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Abstract. Let R be a �-prime ring with involution � and center Z(R). An
additive mapping F : R! R is called a semiderivation if there exists a function
g : R! R such that (i) F (xy) = F (x)g(y)+xF (y) = F (x)y+g(x)F (y) and (ii)
F (g(x)) = g(F (x)) hold for all x; y 2 R: In the present paper, some well known
results concerning derivations of prime rings are extended to semiderivations
of �-prime rings.

1. Introduction

Let R will be an associative ring with center Z: For any x; y 2 R the symbol
[x; y] represents commutator xy � yx: Recall that a ring R is prime if xRy = 0
implies x = 0 or y = 0: An additive mapping � : R ! R is called an involution if
(xy)� = y�x� and (x�)� = x for all x; y 2 R: A ring equipped with an involution
is called a ring with involution or ��ring. A ring with an involution is said to
��prime if xRy = xRy� = 0 or xRy = x�Ry = 0 implies that x = 0 or y = 0:
Every prime ring with an involution is ��prime but the converse need not hold
general. An example due to Oukhtite [7] justi�es the above statement that is, R be
a prime ring, S = R�Ro where Ro is the opposite ring of R: De�ne involution � on
S as �(x; y) = (y; x): S is ��prime, but not prime. This example shows that every
prime ring can be injected in a ��prime ring and from this point of view ��prime
rings constitute a more general class of prime rings. In all that follows the symbol
Sa�(R); �rst introduced by Oukhtite, will denote the set of symmetric and skew
symmetric elements of R; i.e. Sa�(R) = fx 2 R j x� = �xg:

An additive mapping d : R ! R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x; y 2 R: For a �xed a 2 R; the mapping Ia : R ! R given by
Ia(x) = [a; x] is a derivation which is said to be an inner derivation. The study of
derivations in prime rings was initiated by E. C. Posner in [11]. Recently, Bresar
de�ned the following notation in [1]: An additive mapping F : R ! R is called a
generalized derivation if there exists a derivation d : R! R such that

F (xy) = F (x)y + xd(y); for all x; y 2 R:
Basic examples are derivations and generalized inner derivations (i.e., maps of type
x ! ax + xb for some a; b 2 R). Several authors consider the structure of a
prime ring in the case that the derivation d is replaced by a generalized derivation.
Generalized derivations have been primarily studied on operator algebras.
In [2] J. Bergen has introduced the notion of semiderivations of a ring R which

extends the notion of derivations of a ring R: An additive mapping F : R ! R is
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called a semiderivation if there exists a function g : R ! R such that (i) F (xy) =
F (x)g(y) + xF (y) = F (x)y + g(x)F (y) and (ii) F (g(x)) = g(F (x)) hold for all
x; y 2 R: In case g is an identity map of R; then all semiderivations associated with
g are merely ordinary derivations. On the other hand, if g is a homomorphism of
R such that g 6= 1; then f = g� 1 is a semiderivation which is not a derivation. In
case R is prime and F 6= 0; it has been shown by Chang [3] that g must necessarily
be a ring endomorphism.
Let S be a nonempty subset of R: A mapping F from R to R is called centralizing

on S if [F (x); x] 2 Z for all x 2 S and is called commuting on S if [F (x); x] = 0
for all x 2 S: The study of such mappings was initiated by E. C. Posner in [11]. A
famous result due to Herstein [5] states that if R is a prime ring of characteristic
not 2 which admits a nonzero derivation d such that [d(x); a] = 0 for all x 2 R;
then a 2 Z: Also, Herstein showed that if d (R) � Z; then R must be commutative.
On the other hand, in [4], Daif and Bell proved that if a semiprime ring R has a
derivation d satisfying the following condition, then I is a central ideal;

there exists a nonzero ideal I of R such that

either d([x; y]) = [x; y] for all x; y 2 I; or d([x; y]) = �[x; y] for all x; y 2 I:
Many authors have studied commutativity of prime and semiprime rings admitting
derivations, generalized derivations and semiderivations which satisfy appropriate
algebraic conditions on suitable subsets of the rings. Recently, some well-known
results concerning prime rings have been proved for ��prime ring by Oukhtite et
al. (see, [6-10], where further references can be found). In the present paper our
objective is to generalize above results for semiderivations of a ��prime ring.
Throughout the paper, R will be a ��prime ring and F be a semiderivation of

R associated with a surjective function g of R such that �F = F � : Also, we will
make some extensive use of the basic commutator identities:

[x; yz] = y[x; z] + [x; y]z

[xy; z] = [x; z]y + x[y; z]:

2. Results

Lemma 1. Let R be a ��prime ring and a 2 R: If R admits a semiderivation F
of R such that aF (x) = 0 ( or F (x)a = 0) for all x 2 R; then a = 0 or F = 0:

Proof. For all x; y 2 R; we get aF (xy) = 0; and hence
aF (x)g(y) + axF (y) = 0;

and so
aRF (y) = 0; for all y 2 R:

Replacing y by y� in this equation and using �F = F�; we �nd that
aRF (y)� = 0; for all y 2 R:

Since R is a ��prime ring, we have a = 0 or F = 0: Similarly holds case F (x)a =
0: �

Theorem 1. Let R be a ��prime ring, F a semiderivation of R such that F (R) �
Z; then F = 0 or R is commutative.
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Proof. By the hypothesis, we have

F (xy) 2 Z; for all x; y 2 R:

That is
F (x)g(y) + xF (y) 2 Z; for all x; y 2 R:

Commuting this term with x and using the hypothesis, we get

0 = [F (x)g(y) + xF (y); x]

= F (x)[g(y); x]

Since F (x) 2 Z and g is surjective function of R; we arrive at

F (x)R[y; x] = 0; for all x; y 2 R:

Using �F = F�; for any x 2 Sa�(R); we have

F (x)�R[y; x] = 0; for all x 2 Sa�(R); y 2 R:

Since R is a ��prime ring, we arrive at

F (x) = 0 or [y; x] = 0; for all x 2 Sa�(R); y 2 R:

Using the fact that x+x� 2 Sa�(R); x�x� 2 Sa�(R) for all x 2 R; we easily deduce
F (x � x�) = 0 or [y; x � x�] = 0: Hence we obtain R is union of its two additive
subgroups such that

K = fx 2 R j F (x) = 0g
and

L = fx 2 R j x 2 Zg:
Clearly each of K and L is additive subgroup of R: Morever, R is the set-theoretic
union of K and L: But a group can not be the set-theoretic union of two proper
subgroups, hence K = R or L = R: In the former case, we have F = 0 and the
second case, R is commutative. �

Theorem 2. Let R be a 2�torsion free ��prime ring, F a semiderivation of R
such that F 2(x) = 0; for all x 2 R; then F = 0:

Proof. Assume that
F 2(x) = 0; for all x 2 R:

Replacing y by xy in this equation, we get

0 = F 2(xy) = F (F (x)g(y) + xF (y))

= F 2(x)g2(y) + F (x)F (g(y)) + F (x)g(F (y)) + xF 2(y)

and so
2F (x)F (g(y)) = 0; for all x; y 2 R:

Using R is a 2�torsion free and g is surjective function of R, we have

F (x)F (y) = 0; for all x; y 2 R:

By Lemma 1, we complete the proof. �

Theorem 3. Let R be a 2�torsion free ��prime ring and a 2 R: If R admits a
semiderivation F such that [F (x); a] = 0; for all x 2 R; then F = 0 or a 2 Z:
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Proof. Replacing x by xy and using the hypothesis, we have

0 = [a; F (xy)] = [a; F (x)y + g(x)F (y)]

= F (x)[a; y] + [a; g(x)]F (y)(2.1)

Writing y for F (y) in this equation and again using the hypothesis, we obtain that

[a; g(x)]F 2(y) = 0; for all x; y 2 R:

Since g is surjective function of R; we have

[a; x]F 2(y) = 0; for all x; y 2 R:

Substituting xz for x in this equation, we get

[a; x]RF 2(y) = 0; for all x; y 2 R:

Since �F = F�; it reduces

[a; x]RF 2(y)� = 0; for all x; y 2 R:

By the ��primeness of R; we �nd that

a 2 Z or F 2(y) = 0; for all y 2 R:

If F 2(y) = 0; for all y 2 R; then F = 0 by Theorem 2. �

Theorem 4. Let R be a 2�torsion free ��prime ring and F a semiderivation of
R such that [F (R); F (R)] = 0; for all x 2 R; then F = 0 or R is commutative.

Proof. By Theorem 3, we have F = 0 or F (R) � Z: If F (R) � Z; then F = 0 or R
is commutative by Theorem 1. �

Theorem 5. Let R be a ��prime ring, F a semiderivation of R such that [F (x); x] =
0; for all x 2 R; then F = 0 or R is commutative.

Proof. Linearizing the hypothesis, we have

[F (x); y] + [F (y); x] = 0; for all x; y 2 R:

Replacing y by yx in this equation and using the hypothesis, we get

[g(y); x]F (x) = 0; for all x; y 2 R:

Since g is surjective function of R; we have

[y; x]F (x) = 0; for all x; y 2 R:

Writing yz for y and using this equation, we obtain that

[y; x]RF (x) = 0; for all x; y 2 R

Using the same arguments as we used in the last part of proof of the Theorem 1,
we get the required result. �

Theorem 6. Let R be a ��prime ring, F a semiderivation of R such that F ([x; y]) =
0; for all x; y 2 R; then F = 0 or R is commutative.
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Proof. Replacing y by xy in the hypothesis, we get

0 = F (x[x; y]) = F (x)g([x; y] + xF ([x; y])

= F (x)g([x; y]:

That is

F (x)[g(x); y] = 0; for all x; y 2 R:

Writing yz for y and using this equation, we obtain that

F (x)R[g(x); z] = 0; for all x; z 2 R:

Using �F = F�; for any x 2 Sa�(R); we have

F (x)�R[g(x); z] = 0; for all x 2 Sa�(R); z 2 R:

Since R is a ��prime ring, we arrive at

F (x) = 0 or [g(x); y] = 0; for all x 2 Sa�(R); y 2 R:

Using the fact that x+x� 2 Sa�(R); x�x� 2 Sa�(R) for all x 2 R; we easily deduce
F (x � x�) = 0 or [g(x � x�); y] = 0: Hence we obtain that R is union of its two
additive subgroups such that

K = fx 2 R j F (x) = 0g

and

L = fx 2 R j [g(x); y] = 0:g:

Clearly each of K and L is additive subgroup of R: Morever, R is the set-theoretic
union of K and L: But a group can not be the set-theoretic union of two proper
subgroups, hence K = R or L = R: In the former case, we have F = 0 and the
second case, R is commutative. �

Theorem 7. Let R be a ��prime ring, F a semiderivation of R such that F ([x; y]) =
�[x; y]; for all x; y 2 R; then F = 0 or R is commutative.

Proof. Replacing y by xy in the hypothesis, we get

F (x[x; y]) = �[x; y]
F (x)g([x; y] + xF ([x; y]) = �[x; y];

and so

F (x)g([x; y] = 0:

That is

F (x)[g(x); y] = 0; for all x; y 2 R:

Using the same arguments as we used in the last part of proof of the Theorem 6,
we get the required result. �
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