1}

E>1 Akp
and
A A Pk
BJ)\\/[[ATJ?) ||a o aH] = {p >0: Z [Mk("uazlv" ! aznle):| < 1}
k>1 P

Since M, s are increasing and ¢ = 1, we get A [AZ p, ||, -+ ,-||] € By [AZ,p, ||,
-+, -]|]. Hence,

lz|l5e = inf By [ATp, -] < inf AN AT p, |- o[l = [l2lR (4.1)

ie |U(@)|n < ||lz|3% Thus, U is continuous with ||U[| < 1 = ¢% If ¢ = 1, define
dr =25, k€ N. Then 6; < 1 and from (4.1), it follows that

lz(l3e < 23" for @ € R[AT p - -] (4.2)

Hence, from (4.2)
U @)]5¢ = llzllac < e2[l]3,
thus, U is continuous with |U|| < ¢?. This completes the proof. O
Theorem 4.12. If {\;} is unbounded with sup ;" = d > 1, Ay > 0 for all
E>1

k, then I3, [Af,p, | B |H is properly contained in 13" [Anm,p, - |H and the
inclusion map V : 15 [A?,p, [~ ,|H — I [Azl,p, I« - ,H] is continuous with
[V < a2

Proof: The proof of the theorem is similar to that of Theorem 4.11 and so is
omitted. a
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