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Existence and multiplicity results for elliptic problems with Nonlinear

Boundary Conditions and variable exponents

A. Zerouali, B. Karim, O. Chakrone and A. Anane

abstract: By applying the Ricceri’s three critical points theorem, we show the
existence of at least three solutions to the following elleptic problem:

−div[a(x,∇u)] + |u|p(x)−2u = λf(x, u), in Ω,

a(x,∇u).ν = µg(x, u), on ∂Ω,

where λ, µ ∈ R
+, Ω ⊂ R

N (N ≥ 2) is a bounded domain of smooth boundary
∂Ω and ν is the outward normal vector on ∂Ω. p : Ω 7→ R, a : Ω × R

N 7→ R
N ,

f : Ω× R 7→ R and g : ∂Ω× R 7→ R are fulfilling appropriate conditions.

Key Words: Variable exponents; Elliptic problem; Nonlinear boundary con-
ditions;Multiple solutions; Three critical points theorem; Variational methods
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1. Introduction and main result

In this article, we consider the elliptic problem with nonlinear boundary condi-
tions and variable exponents

−div[a(x,∇u)] + |u|p(x)−2u = λf(x, u), in Ω,

a(x,∇u).ν = µg(x, u), on ∂Ω,
(1.1)

where λ, µ ∈ [0,∞), Ω ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary

∂Ω and ν is the outward normal vector on ∂Ω. f : Ω×R 7→ R and g : ∂Ω×R 7→ R

are two Carathéodory functions. p ∈ C(Ω) is the variable exponent.
Throughout this paper, we denote

p− = min
x∈Ω

p(x); p+ = max
x∈Ω

p(x);

p∗(x) =

{
Np(x)/[N − p(x)] if p(x) < N,
+∞ if p(x) ≥ N,
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p∂(x) =

{
(N − 1)p(x)/[N − p(x)] if p(x) < N,
+∞ if p(x) ≥ N,

and

C+(Ω) = {p ∈ C(Ω) : 1 < p− < p+ < ∞}.

Our variable exponent p fulfills p ∈ C+(Ω) and for this p we introduce a character-
ization of the Carathéodory function a : Ω× R

N 7→ R
N .

(H0) a(x,−s) = −a(x, s) for a.e. x ∈ Ω and all s ∈ R
N .

(H1) There exists a Carathéodory function A : Ω × R
N 7→ R continuously differ-

entiable with respect to its second argument, such that a(x, s) = ∇sA(x, s)
all s ∈ R

N and a.e. x ∈ Ω.

(H2) A(x, 0) = 0 for a.e. x ∈ Ω.

(H3) There exists c > 0 such that the function a satisfies the growth condition
|a(x, s)| ≤ c(1 + |s|p(x)−1) for a.e. x ∈ Ω and all s ∈ R

N , where |.| denotes
the Euclidean norm.

(H4) The monotonicity condition 0 ≤ [a(x, s1) − a(x, s2)](s1 − s2) holds for a.e.
x ∈ Ω and all s1, s2 ∈ R

N . With equality if and only if s1 = s2.

(H5) The inequalities |s|p(x) ≤ a(x, s)s ≤ p(x)A(x, s) hold for a.e. x ∈ Ω and all
s ∈ R

N .

A first remark is that hypothesis (H0) is only needed to obtain the multiplicity
of solutions. As in [6], we have decided to use this kind of function a satisfying
(H0)–(H5) because we want to assure a high degree of generality to our work. Here
we invoke the fact that, with appropriate choices of a, we can obtain many types of
operators. We give, in the following, two examples of well known operators which
are present in lots of papers.

Examples:

1. If a(x, s) = |s|p(x)−2s, we have A(x, s) = 1
p(x) |s|

p(x).

(H0)–(H5) are verified, and we arrive to the p(x)-Laplace operator
div(a(x,∇u)) = div(|∇u|p(x)−2∇u) = △p(x)u.

2. If a(x, s) = (1 + |s|2)(p(x)−2)/2s, we have A(x, s) = 1
p(x) [(1 + |s|2)p(x)/

2

− 1].

(H0)–(H5) are verified, and we find a generalized mean curvature operator
div(a(x,∇u)) = div((1 + |∇u|2)(p(x)−2)/2∇u).

The energy functional corresponding to problem (1.1) is defined on W 1,p(x)(Ω)
as

H(u) = Φ(u) + λΨ(u) + µJ(u), (1.2)
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where

Φ(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
|u|p(x)dx, (1.3)

Ψ(u) = −

∫

Ω

F (x, u)dx, (1.4)

J(u) = −

∫

∂Ω

G(x, u)dσ, (1.5)

where F (x, u) =
∫ u

0
f(x, s)ds, G(x, u) =

∫ u

0
g(x, s)ds, and dσ is the N − 1 di-

mensional Hausdorff measure. Let us recall that a weak solution of (1.1) is any
u ∈ W 1,p(x)(Ω) such that

∫

Ω

a(x,∇u)∇vdx+

∫

Ω

|u|p(x)−2uvdx

= λ

∫

Ω

f(x, u)vdx+ µ

∫

∂Ω

g(x, u)vdσ for all v ∈ W 1,p(x)(Ω).

The study of differential and partial differential equation with variable exponent
has been received considerable attention in recent years. This importance reflects
directly into a various range of applications. There are applications concerning elas-
tic materials [25], image restoration [7], thermorheological and electrorheological
fluids [2,21] and mathematical biology [10].

Ricceri’s three critical points theorem is a powerful tool to study boundary
problem of differential equation (see, for example, [1,3,4,5]). Particularly, Mi-
hailescu [17] use three critical points theorem of Ricceri [19] study a particular
p(x)-Laplacian equation. He proved existence of three solutions for the problem.
Liu [16] study the solutions of the general p(x)-Laplacian equations with Neumann
or Dirichlet boundary condition on a bounded domain, and obtain three solutions
under appropriate hypotheses. Shi [22] generalizes the corresponding result of [17].
The multiple solutions of p(x)-biharmonic equation under sublinear condition has
been studied in [15] by L. Li, L. Ding and W.W. Pan. To our knowledge, there is no
result of multiple solutions of elliptic problems with nonlinear boundary conditions
and variable exponents.

We enumerate the hypotheses concerning the functions f, F and g.

(I1) For t ∈ C(Ω) and t(x) < p∗(x) for all x ∈ Ω, we have

sup
(x,s)∈Ω×R

|f(x, s)|

1 + |s|t(x)−1
< +∞;

(I2) There exist positive constant c1 such that F (x, s) > 0 for a.e. x ∈ Ω and all
s ∈]0, c1];

(I3) there exist p1(x) ∈ C(Ω) and p+ < p−1 ≤ p1(x) < p∗(x), such that

lim sup
s→0

sup
x∈Ω

F (x, s)

|s|p1(x)
< +∞;
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(I4) There exist positive constant c2 and a function γ(x) ∈ C(Ω) with 1 < γ− ≤
γ+ < p−, such that |F (x, s)| ≤ c2(1 + |s|γ(x)) for a.e. x ∈ Ω and all s ∈ R;

(I5) For p2 ∈ C(Ω) and p2(x) < p∂(x) for all x ∈ Ω, we have

sup
(x,s)∈∂Ω×R

|g(x, s)|

1 + |s|p2(x)−1
< +∞,

.

This article is divided into three sections. In Section 2, we recall some basic
facts about the variable exponent Lebesgue and Sobolev spaces at first and we recall
B. Ricceri’s three critical points theorem (Theorem 2.3). In the third section, we
prove the following theorem which is the main result of this paper.

Theorem 1.1. Assume (H0)–(H5) and (I1)–(I4). Then there exist an open in-
terval Λ ⊆ (0,+∞) and a positive real number ω such that, for each λ ∈ Λ and
each function g : ∂Ω×R → R satisfying (I5), there exists δ > 0 which satisfies, for
each µ ∈ [0, δ], the problem (1.1) has at least three weak solutions whose norms in
W 1,p(x)(Ω) are less than ω.

2. Preliminaries

We first recall some basic facts about the variable exponent Lebesgue-
Sobolev.
For p ∈ C+(Ω̄), we introduce the variable exponent Lebesgue space

Lp(x)(Ω) :=

{
u;u : Ω → R is a measurable and

∫

Ω

|u|p(x)dx < +∞

}
,

endowed with the Luxemburg norm

|u|p(x) := inf

{
α > 0;

∫

Ω

∣∣∣∣
u(x)

α

∣∣∣∣
p(x)

dx ≤ 1

}
,

which is separable and reflexive Banach space (see [13]).
Let us define the space

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

equipped with the norm

‖u‖ = inf

{
α > 0;

∫

Ω

(∣∣∣∣
∇u(x)

α

∣∣∣∣
p(x)

+

∣∣∣∣
u(x)

α

∣∣∣∣
p(x)
)
dx ≤ 1

}
; ∀u ∈ W 1,p(x)(Ω).

Let W
1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1. [8,11,12,13]
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(1) W
1,p(x)
0 (Ω) is separable reflexive Banach space;

(2) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω̄, then the embedding from
W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous;

(3) If q ∈ C+(Ω̄) and q(x) < p∂(x) for any x ∈ Ω̄, then the embedding from
W 1,p(x)(Ω) to Lq(x)(∂Ω) is compact and continuous;

(4) (Poincaré) There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈ W
1,p(x)
0 (Ω).

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the mapping ρ defined by

ρ(u) :=

∫

Ω

[
|∇u|p(x) + |u|p(x)

]
dx, ∀u ∈ W 1,p(x)(Ω).

Proposition 2.2. [9] For u, uk ∈ W 1,p(x)(Ω); k = 1, 2, ..., we have

(1) ‖u‖ ≥ 1 if and only if ‖u‖p
−

≤ ρ(u) ≤ ‖u‖p
+

;

(2) ‖u‖ ≤ 1 if and only if ‖u‖p
−

≥ ρ(u) ≥ ‖u‖p
+

;

(3) ‖uk‖ → 0 as k → +∞ if and only if ρ(uk) → 0 as k → +∞;

(4) ‖uk‖ → +∞ as k → +∞ if and only if ρ(uk) → +∞ as k → +∞.

In the sequel, we recall the revised form of Ricceri’s three critical points theorem
[20, Theorem 1] and [18, Proposition 3.1].

Theorem 2.3 ( [20, Theorem 1]). Let X be a reflexive real Banach space. Φ: X →
R is a continuously Gâteaux differentiable and sequentially weakly lower semicontin-
uous functional whose Gâteaux derivative admits a continuous inverse on X ′, where
X ′ is the dual of X, and Φ is bounded on each bounded subset of X; Ψ: X → R is
a continuously Gâteaux differentiable functional whose Gâteaux derivative is com-
pact; I ⊆ R is an interval. Assume that

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞ (2.1)

for all λ ∈ I, and that there exists h ∈ R such that

sup
λ∈I

inf
x∈X

(Φ(x) + λ(Ψ(x) + h)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(Ψ(x) + h)). (2.2)

Then, there exists an open interval Λ ⊆ I and a positive real number ρ with the
following property: for every λ ∈ Λ and every C1 functional J : X 7→ R with
compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the equation

Φ′(x) + λΨ′(x) + µJ ′(x) = 0

has at least three solutions in X whose norms are less than ω.



128 A. Zerouali, B. Karim, O. Chakrone and A. Anane

Proposition 2.4 ( [18, Proposition 3.1]). Let X be a non-empty set and Φ,Ψ two
real functions on X. Assume that there are r > 0 and x0, x1 ∈ X such that

Φ(x0) = −Ψ(x0) = 0, Φ(x1) > r, sup
x∈Φ−1(]−∞,r])

−Ψ(x) < r
−Ψ(x1)

Φ(x1)
.

Then, for each h satisfying

sup
x∈Φ−1(]−∞,r])

−Ψ(x) < h < r
−Ψ(x1)

Φ(x1)
,

one has

sup
λ≥0

inf
x∈X

(Φ(x) + λ(h+Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h+Ψ(x))).

In our work, we designate by X the Sobolev space with variable exponent
W 1,p(x)(Ω).

3. Proof of main result

The operator Φ is well defined and of class C1 (see [6]). The Fréchet derivative
of Φ is the operator Φ′ : X → X ′ defined as

〈Φ′(u), v〉 =

∫

Ω

a(x,∇u)∇vdx+

∫

Ω

|u|p(x)−2uvdx for any u, v ∈ X.

We start by proving some properties of the operator Φ′.

Theorem 3.1. Suppose that the mapping a satisfies (H0)–(H5). Then the following
statements holds.

(1) Φ′ is continuous and strictly monotone.

(2) Φ′ is of (S+) type.

(3) Φ′ is a homeomorphism.

Proof: (1) Since Φ′ is the Fréchet derivative of Φ, it follows that Φ′ is continuous.
Using (H4) and the elementary inequalities [23]

|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y)(x− y) if γ ≥ 2,

|x− y|2 ≤
1

(γ − 1)
(|x|+ |y|)2−γ(|x|γ−2x− |y|γ−2y)(x− y) if 1 < γ < 2,

for all (x, y) ∈ R
N × R

N , we obtain for all u, v ∈ X such that u 6= v,

〈Φ′(u)− Φ′(v), u − v〉 > 0,

which means that Φ′ is strictly monotone.
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(2) Let (un)n be a sequence of X such that

un ⇀ u weakly in X as n → +∞ and lim sup
n→+∞

〈Φ′(un), un − u〉 ≤ 0.

Using the compact embedding W 1,p(x)(Ω) →֒ Lp(x)(Ω), we have

lim
n→+∞

∫

Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx = 0.

Thus

lim sup
n→+∞

∫

Ω

a(x,∇un)(∇un −∇u)dx ≤ 0.

The following theorem assure that un → u strongly in W 1,p(x)(Ω) as n → +∞.

Theorem 3.2 ( [14], Theorem 4.1). The Carathéodory function a : Ω×R
N → R

N

described by (H0)–(H5) is an operator of type (S+) that is, if un ⇀ u weakly in
W 1,p(x)(Ω) as n → +∞ and

lim sup
n→+∞

∫

Ω

a(x,∇un)(∇un −∇u)dx ≤ 0,

then un → u strongly in W 1,p(x)(Ω) as n → +∞.

(3) Note that the strict monotonicity of Φ′ implies its injectivity. Moreover, Φ′

is a coercive operator. Indeed, using (H5), Proposition2.2 and since p− − 1 > 0,
for each u ∈ X such that ‖u‖ ≥ 1 we have

〈Φ′(u), u〉

‖u‖
=

∫
Ω
[a(x,∇u)∇u+ |u|p(x)]dx

‖u‖
≥ ‖u‖p

−−1 → ∞ as ‖u‖ → ∞.

Consequently, the operator Φ′ is a surjection and admits an inverse mapping. It
suffices then to show the continuity of Φ′−1. Let (fn)n be a sequence of X ′ such
that fn → f in X ′ as n → +∞. Let un and u in X such that

Φ′−1(fn) = un and Φ′−1(f) = u.

By the coercivity of Φ′, one deducts that the sequence (un) is bounded in the
reflexive space X . For a subsequence, we have un ⇀ û weakly in X as n → +∞,
which implies

lim
n→+∞

〈Φ′(un)− Φ′(u), un − û〉 = lim
n→+∞

〈fn − f, un − û〉 = 0.

It follows by the property (S+) and the continuity of Φ′ that

un → û strongly in X and Φ′(un) → Φ′(û) = Φ′(u) in X ′ as n → +∞.

Moreover, since Φ′ is an injection, we conclude that u = û. ✷
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Now we can give the proof of our main result.

Proof: [Proof of Theorem 1.1] Set Φ(u), Ψ(u) and J(u) as (1.3), (1.4) and (1.5).
So, for each u, v ∈ X , one has

〈Φ′(u), v〉 =

∫

Ω

[a(x,∇u)∇v + |u|p(x)−2uv]dx,

〈Ψ′(u), v〉 = −

∫

Ω

f(x, u)v dx,

〈J ′(u), v〉 = −

∫

∂Ω

g(x, u)v dσ.

From Theorem 3.1 and [ [6], Proposition 4] the functional Φ is a continuous Gâteaux
differentiable and sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on X ′. By (I1) and (I5), Ψ and J
are continuously Gâteaux differentiable functionals. Moreover, using the compacity
of embedding W 1,p(x)(Ω) →֒ Lp(x)(Ω) and the trace embedding W 1,p(x)(Ω) →֒
Lp(x)(∂Ω) (Proposition 2.1), we deduce that Ψ′ and J ′ are compact. Obviously, Φ
is bounded on each bounded subset of X under our assumptions.
From (H5), if ‖u‖ ≥ 1 then

Φ(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
|u|p(x)dx

≥

∫

Ω

1

p(x)
(|∇u|p(x) + |u|p(x))dx

≥
1

p+
ρ(u)

≥
1

p+
‖u‖p

−

,

Meanwhile, for each λ ∈ Λ,

λΨ(u) = −λ

∫

Ω

F (x, u)dx

≥ −λ

∫

Ω

c2(1 + |u|γ(x))dx

≥ −λc2(|Ω|+ ‖u‖γ
+

γ(x))

≥ −c′2(1 + ‖u‖γ
+

γ(x))

≥ −c′′2(1 + ‖u‖γ
+

)

for any u ∈ X , where c′2 and c′′2 are positive constants and ‖.‖γ(x) is the usual norm

of W 1,γ(x)(Ω). Combining the two inequalities above, we obtain

Φ(u) + λΨ(u) ≥
1

p+
‖u‖p

−

− c′′2(1 + ‖u‖γ
+

),
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since γ+ < p−, it follows that

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞ ∀u ∈ X, λ ∈ [0,+∞).

Then assumption (2.1) of Theorem 2.3 is satisfied.
Next, we will prove that assumption (2.2) is also satisfied. It suffices to verify

the conditions of Proposition 2.4. Let u0 = 0. By (H2) and the definition of F , we
can easily have

Φ(u0) = −Ψ(u0) = 0.

Now we claim that (2.2) is satisfied.
From (I3), there exist η ∈ [0, 1], c3 > 0, such that

F (x, s) < c3|s|
p1(x) < c3|s|

p−

1 ∀s ∈ [−η, η], a.e. x ∈ Ω.

Then, from (I4), we can find a constant M such that

F (x, s) < M |s|p
−

1

for all s ∈ R and a.e. x ∈ Ω. Consequently, by the Sobolev embedding theorem,

W 1,p(x)(Ω) →֒ Lp−

1 (Ω) is continuous. And for suitable positive constant c4, c5),
we have

−Ψ(u) =

∫

Ω

F (x, u)dx < M

∫

Ω

|u|p
−

1 dx ≤ c4‖u‖
p−

1 ≤ c5r
p−

1
/p+

,

when ‖u‖p
+

/p+ ≤ r. Hence, being p−1 > p+, it follows that

lim
r→0+

sup‖u‖p+/p+≤r −Ψ(u)

r
= 0. (3.1)

Let u1 ∈ C1(Ω) be a function positive in Ω, with maxΩ u1 ≤ c1. Then, u1 ∈ X
and Φ(u1) > 0. In view of (I2) we also have −Ψ(u1) =

∫
Ω
F (x, u1(x))dx > 0.

Therefore, from (3.1), we can find r ∈
(
0,min{Φ(u1),

1
p+ }

)
such that

sup
‖u‖p+/p+≤r

(−Ψ(u)) < r
−Ψ(u1)

Φ(u1)
.

Now, let u ∈ Φ−1((−∞, r]). Then,
∫
Ω(p(x)A(x,∇u) + |u|p(x))dx ≤ rp+ < 1 which,

by Proposition 2.2, implies ‖u‖ < 1. Consequently,

1

p+
‖u‖p

+

≤
1

p+
ρ(u) ≤

∫

Ω

(p(x)A(x,∇u) + |u|p(x))dx < r.

Therefore, we infer that Φ−1((−∞, r]) ⊂
{
u ∈ X : 1

p+ ‖u‖
p+

< r
}

, and so

sup
u∈Φ−1(]−∞,r])

(−Ψ(u)) < r
−Ψ(u1)

Φ(u1)
.

At this point, conclusion follows from Proposition 2.4 and Theorem 2.3. ✷



132 A. Zerouali, B. Karim, O. Chakrone and A. Anane

References

1. G. A. Afrouzi, S. Heidarkhani; Three solutions for a Dirichlet boundary value problem in-
volving the p-Laplacian, Nonlinear Anal., 66 (2007), pp. 2281–2288.

2. S. N. Antontsev, J. F. Rodrigues; On stationary thermorheological viscous flows, Ann. Univ.
Ferrara Sez. VII Sci. Mat., 52 (2006), pp. 19–36.

3. G. Bonanno, P. Candito; Three solutions to a Neumann problem for elliptic equations involv-
ing the p-Laplacian, Arch. Math. (Basel), 80 (2003), pp. 424–429.

4. G. Bonanno, R. Livrea; Multiplicity theorems for the Dirichlet problem involving the p-
Laplacian, Nonlinear Anal., 54 (2003), pp. 1–7.

5. G. Bonanno, G. Molica Bisci, V. Rădulescu; Multiple solutions of generalized Yamabe equa-
tions on Riemannian manifolds and applications to Emden-Fowler problems, Nonlinear Anal.
Real World Appl., 12, (2011), pp. 2656–2665.

6. M. M. Boureanu, D. N. Udrea; Existence and multiplicity results for elliptic problems with
p(.)-Growth conditions, Nonlinear Anal. Real World Appl., 14, (2013), pp. 1829–1844.

7. Y. Chen, S. Levine, R. Ran; Variable exponent , linear growth functionals in image restoration,
SIAMJ. Appl. Math., 66 (2006), pp. 1383–1406.

8. X.L. Fan; Regularity of minimizers of variational integrals with p(x)-growth conditions, Ann.
Math. Sinica, 17A(5)(1996), pp. 557–564.

9. X.L. Fan, X.Y. Han; Existence and multiplicity of solutions for p(x)-Laplacian equations in
R
N , Nonlinear Anal., 59 (2004), pp. 173–188.

10. G. Fragnelli; Positive periodic solutions for a system of anisotropic parabolic equations, J.
Math. anal. Appl., 73 (2010), pp. 110–121.

11. X.L. Fan, D. Zhao; On the generalized orlicz-Sobolev space W k,p(x)(Ω), J. Gancu Educ.
College, 12(1) (1998), pp. 1–6.

12. P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen; The Dirichlet energy integral and
variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), no.
3, pp. 205–222.

13. O.Kovácik, J. Rákosnik; On spaces Lp(x) and W k,p(x), Czechoslovak Math. J., 41(1991), pp.
592–618.

14. V.K. Le; On a sub-supersolution method for variational inequalities with Leary-Liones oper-
ator in variable exponent spaces, Nonlinear Anal., 71(2009) pp. 3305–3321.

15. L. Li, L. Ding, W.W. Pan; Existence of multiple solutions for a p(x)-biharmonic equation,
Electronic Journal of Differential Equations, Vol. 2013(2013), No. 139, pp. 1–10.

16. Q. Liu; Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal., 68 (2008),
pp. 2119–2127.

17. M. Mihăilescu; Existence and multiplicity of solutions for a Neumann problem involving the
p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419–1425.

18. B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, Math.
Comput. Modelling, 32 (2000), 1485–1494.

19. B. Ricceri; On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220–226.

20. B. Ricceri; A three critical points theorem revisited, Nonlinear Anal., 70 (2009), 3084–3089.

21. M. Ruzicka; Electrorheological Fluids: Modeling and Mathematical Theory, Springer-verlag,
Berlin, 2002.

22. X. Shi, X. Ding; Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann
problem, Nonlinear Anal., 70 (2009), 3715–3720.



Existence and multiplicity results... 133

23. J. Simon; Régularité de la solution d’une équation non linéaire dans R
N , volume 665 of

Lecture Notes in Math., Springer, Berlin, (1978), 205–227.

24. A. Zang, Y. Fu; Interpolation inequalities for derivatives in variable exponent Lebesgue-
Sobolev spaces, Nonlinear Anal., 69 (2008), 3629–3636.

25. V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, Izv.
Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710.

A. Zerouali
Centre Régional des Métiers de l’Éducation et de la Formation, Fès, Maroc
E-mail address: abdellahzerouali@yahoo.fr

and

B. Karim
Université Moulay Ismaïl, Faculté des Sciences et Téchniques, Arrachidia, Maroc
E-mail address: karembelf@gmail.com

and

O. Chakrone and A. Anane
Université Mohamed Premier, Faculté des Sciences, Oujda, Maroc
E-mail address: chakrone@yahoo.fr; ananeomar@yahoo.fr


	Introduction and main result
	Preliminaries
	Proof of main result

