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Multiplicity Results for Nonlocal Elliptic Transmission Problem with

Variable Exponent
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abstract: In this paper, a transmission problem given by a system of two nonlin-
ear equations of p(x)-Kirchhoff type with nonstandard growth conditions are stud-
ied. Using the mountain pass theorem combined with the Ekeland’s variational
principle, we obtain at least two distinct, non-trivial weak solutions.
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1. Introduction

Problems related to PDEs involving variable exponents became popular a re-
cently due to their applications and research developments in the modelling of
electrorheological fluids, elasticity problems, image processing, mathematical de-
scription of the processes filtration of an ideal barotropic gas through a porous
medium, etc.; see for example [3,4,9,14,22] and references therein. One of the most
studied models leading to problem of this type is the model of motion of elec-
trorheological fluids, which are characterized by their ability to drastically change
the mechanical properties under the influence of an exterior electromagnetic field,
see [22,23]. The functional analytical tools needed for the analysis have been ex-
tensively developed, see [10,11,15] and references therein.

Transmission problems arise in several applications in physics and biology. For
instance, one of the important problems of the electrodynamics of solid media is
the electromagnetic process research in ferromagnetic media with different dielec-
tric constants. These problems appear as well as in solid mechanics if a body
consists of composite materials. We refer the reader to [21] for nonlinear elliptic
transmission problems, to [16] for a nonlinear nonlocal elliptic transmission prob-
lem. Furthermore, uniqueness and regularity of the solutions to the thermoelastic
transmission problem were investigated in [17].
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As shown the figure below, let Ω be smooth bounded domain of Rn, n ≥ 2, and
let Ω1 ⊂ Ω be a subdomain with smooth boundary Σ satisfying Ω1 ⊂ Ω. Writing
Γ = ∂Ω and Ω2 = Ω \ Ω1 we have Ω = Ω1 ∪ Ω2 and ∂Ω2 = Σ ∪ Γ .

In this paper, we are interested in the multiplicity of solutions for nonlocal ellip-
tic systems of gradient type with nonstandard growth conditions. More precisely,
we consider the following system

(P)





−M
(∫

Ω1

1
p(x) |∇u|

p(x)dx
)
div(|∇u|p(x)−2∇u) = f(x, u) in Ω1,

−N
( ∫

Ω2

1
p(x) |∇v|

p(x)dx
)
div(|∇v|p(x)−2∇v) = g(x, v) in Ω2,

v = 0 on Γ,

with the transmission conditions

u = v and M
(∫

Ω1

1

p(x)
|∇u|p(x)dx

)∂u
∂η

= N
(∫

Ω2

1

p(x)
|∇v|p(x)dx

)∂v
∂η

on Σ.

(1.1)
where p ∈ C(Ω), η is outward normal to Ω2 and is inward to Ω2. M and N : R+ →
R are continuous functions. We confine ourselves to the case where M = N for
simplicity. Notice that the results of this paper remain valid for M 6= N by adding
some slight changes in the hypothesis (M1) and (M2) below.

We note that problem (P) with the transmission condition is a generalization
of the stationary problem of two wave equations of Kirchhoff type,

{
utt −M(

∫
Ω1

|∇u|2dx)∆u = f(x, u) in Ω1,

vtt −N(
∫
Ω2

|∇v|2dx)∆v = g(x, v) in Ω2,

which models the transverse vibrations of the membrane composed by two different
materials in Ω1 and Ω2. Controllability and stabilization of transmission problems
for the wave equations can be found in [19,20]. We refer the reader to [1] for the
stationary problems of Kirchhoff type, to [6] for elliptic equation p-Kirchhoff type,
and to [7,8] for p(x)-Kirchhoff type equation.

In the sequel, we will assume that M : R
+ → R

+ is a continuous function
satisfying the following assumptions:
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(M1) There exist real numbers m1,m2 > 0 and θ > 0 such that

m1t
θ−1 ≤M(t) ≤ m2t

θ−1, for all t ≥ 0.

(M2) For all t ∈ R
+, it holds that

M̂(t) ≥M(t)t,

where M̂(t) =
∫ t
0
M(s) ds.

Although a natural extension of the theory, the problem addressed here is a
natural continuation of recent papers. In [5], the authors treat and show the
existence of nontrivial solution in the case f(x, u) = λ1|u|

q(x)−2u and g(x, v) =
λ1|v|

q(x)−2v when, λ1, λ2 > 0, q ∈ C(Ω) and 1 < q(x) < p∗(x) for all x ∈ Ω, where

p∗(x) = np(x)
n−p(x) if p(x) < n or p∗(x) = ∞ otherwise.

Motivated by above and the ideas introduced in [13], in this work, we will study
the existence of multiple solutions for problem (P) in a more general case when the
nonlinear terms f and g are defined by

f(x, u) = λ1a(x)|u|
α(x)−1u and g(x, v) = λ2b(x)|v|

β(x)−1v,

with α, β ∈ C+(Ω) such that

α− ≤ α+ < θp− < θp+ < β− ≤ β+ < min(N,
Np−

N − p−
) (1.2)

and the following conditions hold:

(A) a : Ω1 → R, satisfies a ∈ Lα0(x)(Ω1) and α0 ∈ C+(Ω1) such that

Np(x)

Np(x)− α(x)(N − p(x))
< α0(x) <

p(x)

p(x)− α(x)
for all x ∈ Ω1.

(B) b : Ω2 → R, satisfies b ∈ Lβ0(x)(Ω2) and β0 ∈ C+(Ω2) such that

p(x)

p(x)− β(x)
< β0(x) <

Np(x)

Np(x)− β(x)(N − p(x))
for all x ∈ Ω2.

where

C+(Ω) :=
{
h; h ∈ C(Ω) and h(x) > 1 for all x ∈ Ω

}
,

and h+ := max
Ω

h(x), h− := min
Ω
h(x), for any h ∈ C+(Ω).

More precisely, using the mountain pass theorem and the Ekeland’s variational
principle, we establish that the problem (P) has at least two distinct, non trivial
weak solutions provided that λ1 + λ2 ∈ (0, λ∗), λ∗ > 0 is small enough.
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Here, any solution of problem (P) with the transmission conditions will belong
to the framework of the generalized Sobolev space, which will be briefly described
in the following section,

E :=
{
(u, v) ∈ W 1,p(x)(Ω1)×W

1,p(x)
Γ (Ω2) : u = v on Σ

}
,

where
W

1,p(x)
Γ (Ω2) =

{
v ∈ W 1,p(x)(Ω2) : v = 0 on Γ

}
.

Definition 1.1. We say that (u, v) ∈ E is a weak solution of (P), if

M
(∫

Ω1

1

p(x)
|∇u|p(x)dx

) ∫

Ω1

|∇u|p(x)∇u∇ϕdx

+M
(∫

Ω1

1

p(x)
|∇v|p(x)dx

) ∫

Ω2

|∇v|p(x)∇v∇ψdx

= λ1

∫

Ω1

a(x)|u|α(x)−1uϕdx + λ2

∫

Ω2

b(x)|v|β(x)−1vψdx,

for any (ϕ, ψ) ∈ E.

Now, we are ready to state our main result.

Theorem 1.2. Let us assume that the conditions 1.2, (A), (B), (M1) and (M2)
are satisfied. Then, there exists λ∗ > 0 such that for any λ1+λ2 ∈ (0, λ∗), problem
(P) has at least two distinct non trivial weak solutions.

The paper consists of three sections. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces. In Section 3, we give
the proof of our main result.

2. Preliminary results and notations

In order to guarantee the integrity of the paper, we recall some definitions and
basic properties of variable exponent Lebesgue-Sobolev spaces. For details, we refer
to [10,11,15] for the fundamental properties of these spaces.

Let σ : Ω → R be a measurable real function such that σ(x) > 0 for a.e. x ∈ Ω.
For p ∈ C+(Ω), define the weighted variable exponent Lebesgue space

L
p(x)
σ(x)(Ω) =

{
u; measurable real-valued function and

∫

Ω

σ(x)
∣∣u(x)

∣∣p(x)dx <∞
}
.

Equipped with the so-called Luxemburg norm

∣∣u
∣∣
p(x),σ(x),Ω

:= inf
{
µ > 0 :

∫

Ω

σ(x)
∣∣u(x)
µ

∣∣p(x)dx ≤ 1
}
,

L
p(x)
σ(x)(Ω) becomes a separable, reflexive and Banach space. In particular, when

σ(x) ≡ 1 on Ω, L
p(x)
σ(x)(Ω) is the usual variable exponent Lebesgue space Lp(x)(Ω).
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Proposition 2.1. The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1
p(x)+

1
q(x) =

1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

∣∣
∫

Ω

uvdx
∣∣ ≤

( 1

p−
+

1

q−

)
|u|p(x)|v|q(x).

An important role in manipulating the generalized Lebesgue spaces is played

by the mapping ρp(x),σ(x),Ω : L
p(x)
σ(x)(Ω) → R, called the modular of the L

p(x)
σ(x)(Ω)

space, defined by

ρp(x),σ(x),Ω(u) =

∫

Ω

σ(x)|u|p(x)dx.

The following proposition illuminates the close relation between the |u|p(x),σ(x),Ω
and the convex modular ρp(x),σ(x),Ω.

Proposition 2.2. For all un, u ∈ Lp(x)(Ω), we have

1. |u|p(x),σ(x),Ω = a ⇐⇒ ρp(x),σ(x),Ω(
u
a
) = 1, pour u 6= 0 and a > 0.

2. |u|p(x),σ(x),Ω > 1(= 1;< 1) ⇐⇒ ρp(x),σ(x),Ω(u) > 1(= 1;< 1).

3. |u|p(x),σ(x),Ω → 0( resp. → +∞) ⇐⇒ ρp(x),σ(x),Ω(u) → 0( resp. → +∞).

4. |u|p(x),σ(x),Ω > 1 =⇒ |u|p
−

p(x),σ(x),Ω ≤ ρp(x),σ(x),Ω(u) ≤ |u|p
+

p(x),σ(x),Ω.

5. |u|p(x),σ(x),Ω < 1 =⇒ |u|p
+

p(x),σ(x),Ω ≤ ρp(x),σ(x),Ω(u) ≤ |u|p
−

p(x),σ(x),Ω.

Proposition 2.3. If u, un ∈ Lp(x)(Ω), n = 1, 2, ..., then the following statements
are equivalent each other:

1. lim
n→∞

|un − u|p(x),σ(x),Ω = 0,

2. lim
n→∞

ρp(x),σ(x),Ω(un − u) = 0,

3. un → u in measure in Ω and lim
n→∞

ρp(x),σ(x),Ω(un) = ρp(x),σ(x),Ω(u).

Proposition 2.4. (see [18]) Let p and r be measurable functions such that p ∈
L∞(Ω) checking 1 ≤ p(x)r(x) ≤ ∞ for a.e. x ∈ Ω. Then, for u ∈ Lr(x)(Ω) with
u 6= 0, the following relations hold.

1. |u|p(x) > 1 =⇒ |u|p
−

p(x)r(x) ≤
∣∣∣
∣∣u
∣∣p(x)

∣∣∣
r(x)

≤ |u|p
+

p(x)r(x).

2. |u|p(x) < 1 =⇒ |u|p
+

p(x)r(x) ≤
∣∣∣
∣∣u
∣∣p(x)

∣∣∣
r(x)

≤ |u|p
−

p(x)r(x).

In particular, if p(x) = p is a constant, then
∣∣∣
∣∣u
∣∣p
∣∣∣
r(x)

= |u|p
pr(x).
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As in the constant exponent case, for any positive integer k, set

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}.

Endowed with the norm

‖u‖k,p(x),Ω =
∑

|α|≤k

|Dαu|p(x),

the space W k,p(x)(Ω) becomes a separable, reflexive and Banach space. In

W
1,p(x)
0 (Ω), which denote the closure of C∞

0 (Ω) in W k,p(x)(Ω), the Poincaré in-
equality holds ( [10]), that is, there exists a positive constant C such that

‖u‖1,p(x),Ω ≤ C|∇u|p(x),Ω, ∀u ∈W
1,p(x)
0 (Ω).

So, |∇u|p(x),Ω is an equivalent norm in W
1,p(x)
0 (Ω). We will use the equivalent

norm in the following discusion and write ‖u‖p(x),Ω = |∇u|p(x),Ω for simplicity.

Proposition 2.5. Assume that Ω is bounded, the boundary of Ω possesses the cone

property and p ∈ C+(Ω̄). If q ∈ C+(Ω̄) and q(x) ≤ p∗(x)
(
q(x) < p∗(x)

)
for all

x ∈ Ω̄ then there is a continuous
(
compact

)
embedding W 1,p(x)(Ω) →֒ Lq(x)(Ω).

Recall the following lemma, see [5, Lemma 2.8], which will permit the varia-
tional setting of the problem (P).

Lemma 2.6. E is a closed subspace of W 1,p(x)(Ω1)×W 1,p(x)(Ω2), and

‖(u, v)‖ = ‖u‖p(x),Ω1
+ ‖v‖p(x),Ω2

(2.1)

defines a norm in E, equivalent to the standard norm of W 1,p(x)(Ω1)×W
1,p(x)(Ω2).

3. Proof of the main result

For simplicity, we use the letters c, ci, i = 1, 2, ... to denote positive constants
which may vary from line to line but are independent of the terms which will take
part in any limit process. 〈., .〉 denote the dual pair.

The energy functional associated to problem (P) is defined as J : E → R,

J(u, v) = Φ(u, v)−Ψ(u, v), (3.1)

where

Φ(u, v) = M̂
( ∫

Ω1

|∇u|p(x)

p(x)
dx

)
+ M̂

(∫

Ω2

|∇v|p(x)

p(x)
dx

)
,

and

Ψ(u, v) = λ1

∫

Ω1

a(x)

α(x)
|u|α(x)dx+ λ2

∫

Ω2

b(x)

β(x)
|v|β(x)dx.
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In a standard way, it can be proved that J ∈ C1(E,R). Moreover, we have, for all
(ϕ, ψ) ∈ E,

〈J
′

(u, v), (ϕ, ψ)〉 = 〈Φ
′

(u, v), (ϕ, ψ)〉 − 〈Ψ
′

(u, v), (ϕ, ψ)〉,

where

〈Φ
′

(u, v), (ϕ, ψ)〉 = M
(∫

Ω1

|∇u|p(x)

p(x)
dx

) ∫

Ω1

|∇u|p(x)−2∇u∇ϕdx

+M
(∫

Ω1

|∇v|p(x)

p(x)
dx

) ∫

Ω2

|∇v|p(x)−2∇v∇ψdx

and

〈Ψ
′

(u, v), (ϕ, ψ)〉 = λ1

∫

Ω1

a(x)|u|α(x)−1uϕdx+ λ2

∫

Ω2

b(x)|v|β(x)−1vψdx.

Thus, weak solutions of problem (P) are exactly the critical points of the functional
J. Due to the conditions (M1) and (1.2), we can show that J is weakly lower semi-
continuous in E.

In order to establish Theorem 1.2, we need the following lemmas which play an
important role in our arguments.

Lemma 3.1. There exist λ∗ > 0 and ρ, r > 0 such that for any λ1 + λ2 ∈ (0, λ∗),
we have

J(u, v) ≥ r, ∀(u, v) ∈ E, with ‖(u, v)‖ = ρ.

Proof. By the lemma 2.6, we have

‖u‖1,α(x),Ω1
+ ‖v‖1,β(x),Ω2

≤ C1‖(u, v)‖, ∀(u, v) ∈ E. (3.2)

We fix ρ ∈ (0, 1) such that ρ < 1
C1

. Then, the above relation implies

‖u‖1,α(x),Ω1
+ ‖v‖1,β(x),Ω2

< 1, ∀(u, v) ∈ E. (3.3)

From 1.2 and the conditions (A) and (B), the embeddings from E to the
weighted spaces Lα(x)

(
Ω1, a(x)

)
and Lβ(x)

(
Ω2, b(x)

)
are compact, see [18, The-

orems 2.7, 2.8]. Moreover, there exist two positive constants c1 and c2 such that

∫

Ω1

a(x)|u|α(x)dx ≤ c1

(
‖u‖α

−

1,α(x),Ω1
+ ‖u‖α

+

1,α(x),Ω1

)
, ∀u ∈W 1,p(x)(Ω1),

and
∫

Ω2

b(x)|v|β(x)dx ≤ c2

(
‖v‖β

−

1,β(x),Ω2
+ ‖v‖β

+

1,β(x),Ω2

)
, ∀v ∈W 1,p(x)(Ω2).
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Then, by (3.3), for any (u, v) ∈ E, we get

∫

Ω1

a(x)|u|α(x)dx+

∫

Ω2

b(x)|v|β(x)dx ≤ C4

(
‖u‖1,α(x),Ω1

+ ‖v‖1,β(x),Ω2

)
.

Hence, from (3.2), we deduce

∫

Ω1

a(x)|u|α(x)dx+

∫

Ω2

b(x)|v|β(x)dx ≤ C5‖(u, v)‖. (3.4)

Therefore, using (M1), (M2), (3.4) and by help of the following elementary inequal-
ity

|a+ b|s ≤ 2s−1
(
|a|s + |b|s

)
for a, b ∈ R

N , (3.5)

the following inequalities hold true:

J(u, v) = M̂
( ∫

Ω1

|∇u|p(x)

p(x)
dx

)
+ M̂

( ∫

Ω2

|∇v|p(x)

p(x)
dx

)

−λ1

∫

Ω1

a(x)

α(x)
|u|α(x)dx− λ2

∫

Ω2

b(x)

β(x)
|v|β(x)dx

≥ m1

(∫ 1

p+
ρp(x),Ω1

(∇u)

0

tθ−1dt+

∫ 1

p+
ρp(x),Ω2

(∇v)

0

tθ−1dt
)

−
λ1

α−

∫

Ω1

a(x)|u|α(x)dx−
λ2

β−

∫

Ω2

b(x)|v|β(x)dx

≥
m1

θ(p+)θ

[
(

∫

Ω1

|∇u|p(x)dx)θ+(

∫

Ω2

|∇v|p(x)dx)θ
]
−
C5(λ1 + λ2)

α−
‖(u, v)‖

≥
m1

θ(p+)θ

(
‖u‖θp

+

p(x),Ω1
+ ‖v‖θp

+

p(x),Ω2

)
−
C5(λ1 + λ2)

α−
‖(u, v)‖

≥
m12

1−θp+

θ(p+)θ

(
‖u‖p(x),Ω1

+ ‖v‖p(x),Ω2

)θp+
−
C5(λ1 + λ2)

α−
‖(u, v)‖

≥
m12

1−θp+

θ(p+)θ
‖(u, v)‖θp

+

−
C5(λ1 + λ2)

α−
‖(u, v)‖.

Define

λ∗ =
m12

1−θp+α−ρθp
+−1

C5θ(p+)θ
.

Then, by the above inequality, for any λ1 + λ2 ∈ (0, λ∗) and (u, v) ∈ E with
‖(u, v)‖ = ρ there exists r > 0 such that J(u, v) ≥ r. The proof of Lemma 3.1 is
complete.

Lemma 3.2. There exist (ϕ̃, ψ̃) ∈ E, ϕ̃, ψ̃ ≥ 0 such that

lim
t→∞

J(tϕ̃, tψ̃) = −∞.
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Proof. Let ϕ̃, ψ̃ ∈ C∞
0 (Ω), ϕ̃, ψ̃ 6= 0 and t > 1. By (M1), we have

J(tϕ̃, tψ̃) = M̂
(∫

Ω1

|t∇ϕ̃|p(x)

p(x)
dx

)
+ M̂

(∫

Ω2

|t∇ψ̃|p(x)

p(x)
dx

)

−λ1

∫

Ω1

a(x)

α(x)
|tϕ̃|α(x)dx− λ2

∫

Ω2

b(x)

β(x)
|tψ̃|β(x)dx

≤
m2t

θp+

θ(p−)θ

(
ρθp(x),Ω1

(∇ϕ̃) + ρθp(x),Ω2
(∇ψ̃)

)

−
λ1t

α−

α+
ρp(x),Ω1

(ϕ̃)−
λ2t

β−

β+ ρp(x),Ω2
(ψ̃)

Since β− > θp+, we get J(tϕ̃, tψ̃) → −∞ as t→ ∞. This ends the proof of Lemma
3.3.

Lemma 3.3. There exist (ϕ, ψ) ∈ E such that ϕ, ψ ≥ 0, ϕ, ψ 6= 0 and J(tϕ, tψ) < 0
for all t > 0 small enough.

Proof. Let choose ϕ, ψ ∈ C∞
0 (Ω), 0 ≤ ϕ ≤ 1 in Ω1 and 0 ≤ ψ ≤ 1 in Ω2. Then,

for any t ∈ (0, 1), by (M1) and (M2) it follows

J(tϕ, tψ) = M̂
(∫

Ω1

|t∇ϕ|p(x)

p(x)
dx

)
+ M̂

( ∫

Ω2

|t∇ψ|p(x)

p(x)
dx

)

−λ1

∫

Ω1

a(x)

α(x)
|tϕ|α(x)dx− λ2

∫

Ω2

b(x)

β(x)
|tψ|β(x)dx

≤ m2

(∫ 1

p+
ρp(x),Ω1

(∇tϕ)

0

sθ−1dt+

∫ 1

p+
ρp(x),Ω2

(∇tψ)

0

sθ−1dt
)

−
λ1

α+

∫

Ω1

a(x)|tϕ|α(x)dx−
λ2

β+

∫

Ω2

b(x)|tψ|β(x)dx

≤
m2t

θp−

θ(p−)θ

(
ρθp(x),Ω1

(∇ϕ) + ρθp(x),Ω2
(∇ψ)

)

−
λ1t

β+

β+ ρp(x),Ω1
(ϕ)−

λ2t
β+

β+ ρp(x),Ω2
(ψ)

Let
Rθ = m2

(
ρθp(x),Ω1

(∇ϕ) + ρθp(x),Ω2
(∇ψ)

)
. (3.6)

and
Sλ1,λ2 = λ1ρp(x),Ω1

(ϕ) + λ2ρp(x),Ω2
(ψ). (3.7)

Then,

J(tϕ, tψ) ≤
tθp

−

θ(p−)θ
Rθ −

tβ
+

β+ Sλ1,λ2 .
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Therefore, we conclude

J(tϕ, tψ) < 0,

for 0 < t < σ
1

θp−−β+ providing that

0 < σ < min
{
1,
θ(p−)θSλ1,λ2

β+Rθ

}
.

The proof of Lemma 3.2 is complete.

Lemma 3.4. The functional J satisfies the Palais-Smale condition in E.

Proof. Let {(un, vn)} ⊂ E be a sequence such that

J(un, vn) → c > 0, J
′

(un, vn) → 0 in E∗. (3.8)

where E∗ is the dual space of E.

First, we show that {(un, vn)} is bounded in E. Assume by contradiction the
contrary. Then, passing eventually to a subsequence, still denoted by (un, vn),
we may assume that ‖(un, vn)‖ → ∞. Thus, we may consider that ‖un‖p(x),Ω1

,

‖vn‖q(x),Ω2
> 1 for any integer n. Using (M1), (M2) and (3.5), we deduce from
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(3.8) that

c̄+ 1 + ‖(un, vn)‖ ≥ Jλ(un, vn)−
1

β− 〈J
′

λ(un, vn), (un, vn)〉

= M̂
(∫

Ω1

|∇un|
p(x)

p(x)
dx

)
+ M̂

( ∫

Ω2

|∇vn|
p(x)

p(x)
dx

)
− λ1

∫

Ω1

a(x)

α(x)
|un|

α(x)dx

−λ2

∫

Ω2

b(x)

β(x)
|vn|

β(x)dx −
1

β−M
(∫

Ω1

|∇un|
p(x)

p(x)
dx

) ∫

Ω1

|∇un|
p(x) dx

−
1

β−M
(∫

Ω2

|∇vn|
p(x)

p(x)
dx

) ∫

Ω2

|∇vn|
p(x) dx

+
λ1

β−

∫

Ω1

a(x)|un|
α(x)dx+

λ2

β−

∫

Ω2

b(x)|vn|
β(x)dx

≥ (
1

p+
−

1

β− )M
(∫

Ω1

|∇un|
p(x)

p(x)
dx

) ∫

Ω1

|∇un|
p(x) dx

+(
1

p+
−

1

β− )M
(∫

Ω2

|∇vn|
p(x)

p(x)
dx

) ∫

Ω2

|∇vn|
p(x) dx

+λ1(
1

β− −
1

α−
)

∫

Ω1

a(x)|un|
α(x)dx

≥
β− − p+

(p+)θβ−

[(∫

Ω1

|∇un|
p(x) dx

)θ
+
( ∫

Ω2

|∇vn|
p(x) dx

)θ]

−2λ1(
1

α−
−

1

β− )‖un‖
α+

1,p(x),Ω1

≥
β− − p+

(p+)θβ−

(
‖∇un‖

θp−

p(x),Ω1
+ ‖∇vn‖

θp−

p(x),Ω2

)

−2λ1(
1

α−
−

1

β− )
(
‖un‖1,p(x),Ω1

+ ‖vn‖1,p(x),Ω2

)α+

≥ 21−θp
− β− − p+

(p+)θβ−

(
‖∇un‖p(x),Ω1

+ ‖∇vn‖p(x),Ω2

)θp−

−2Cλ1(
1

α−
−

1

β− )‖(un, vn)‖
α+

≥ 21−θp
− β− − p+

(p+)θβ− ‖(un, vn)‖
θp− − 2Cλ1(

1

α−
−

1

β− )‖(un, vn)‖
α+

Taking into account of 2.1, since α+ < θp− and p+ < θp+ < β−, dividing the
above inequality by ‖(un, vn)‖ and passing to the limit as n → ∞ we obtain a
contradiction. It follows that the sequence {(un, vn)} is bounded in E.

Thus, there exists (u, v) ∈ E such that passing to a subsequence, still denoted
by {(un, vn)}, it converges weakly to (u, v) in E. By (1.2) and the conditions
(A) and (B), the embedding from E to the weighted spaces Lα(x)(Ω1, a(x)) and
Lβ(x)(Ω2, b(x)) are compact. Then, using the Hölder inequalities, Propositions
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2.2-2.5, we have

∣∣∣
∫

Ω1

a(x)|un|
α(x)−2un(un − u)dx

∣∣∣ ≤
∫

Ω1

a(x)|un|
α(x)−1|un − u|dx

≤ c1

∣∣∣
(
a(x)|un|

α(x)
)α(x)−1

α(x)
∣∣∣
α

′(x)
|un − u|a(x),α(x),Ω1

≤ c2

∣∣∣a(x)|un|α(x)
∣∣∣
α+

−1

α+

L1(Ω1)
|un − u|a(x),α(x),Ω1

≤ c3|un|
α+

−1

α+

a(x),α(x),Ω1
|un − u|a(x),α(x),Ω1

≤ c4‖un‖
α+

−1

α+ |un − u|a(x),α(x),Ω1
,

where 1
α(x) +

1
α′(x) = 1 for a.e x ∈ Ω. As n→ ∞, we deduce

lim
n→∞

∫

Ω1

a(x)|un|
α(x)−2un(un − u)dx = 0. (3.9)

Similarly, we get

lim
n→∞

∫

Ω2

b(x)|vn|
β(x)−2vn(vn − v)dx = 0. (3.10)

On the other hand, by (3.8), we have

lim
n→∞

〈J
′

(un, vn), (un − u, vn − v)〉 = 0. (3.11)

From (3.9), (3.10) and (3.11), we get

lim
n→∞

〈Φ
′

(un, vn), (un − u, vn − v)〉 = 0. (3.12)

Hence,

lim
n→∞

M
(∫

Ω1

|∇un|
p(x)

p(x)
dx

) ∫

Ω1

|∇un|
p(x)−2∇un(∇un −∇u)dx = 0,

and

lim
n→∞

M
(∫

Ω2

|∇vn|
p(x)

p(x)
dx

) ∫

Ω2

|∇vn|
p(x)−2∇vn(∇vn −∇v)dx = 0.

From (M1) and (M2), it follows that

lim
n→∞

∫

Ω1

|∇un|
p(x)−2∇un(∇un −∇u)dx = 0,

and

lim
n→∞

∫

Ω2

|∇vn|
p(x)−2∇vn(∇vn −∇v)dx = 0.

Eventually, by [12, Theorem 3.11], we get that (un, vn) converges strongly to
(u1, v1) in E, so we conclude that functional J satisfies the Palais-Smale condi-
tion.
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Proof of Theorem 1.2. By Lemmas 3.1, 3.2 and 3.4, all assumptions of the
mountain pass theorem in [2] are satisfied. Then, we deduce (u1, v1) as a nontrivial
critical point of the functional J with J(u1, v1) = c and thus a nontrivial weak
solution of problem (P).

Now, we prove that there exists a second nontrivial weak solution (u2, v2) ∈ E

such that (u2, v2) 6= (u1, v1). Indeed, by Lemma 3.3, we have

inf
∂Bρ(0)

J ≥ r > 0 and inf
Bρ(0)

J < 0.

Let us choose ǫ > 0 such that

0 < ǫ < inf
∂Bρ(0)

J − inf
Bρ(0)

J. (3.13)

Therefore, by applying the Ekeland’s variational principle to the functional J :
Bρ(0) → R, there exists (uǫ, vǫ) ∈ Bρ(0) such that

J(uǫ, vǫ) < inf
Bρ(0)

J + ǫ,

J(uǫ, vǫ) < J(u, v) + ǫ‖(u− uǫ, v − vǫ)‖, u 6= uǫ, v 6= vǫ.

Thus, by (3.13), it follows that J(uǫ, vǫ) < inf
∂Bρ(0)

J and so, (uǫ, vǫ) ∈ Bρ(0).

Now, let us define I : Bρ(0) → R by I(u, v) = J(u, v) + ǫ‖(u − uǫ, v − vǫ)‖. It
is easy to see that (uǫ, vǫ) is a minimum point of I, and thus

I(uǫ + t.ζ, vǫ + t.ξ)− I(uǫ, vǫ)

t
≥ 0,

for t > 0 small enough and any (ζ, ξ) ∈ Bρ(0). The above expression shows that

J(uǫ + t.ζ, vǫ + t.ξ)− J(uǫ, vǫ)

t
+ ǫ‖(ζ, ξ)‖ ≥ 0.

Letting t→ 0+, we deduce that

〈J
′

(uǫ, vǫ), (u, v)〉 ≥ −ǫ‖(u, v)‖.

It should be noticed that −(u, v) also belongs to Bρ(0), so replacing (u, v) by
−(u, v), we get

〈J
′

(uǫ, vǫ), (u, v)〉 ≤ ǫ‖(u, v)‖,

which helps us to deduce that ‖J
′

(uǫ, vǫ)‖E∗ ≤ ǫ.
Therefore, there exists a sequence {(un, vn)} ⊂ Bρ(0) such that

J(un, vn) → c := inf
Bρ(0)

J < 0, and J
′

(un, vn) → 0 in E∗ as n→ ∞. (3.14)

From Lemma 3.4, the sequence {(un, vn)} converges strongly to (u2, v2) as n →
∞. Moreover, since J ∈ C1(E,R), by (3.14) it follows that J(u2, v2) = c and
J

′

(u2, v2) = 0. Thus, (u2, v2) is a non trivial weak solution of problem (P).
Finally, we point out the fact that (u1, v1) 6= (u2, v2) since J(u1, v1) = c > 0 >

c = J(u2, v2). The proof of Theorem 1.2 is complete.
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