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On symmetric biadditive mappings of semiprime rings

Asma Ali, Khalid Ali Hamdin and Shahoor Khan

abstract: Let R be a ring with centre Z(R). A mapping D(., .) : R× R −→ R is
said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping f : R −→ R

defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. It is obvious that
in the case D(., .) : R × R −→ R is a symmetric mapping, which is also biad-
ditive (i.e. additive in both arguments), the trace f of D satisfies the relation
f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. In this paper we prove that
a nonzero left ideal L of a 2-torsion free semiprime ring R is central if it satisfies
any one of the following properties: (i) f(xy) ∓ [x, y] ∈ Z(R), (ii) f(xy) ∓ [y, x] ∈
Z(R), (iii) f(xy) ∓ xy ∈ Z(R), (iv) f(xy) ∓ yx ∈ Z(R), (v) f([x, y]) ∓ [x, y] ∈

Z(R), (vi) f([x, y])∓ [y, x] ∈ Z(R), (vii) f([x, y])∓xy ∈ Z(R), (viii) f([x, y])∓ yx ∈

Z(R), (ix) f(xy)∓f(x)∓[x, y] ∈ Z(R), (x) f(xy)∓f(y)∓[x, y] ∈ Z(R), (xi) f([x, y])∓
f(x) ∓ [x, y] ∈ Z(R), (xii) f([x, y]) ∓ f(y) ∓ [x, y] ∈ Z(R), (xiii) f([x, y]) ∓ f(xy) ∓
[x, y] ∈ Z(R), (xiv) f([x, y]) ∓ f(xy) ∓ [y, x] ∈ Z(R), (xv) f(x)f(y) ∓ [x, y] ∈

Z(R), (xvi) f(x)f(y)∓ [y, x] ∈ Z(R), (xvii) f(x)f(y)∓xy ∈ Z(R), (xviii) f(x)f(y)∓
yx ∈ Z(R), (xix) f(x)◦f(y)∓[x, y] ∈ Z(R), (xx) f(x)◦f(y)∓xy ∈ Z(R), (xxi) f(x)◦
f(y)∓yx ∈ Z(R), (xxii) f(x)f(y)∓x◦y ∈ Z(R), (xxiii) [x, y]−f(xy)+f(yx) ∈ Z(R),
for all x, y ∈ L, where f stands for the trace of a symmetric biadditive mapping
D(., .) : R× R −→ R.
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1. Introduction

Throughout the paper R will denote an associative ring with centre Z(R).
A ring R is said to be prime (resp. semiprime) if aRb = 0 implies that ei-
ther a = 0 or b = 0 (resp. aRa = 0 implies that a = 0). We shall write
for each pair of elements x, y ∈ R the commutator [x, y] = xy − yx and skew
commutator x ◦ y = xy + yx. An additive mapping d : R −→ R is called a
derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R. A derivation d is inner if
there exists an element a ∈ R such that d(x) = [a, x] for all x ∈ R. A mapping
D(., .) : R× R −→ R is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R.
A mapping f : R −→ R defined by f(x) = D(x, x) for all x ∈ R, is called trace
of D. It is obvious that in the case D(., .) : R × R −→ R is a symmetric map-
ping, which is also biadditive (i.e. additive in both arguments), the trace f of
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D satisfies the relation f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. A
biadditive mapping D(., .) : R × R −→ R is said to be a biderivation on R if
D(xy, z) = D(x, z)y+xD(y, z) and D(x, yz) = D(x, y)z+yD(x, z) for all x, y ∈ R.

Gy. Maksa [6] introduced the concept of a symmetric biderivation. It was shown
in [7] that symmetric biderivations are related to general solution of some func-
tional equations. Some results on symmetric biderivation in prime and semiprime
rings can be found in [8] and [9]. There has been ongoing interest concerning
the relationship between the commutativity of a ring and the existence of certain
specific types of derivations. Recently many authors viz. [1], [2], [3] and [4] have
obtained commutativity of prime and semiprime rings with derivations satisfying
certain polynomial identities. In this paper we prove that a nonzero left ideal of a
semiprime ring admitting a biadditive map is central if it satisfies some polynomial
identities.

2. Preliminary result

We make extensive use of basic commutator identities [xy, z] = [x, z]y + x[y, z]
and [x, yz] = [x, y]z + y[x, z]. Moreover, we shall require the following lemma:

Lemma 2.1. [5, Lemma 1.1.5] If R is a semiprime ring, then the center of a
nonzero one sided ideal is contained in the center of R. As an immediate conse-
quence, any commutative one sided ideal is contained in the center of R.

3. Main Results

Theorem 3.1. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(xy)− [x, y] ∈ Z(R) for all x, y,∈ L. (3.1)

Replacing y by y + z in (3.1), we get

f(xy) + f(xz) + 2D(xy, xz)− [x, y]− [x, z] ∈ Z(R) for all x, y, z ∈ L. (3.2)

Since R is 2-torsion free, (3.2) yields that

D(xy, xz) ∈ Z(R) for all x, y, z ∈ L. (3.3)

Substituting y for z in (3.3), we get

f(xy) = D(xy, xy) ∈ Z(R) for all x, y ∈ L. (3.4)
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In view of (3.1), (3.4) yields that

[x, y] ∈ Z(R) for all x, y ∈ L. (3.5)

Then

[[x, y], r] = 0 for all x, y ∈ L, r ∈ R. (3.6)

Replace x by xy in (3.6), to get

[[x, y]y, r] = 0 for all x, y ∈ L, r ∈ R. (3.7)

This implies that

[x, y][y, r] = 0 for all x, y ∈ L, r ∈ R. (3.8)

Replacing r by rx in (3.8), we get

[x, y]r[y, x] = 0 for all x, y ∈ L, r ∈ R. (3.9)

This implies that

[x, y]R[x, y] = 0 for all x, y ∈ L. (3.10)

Since R is semiprime, we get [x, y] = 0 for all x, y ∈ L, Hence L ⊆ Z(R) by Lemma
2.1.

The proof is same for the case f(xy) + [x, y] ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.2. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as of Theorem 3.1. ✷

Theorem 3.3. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ xy ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: By hypothesis

f(xy)− xy ∈ Z(R) for all x, y ∈ L. (3.11)

Replacing y by y + z, we get

f(xy) + f(xz) + 2D(xy, xz)− xy − xz ∈ Z(R) for all x, y, z ∈ L. (3.12)
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Comparing (3.11) and (3.12) we obtain

2D(xy, xz) ∈ Z(R) for all x, y, z ∈ L. (3.13)

Since R is 2-torsion free, we have

D(xy, xz) ∈ Z(R) for all x, y, z ∈ L. (3.14)

Substituting y for z in (3.14), we get

f(xy) = D(xy, xy) ∈ Z(R) for all x, y ∈ L. (3.15)

Using (3.11), we have xy ∈ Z(R) for all x, y ∈ L. This imples that [x, y] ∈

Z(R) for all x, y ∈ L. Arguing in the similar manner as in Theorem 3.1, we get the
result . ✷

Theorem 3.4. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ yx ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as of Theorem 3.3. ✷

Theorem 3.5. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f([x, y])∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Let

f([x, y])− [x, y] ∈ Z(R) for all x, y ∈ L. (3.16)

Replacing y by y + z, we have f([x, y] + [x, z]) − [x, y] − [x, z] ∈ Z(R) i.e.
f([x, y]) + f([x, z]) + 2D([x, y], [x, z]) − [x, y] − [x, z] ∈ Z(R) for all x, y, z ∈ L.

Using (3.16), we get

2D([x, y], [x, z]) ∈ Z(R) for all x, y, z ∈ L. (3.17)

Substituting y for z in (3.17) and using the fact that R is 2-torsion free, we find

f([x, y]) ∈ Z(R) for all x, y ∈ L. (3.18)

Using (3.16) and (3.18), we obtain [x, y] ∈ Z(R) for all x, y ∈ L. Arguing in the
similar manner as in Theorem 3.1, we get the result .

Similarly one can prove the result if f([x, y]) + [x, y] ∈ Z(R) for all x, y ∈ L. ✷

Using similar arguments as we have done in the proof of Theorem 3.5, we can
prove the following:
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Theorem 3.6. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f([x, y])∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Theorem 3.7. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f([x, y])∓ xy ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Let

f([x, y])− xy ∈ Z(R) for all x, y ∈ L. (3.19)

Replacing y by y+z in (3.19), we have f([x, y]+[x, z])−xy−xz ∈ Z(R) for all x,
y, z ∈ L. This implies that

f([x, y]) + f([x, z]) + 2D([x, y], [x, z])− xy − xz ∈ Z(R) for all x, y, z ∈ L. (3.20)

Using (3.19), we obtain

2D([x, y], [x, z]) ∈ Z(R) for all x, y, z ∈ L. (3.21)

Since R is 2-torsion free, (3.21) yields that

D([x, y], [x, z]) ∈ Z(R) for all x, y, z ∈ L. (3.22)

In particular, if we substitute y for z in (3.22), then we have f([x, y]) ∈

Z(R) for all x, y ∈ L. Again using (3.19), we get xy ∈ Z(R) for all x, y ∈ L.

This implies that [x, y] ∈ Z(R). Arguing in the similar manner as in Theorem 3.1,
we get the result.

Similarly we can prove the result if f([x, y]) + xy ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.8. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f([x, y])∓ yx ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as of Theorem 3.7. ✷

Theorem 3.9. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ f(x)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(xy)− f(x)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.23)
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Replacing y by y + z, we get f(xy) + f(xz) + 2D(xy, xz)− f(x) − [x, y]− [x, z] ∈
Z(R) for all x, y, z ∈ L. Using (3.23), we obtain

f(xz) + 2D(xy, xz)− [x, z] ∈ Z(R) for all x, y, z ∈ L. (3.24)

Substituting −z for z in (3.24), we get

f(xz)− 2D(xy, xz) + [x, z] ∈ Z(R) for all x, y, z ∈ L. (3.25)

Adding (3.24) and (3.25), we obtain

2f(xz) ∈ Z(R) for all x, y, z ∈ L. (3.26)

Since R is 2-torsion free, we have f(xy) ∈ Z(R) for all x, y ∈ L. Using (3.23), we
get

f(x)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.27)

Replacing x by x+ z, in (3.27), we have

f(x) + f(z) + 2D(x, z)− [x, y]− [z, y] ∈ Z(R) for all x, z ∈ L. (3.28)

Again using (3.27) and using 2-torsion freeness of R, we find D(x, z) ∈ Z(R).
In particular f(x) = D(x, x) ∈ Z(R) for all x ∈ L. Since f(xz) ∈ Z(R) and
f(x) ∈ Z(R), we have f(xy) − f(x) ∈ Z(R) for all x, y ∈ L. Using (3.23), we get
[x, y] ∈ Z(R) for all x, y ∈ L. Arguing in the similar manner as in Theorem 3.1, we
get the result.

Similarly we can prove the result if f(xy)+f(x)+[x, y] ∈ Z(R) for all x, y ∈ L.✷

Theorem 3.10. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(xy)∓ f(y)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Let

f(xy)− f(y)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.29)

Replacing y by y+z, we have f(xy)+f(xz)+2D(xy, xz)−f(y)−f(z)−2D(y, z)−
[x, y]− [x, z] ∈ Z(R) for all x, y, z ∈ L. Using (3.29), we get

2(D(xy, xz)−D(y, z)) ∈ Z(R) for all x, y, z ∈ L. (3.30)

Substituting y for z in (3.30) and using the fact that R is 2-torsion free, we find

f(xy)− f(y) ∈ Z(R) for all x, y ∈ L. (3.31)

This implies that [x, y] ∈ Z(R) for all x, y ∈ L. Arguing in the similar manner as
in Theorem 3.1, we get the result.

Similarly we can prove the result if f(xy)+f(y)+[x, y] ∈ Z(R) for all x, y ∈ L.✷
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Theorem 3.11. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(x)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f([x, y])− f(x)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.32)

Replacing x by x+ z in (3.32), we obtain

f([x, y]) + f([z, y]) + 2D([x, y], [z, y])− f(x)− f(z)
−2D(x, z)− [x, y]− [z, y] ∈ Z(R) for all x, y, z ∈ L.

(3.33)

Using (3.32),we have

2(D([x, y], [z, y])−D(x, z)) ∈ Z(R) for all x, y, z ∈ L. (3.34)

Substituting x for z in (3.34) and using the fact that R is 2-torsion free, we obtain

f([x, y])− f(x) ∈ Z(R) for all x, y ∈ L. (3.35)

Again using (3.32) and (3.35), we have [x, y] ∈ Z(R) for all x, y ∈ L. Arguing
in the similar manner as in Theorem 3.1, we get the result .

Similarly we can prove the Theorem if f([x, y]) + f(x) + [x, y] ∈ Z(R) for all x,
y ∈ L. ✷

Theorem 3.12. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(y)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f([x, y])− f(y)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.36)

Replacing y by y + z, we get

f([x, y]) + f([x, z]) + 2D([x, y], [x, z])− f(y)− f(z)− 2D(y, z)
−[x, y]− [x, z] ∈ Z(R) for all x, y, z ∈ L.

(3.37)

In view of (3.36), (3,37) yields that

2(D([x, y], [x, z])−D(y, z)) ∈ Z(R) for all x, y, z ∈ L. (3.38)

Substituting y for z in (3.38) and using the fact that R is 2-torsion free, we obtain

f([x, y])− f(y) = D([x, y], [x, y]) −D(y, y)) ∈ Z(R) for all x, y ∈ L. (3.39)
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Using (3.36) and (3.39), we have [x, y] ∈ Z(R) for all x, y ∈ L. Arguing in the
similar manner as in Theorem 3.1, we get the result .

Similarly we can prove the Theorem if f([x, y]) + f(y) + [x, y] ∈ Z(R) for all x,
y ∈ L. ✷

Using the similar techniques as we have used in the proof of Theorem 3.11 and
3.12, we can prove the following:

Theorem 3.13. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(x)∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Theorem 3.14. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(y)∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Theorem 3.15. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(xy)∓[x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Let

f([x, y])− f(xy)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.40)

Replacing y by y + z in (3.40), we get

f([x, y]) + f([x, z]) + 2D([x, y], [x, z])− f(xy)− f(xz)− 2D(xy, xz)
−[x, y]− [x, z] ∈ Z(R) for all x, y, z ∈ L.

(3.41)

Using (3.40) and (3.41), we obtain

2(D([x, y], [x, z])−D(xy, xz) ∈ Z(R) for all x, y, z ∈ L. (3.42)

Since R is 2-torsion free, we have

D([x, y], [x, z])−D(xy, xz) ∈ Z(R) for all x, y, z ∈ L. (3.43)

Substituting y for z in (3.43), we get

f([x, y])− f(xy) ∈ Z(R) for all x, y ∈ L. (3.44)

Using (3.40), we have [x, y] ∈ Z(R) for all x, y ∈ L. Arguing in the similar
manner as in Theorem 3.1, we get the result.
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The proof is same if f([x, y]) + f(xy) + [x, y] ∈ Z(R) for all x, y ∈ L. ✷

Similarly we can prove the following:

Theorem 3.16. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f

be the trace of D. If f([x, y])∓f(xy)∓[y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Theorem 3.17. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x)f(y)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(x)f(y)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.45)

Substituting y + z for y in (3.45), we have

f(x)f(y) + f(x)f(z) + 2f(x)D(y, z)− [x, y]− [x, z] ∈ Z(R) for all x, y, z ∈ L.(3.46)

Using (3.45), we find

2f(x)D(y, z) ∈ Z(R) for all x, y, z ∈ L. (3.47)

Since R is 2-torsion free, we have

f(x)D(y, z) ∈ Z(R) for all x, y, z ∈ L. (3.48)

In particular if we replace z by y in (3.48), then

f(x)f(y) ∈ Z(R) for all x, y ∈ L. (3.49)

Hence using (3.49) and (3.45), we obtain [x, y] ∈ Z(R) for all x, y ∈ L. Arguing
in the similar manner as in Theorem 3.1, we get the result.

Similarly we can prove the case if f(x)f(y) + [x, y] ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.18. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x)f(y)∓ [y, x] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as that of Theorem 3.17. ✷
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Theorem 3.19. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x)f(y)∓ xy ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Let

f(x)f(y)− xy ∈ Z(R) for all x, y ∈ L. (3.50)

Substituting y + z for y in (3.50), we have

f(x)f(y) + f(x)f(z) + 2f(x)D(y, z)− xy − xz ∈ Z(R) for all x, y, z ∈ L. (3.51)

Applying (3.50), we find

2f(x)D(y, z) ∈ Z(R) for all x, y, z ∈ L. (3.52)

Since R is 2-torsion free, we have

f(x)D(y, z) ∈ Z(R) for all x, y, z ∈ L (3.53)

In particular replacing z by y in (3.53) and using (3.50), we find

f(x)f(y) ∈ Z(R) for all x, y ∈ L. (3.54)

This implies that xy ∈ Z(R) for all x, y ∈ L. Arguing in the similar manner as
in Theorem 3.1, we get the result.

Similarly we can prove the case if f(x)f(y) + xy ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.20. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x)f(y)∓ yx ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as that of Theorem 3.19. ✷

Theorem 3.21. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x) ◦ f(y)∓ [x, y] ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(x) ◦ f(y)− [x, y] ∈ Z(R) for all x, y ∈ L. (3.55)

Replacing y by y + z in (3.55), we get

f(x) ◦ f(y) + f(x) ◦ f(z) + 2(f(x) ◦D(y, z))− [x, y]− [x, z] ∈
Z(R) for all x, y ∈ L.

(3.56)
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Comparing (3.55) and (3.56), we have

2(f(x) ◦D(y, z)) ∈ Z(R) for all x, y, z ∈ L.

Since R is 2-torsion free, we find

f(x) ◦D(y, z) ∈ Z(R) for all x, y, z ∈ L. (3.57)

Replacing y by z in (3.57),we get

f(x) ◦ f(y) ∈ Z(R) for all x, y, z ∈ L. (3.58)

From (3.55) and (3.58), we have

[x, y] ∈ Z(R) for all x, y ∈ L.

Arguing in the similar manner as in Theorem 3.1, we get the result.

The proof is same if f(x) ◦ f(y) + [x, y] ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.22. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x) ◦ f(y)∓ xy ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(x) ◦ f(y)− xy ∈ Z(R) for all x, y ∈ L. (3.59)

Replacing y by y + z, in (3.59), we have

f(x)◦f(y)+f(x)◦f(z)+2(f(x)◦D(y, z))−xy−xz ∈ Z(R) for all x, y, z ∈ L. (3.60)

Comparing (3.59) and (3.60), we have

2(f(x) ◦D(y, z)) ∈ Z(R) for all x, y, z ∈ L. (3.61)

Substitute y for z in (3.61) and using 2-torsion freeness of R, we get

f(x) ◦ f(y) ∈ Z(R) for all x, y ∈ L. (3.62)

Using (3.59) and (3.62), we obtain

xy ∈ Z(R) for all x, y ∈ L. (3.63)

Interchanging the role of x and y in (3.63) and subtracting from (3.63), we find

[x, y] ∈ Z(R) for all x, y ∈ L. (3.64)

Arguing in the similar manner as in Theorem 3.1, we get the result.

The prove is same for the case f(x) ◦ f(y) + xy ∈ Z(R) for all x, y ∈ L. ✷
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Theorem 3.23. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x) ◦ f(y)∓ yx ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: The proof runs on the same parallel lines as of Theorem 3.22. ✷

Theorem 3.24. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x)f(y)∓ x ◦ y ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(x)f(y)− x ◦ y = 0 for all x, y ∈ L. (3.65)

Replacing y by y + z in (3.65), we get

f(x)f(y) + f(x)f(z) + 2f(x)D(y, z)− x ◦ y − x ◦ z = 0 for all x, y, z ∈ L. (3.66)

From (3.65) and (3.66), we have

2f(x)D(y, z) = 0 for all x, y, z ∈ L. (3.67)

Using 2-torsion freeness of R and replacing y by z in (3.67), we get

f(x)f(y) = 0 for all x, y ∈ L. (3.68)

Using (3.68) and (3.65), we have

xy + yx = 0 for all x, y ∈ L. (3.69)

Replace y by ry in (3.69) and using (3.69), we get

[x, r]y = 0 for all x, y ∈ L, r ∈ R. (3.70)

A simple calculation yields that [x, r]R[x, r] = 0 for all x, y ∈ L, r ∈ R. Since
R is semiprime, we have [x, r] = 0 for all x ∈ L, r ∈ R. Hence L ⊆ Z(R).

Similarly we can prove if f(x)f(y) + x ◦ y ∈ Z(R) for all x, y ∈ L. ✷

Theorem 3.25. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If f(x) ◦ f(y)∓ x ◦ y = 0 for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose

f(x) ◦ f(y)− x ◦ y = 0 for all x, y ∈ L. (3.71)
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Replace y by y + z in (3.71), we have

f(x) ◦ f(y) + f(x) ◦ f(z) + 2f(x) ◦D(y, z)− x ◦ y − x ◦ z = 0
for all x, y, z ∈ L.

(3.72)

Comparing (3.71) and (3.72), we get

2f(x) ◦D(y, z) = 0 for all x, y, z ∈ L. (3.73)

Using 2-torsion freeness of R and replacing z by y in (3.73), we obtain

f(x) ◦ f(y) = 0 for all x, y ∈ L. (3.74)

Using (3.74) and (3.71), we have

x ◦ y = 0 for all x, y ∈ L. (3.75)

Using the same argument as we have done in the proof of Theorem 3.24, we get
the result. ✷

Theorem 3.26. Let R be a 2-torsion free semiprime ring and L be a nonzero left
ideal of R. Let D(., .) : R × R −→ R be a symmetric biadditive mapping and f be
the trace of D. If [x, y]− f(xy) + f(yx) ∈ Z(R) for all x, y ∈ L, then L ⊆ Z(R).

Proof: Suppose that

[x, y]− f(xy) + f(yx) ∈ Z(R) for all x, y ∈ L. (3.76)

Replacing y by y + z in (3.76), we get

[x, y] + [x, z]− f(xy)− f(xz)− 2D(xy, xz)
+f(yx) + f(zx) + 2D(yx, zx) ∈ Z(R) for all x, y, z ∈ L.

(3.77)

This implies that

−2D(xy, xz) + 2D(yx, zx) ∈ Z(R) for all x, y, z ∈ L. (3.78)

Since R is 2-torsion free, we have

−D(xy, xz) +D(yx, zx) ∈ Z(R) for all x, y, z ∈ L. (3.79)

Replacing z by y in (3.79), we get

−f(xy) + f(yx) ∈ Z(R) for all x, y ∈ L. (3.80)

Comparing (3.76) and (3.80), we get [x, y] ∈ Z(R) and arguing in the similar
manner as we have done in the proof of Theorem 3.1, we get the result. ✷
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