Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 33** 2 (2015): **161–165**. ISSN-00378712 IN PRESS doi:10.5269/bspm.v33i2.23419 ## μ - k - Connectedness in GTS Shyamapada Modak and Takashi Noiri ABSTRACT: Császár [4] introduced μ - semi - open sets, μ - preopen sets, μ - α - open sets and μ - β - open sets in a GTS (X,μ) . By using the μ - σ - closure, μ - π - closure, μ - π - closure and μ - θ - closure in (X,μ) , we introduce and investigate the notions μ - k - separated sets and μ - k - connected sets in (X,μ) . Key Words: μ - k - separated, μ - k - connected, μ - k - component. #### Contents #### 1 Introduction and preliminaries 161 #### 2 μ - k - separated sets 162 ### 1. Introduction and preliminaries Let X be a set and exp X denote the power set of X. We call a class $\mu \subset \exp$ X a generalized topology [2] (briefly GT) if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . A set with GT is called a generalized topological space (briefly GTS). For a GTS (X, μ) , the elements of μ are called μ - open sets and the complements of μ - open sets are called μ - closed sets. For $A \subset X$, we denote by $c_{\mu}(A)$ the intersection of all μ - closed sets containing A and $i_{\mu}(A)$ the union of all μ - open sets contained in A. Then we recall that $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$, $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$ and $i_{\mu}(A) = X - c_{\mu}(X - A)$. Also, we consider by [1] that $i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A)))) = i_{\mu}(c_{\mu}(A))$ and $c_{\mu}(i_{\mu}(c_{\mu}(i_{\mu}(A)))) = c_{\mu}(i_{\mu}(A))$. A set $A \subset X$ is said to be be μ - semi open (resp. μ - preopen, μ - α - open, μ - β - open) [4] if $A \subset c_{\mu}(i_{\mu}(A))$ (resp. $A \subset i_{\mu}(c_{\mu}(A)), A \subset i_{\mu}(c_{\mu}(i_{\mu}(A))), A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$. We denote by $\sigma(\mu)$ (resp. $\pi(\mu)$, $\alpha(\mu)$, $\beta(\mu)$) the class of all μ - semi - open sets (resp. μ - preopen sets, μ - α - open sets, μ - β - open sets). The complement of a μ - α - open (resp. μ - σ open, μ - π - open, μ - β - open) set is said to be μ - α - closed (resp. μ - σ - closed, μ - π - closed, μ - β - closed) [5]. $i_{\alpha}(A)$ (resp. $i_{\sigma}(A)$, $i_{\pi}(A)$, $i_{\beta}(A)$) denotes the union of μ - α - open (resp. μ - σ - open, μ - π - open, μ - β - open) sets included in A, and $c_{\alpha}(A)$ (resp. $c_{\sigma}(A)$, $c_{\pi}(A)$, $c_{\beta}(A)$) [5] denotes the intersection of μ - α - closed (resp. μ - σ - closed, μ - π - closed, μ - β - closed) sets including A. Obviously $\mu \subset \alpha(\mu) \subset \sigma(\mu) \subset \beta(\mu)$ and $\alpha(\mu) \subset \pi(\mu) \subset \beta(\mu)$. Given $U, V \subset X$, let us say U and V are γ - separated [3] if $c_{\mu}(U) \cap V = c_{\mu}(V) \cap U = \emptyset$. Let us say that a set $S \subset X$ is γ - connected if $S = U \cup V$, U and V are γ - separated imply $U = \emptyset$ or $V = \emptyset$. The space X is said to be γ - connected if it is a γ - connected subset of itself (here space X means GTS (X, μ)). 2000 Mathematics Subject Classification: 54A05, 54D05 The purpose of this paper is to introduce and investigate the notions of μ - k - connected sets by using $c_{\mu}(A)$, $c_{\alpha}(A)$, $c_{\sigma}(A)$, $c_{\pi}(A)$ and $c_{\beta}(A)$ in GTS (X, μ) . ### 2. μ - k - separated sets **Definition 2.1.** Let (X, μ) be a GTS. Two nonempty subsets U, V of X are said to be μ - k - separated if $c_{\mu}(U) \cap c_{k}(V) = \emptyset = c_{k}(U) \cap c_{\mu}(V)$, where $k = \alpha, \sigma, \pi$ or β . If we assign the values $k=\sigma,\ \pi,\ \alpha,\ \beta,$ then we get different types μ - k -separated sets. Observe that two μ - k - separated sets are disjoint. Moreover, if U and V are μ - k - separated, $U' \subset U$, $V' \subset V$, then U' and V' are μ - k - separated as well. Again every μ - k - separated sets is a γ - separated set. From the above definition we obtain the following diagram: #### DIAGRAM I **Definition 2.2.** A subset A of a GTS X is said to be μ - k - connected if A is not the union of two μ - k - separated sets in X. From the above definition for a subset of a GTS the following diagram holds: ### DIAGRAM II In the sequel, a GTS is briefly called a space. **Theorem 2.3.** Let X be a space. If A is a μ - k - connected subset of X and H, G are μ - k - separated subsets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$. **Proof:** Let A be a μ - k - connected set. Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $c_k(A \cap G) \cap c_\mu(A \cap H) \subset c_k(G) \cap c_\mu(H) = \emptyset$ and $c_\mu(A \cap G) \cap c_k(A \cap H) \subset c_\mu(G) \cap c_k(H) = \emptyset$. Suppose $A \cap H$ and $A \cap G$ are nonempty. Then A is not μ - k - connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subset H$ or $A \subset G$. **Theorem 2.4.** If A and B are μ - k - connected sets of a space X such that A and B are not μ - k - separated, then $A \cup B$ is μ - k - connected. **Proof:** Let A and B be μ - k - connected sets in X. Suppose $A \cup B$ is not μ - k - connected. Then, there exist two nonempty μ - k - separated sets G and H such that $A \cup B = G \cup H$. Since A and B are μ - k - connected, by Theorem 2.3, either $A \subset G$ and $B \subset H$ or $B \subset G$ and $A \subset H$. Now if $A \subset G$ and $B \subset H$, then $c_{\mu}(A) \cap c_{k}(B) \subset c_{\mu}(G) \cap c_{k}(H) = \emptyset$ and $c_{k}(A) \cap c_{\mu}(B) \subset c_{k}(G) \cap c_{\mu}(H) = \emptyset$. Thus, A and B are μ - k - separated, which is a contradiction. In case $B \subset G$ and $A \subset H$ a contradiction is similarly shown. Hence, $A \cup B$ is μ - k - connected. **Theorem 2.5.** If $\{M_i: i \in I\}$ is a nonempty family of μ - k - connected sets of a space X, with $\bigcap_{i \in I} M_i \neq \emptyset$, then $\bigcup_{i \in I} M_i$ is μ - k - connected. **Proof:** Suppose $\bigcup_{i\in I} M_i$ is not μ - k - connected. Then we have $\bigcup_{i\in I} M_i = H \cup G$, where H and G are nonempty μ - k - separated sets in X. Since $\bigcap_{i\in I} M_i \neq \emptyset$, we have a point $x\in \bigcap_{i\in I} M_i$. Since $x\in \bigcup_{i\in I} M_i$, either $x\in H$ or $x\in G$. Suppose that $x\in H$. Since $x\in M_i$ for each $i\in I$, then M_i and H intersect for each $i\in I$. By Theorem 2.3, $M_i\subset H$ or $M_i\subset G$. Since H and G are disjoint, $M_i\subset H$ for all $i\in I$ and hence $\bigcup_{i\in I} M_i\subset H$. This implies that G is empty. This is a contradiction. Suppose that $x\in G$. By the similar way, we have that H is empty. This is a contradiction. Thus, $\bigcup_{i\in I} M_i$ is μ - k - connected. **Theorem 2.6.** Let X be a space, $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of μ - k - connected sets and A be a μ - k - connected set. If $A \cap A_{\alpha} \neq \emptyset$ for every $\alpha \in \Delta$, then $A \cup (\cup_{\alpha \in \Delta} A_{\alpha})$ is μ - k - connected. **Proof:** Since $A \cap A_{\alpha} \neq \emptyset$ for each $\alpha \in \triangle$, by Theorem 2.5, $A \cup A_{\alpha}$ is μ - k - connected for each $\alpha \in \triangle$. Moreover, $A \cup (\cup A_{\alpha}) = \cup (A \cup A_{\alpha})$ and $\cap (A \cup A_{\alpha}) \supset A \neq \emptyset$. Thus by Theorem 2.5, $A \cup (\cup A_{\alpha})$ is μ - k - connected. **Theorem 2.7.** If A is a μ - k - connected subset of a space X and $A \subset B \subset c_k(A)$, then B is also a μ - k - connected subset of X. **Proof:** Suppose B is not a μ - k - connected subset of X then there exist μ - k - separated sets H and G such that $B = H \cup G$. This implies that H and G are nonempty and $c_k(G) \cap c_\mu(H) = \emptyset = c_\mu(G) \cap c_k(H)$. By Theorem 2.3, we have that either $A \subset H$ or $A \subset G$. Suppose that $A \subset H$. Then $c_k(A) \subset c_k(H)$ and $c_\mu(G) \cap c_k(A) \subset c_\mu(G) \cap c_k(H) = \emptyset$. This implies that $G \subset B \subset c_k(A)$ and $G = c_k(A) \cap G \subset c_k(A) \cap c_\mu(G) = \emptyset$. Thus G is an empty set. Since G is nonempty, this is a contradiction. Hence, G is G is G is nonempty. Corollary 2.8. If A is a μ - k - connected subset of X, then $c_k(A)$ is also a μ - k - connected subset of X. **Definition 2.9.** Let X be a space and $x \in X$. Then union of all μ - k - connected subsets of X containing x is called the μ - k - component of X containing x. **Theorem 2.10.** 1. The set of all distinct μ - k - components of a space X forms a partition of X. 2. Each μ - k - component of a space X is a k - closed set. **Proof:** The proof of (2) follows from Corollary 2.8. Now we recall the following definition from [2] and [5]: **Definition 2.11.** Let (X, μ) and (X, μ') be GTS's. Then a function $f: X \to X'$ is said to be (μ, μ') - continuous if $f^{-1}(V)$ is μ - open set in X for every μ' - open set of X'. **Theorem 2.12.** The (μ, μ') - continuous image of a γ - connected space is a μ - k - connected space. **Proof:** The proof is obvious from the Theorem 2.2 of [3] and the DIAGRAM II. **Definition 2.13.** ([6]) Let (X, μ) be a GTS and $G \subset X$. - (1) G is called μ dense if $c\mu(G) = X$. - (2) (X, μ) is called hyperconnected if G is μ -dense for every μ -open subset $G = \emptyset$ of (X, μ) . **Remark 2.14.** ([6]) For a GTS (X, μ) , the following holds: (X, μ) is hyperconnected $\to (X, \mu)$ is connected. This implication is not reversible as shown in [6]. **Theorem 2.15.** ([6]) Let (X, μ) be a GTS. The following properties are equivalent: (1) (X, μ) is hyperconnected, (2) $G \cap H = \emptyset$ for every nonempty μ – open subsets G and H of (X, μ) . # References - 1. Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65 87. - Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351 357. - 3. Á. Császár, γ connected sets, Acta Math. Hungar., 101 (4) (2003), 273 279. - Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 75 (2005), 53 - 66. - C. Cao, J. Yan, W. Wang and B. Wang, Some generalized continuities functions on generalized topological spaces *Hacettepe J. Math. Stat.*, 42(2) (2013), 159 - 163. - E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hun-garica, 133 (1-2) (2011), 140-147. Shyamapada Modak Department of Mathematics, University of Gour Banga, P.O. Mokdumpur, Malda - 732103, India, E-mail address: spmodak2000@yahoo.co.in and $\begin{tabular}{ll} Takashi Noiri\\ 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142 JAPAN\\ E-mail address: {\tt t.noiri@nifty.com} \end{tabular}$