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Existence of Solution for Dirichlet Problem with p(x)-Laplacian

M. Moussaoui and L. Elbouyahyaoui

abstract: In this paper we study an elliptic equation involving the p(x)-laplacian
operator, for that equation we prove the existence of a non trivial weak solution. The
proof relies on simple variational arguments based on the Mountain-Pass theorem.

Key Words: p(x)-laplacian; generalized Lebesgue (Sobolev) spaces; critical
points.
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1. Introduction

We consider the following problem:

(1.1)

{

−∆p(x)u = f(x, u) inΩ
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N , ∆p(x)(u) = div(|∇u(x)|p(x)−2∇u(x)),

p ∈ C+(Ω) = {h ∈ C(Ω); h(x) > 1 for anyx ∈ Ω} and f : Ω × R → R is a
Carathéodory function. The study of equation involving p(x)-growth conditions
has captured a special attention, since there are some physical phenomena which
can be modelled by such kind of equation ( see [5], [10], [11] [8]).
Existence results for p(x)-laplacian Dirichlet problems on bounded domains were
studied in [6], [7], [9] . . . . In [7] the authors established the existence of weak solu-
tion in the case f(x, s) = λv(x)|s|q(x)−2s where q(x) < p(x).Fan, Zhang and Zhao
[4] proved the existence of weak solutions under assumption of type Ambrosetti-
Rabinowitz (AR) [1]: there exists θ > p+ such that 0 < θF (x, s) ≤ sf(x, s) ∀x ∈
Ω and s ∈ R where p+ = maxx∈Ωp(x). Petre Sorin Ilias [6] proved the existence
of weak solution for the Dirichlet problem (1.1) in the case f(x,−s) = −f(x, s).
Maria Mag [9] studied problem (1.1) where f ∈ C1(Rn × R,R).

In this paper we study the problem (1.1) under the assumption:
(H1) |f(x, s)| ≤ a|s|α(x)−1 + b where a > 0, α(x) ∈ C+(Ω), b ∈ R and
α(x) < p∗(x)∀x ∈ Ω with:

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.
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(H2) F (x, s)− sf(x, s) ≥ B(x)−β|s|
η

where B(.) ∈ L1(Ω), η, β ∈ R and η < p−

where p− = minx∈Ωp(x)

(H3) f(x, s) = o(|s|P
+−1) as s → 0 and uniformly for x ∈ Ω .

and
(H4) F (x, s) ≥ γ|s|θ − b1|s|

r + B1(x) in a subset Ω1 ⊂ Ω, with |Ω1| > 0,
γ > 0, s ∈ R, r ≥ 0, θ > sup(p+; r), B1(.) ∈ L1(Ω) and b1 ∈ R.

Remark 1.1. 1. It is known that (H4) is weaker than the condition (AR),
moreover we assume the condition on measuring portion of the set Ω.

2. Similar result can be obtained, if we replace in (H4) the assumption s ∈ R by
s ∈ R

+ ( or s ∈ R
−).

This paper is divided into three sections. In the second section, we introduce
some basic properties of the generalized Lebesgue-Sobolev spaces and several im-
portant properties of p(x)-Laplace operator. In the third section, we give some
existence results of weak solutions of problem (1.1).

2. Preliminary results

In this section we recall some results on variable exponent Sobolev space, the
reader is referred to [2], [6], [3] and the references therein for more details.

Set

M = {u : Ω → R; u is a measurable real- valued function}.
Lp(x)(Ω) = {u ∈ M ;

∫

Ω |u(x)|p(x)dx < +∞}.

We define on Lp(x) the so- called Luxemburg norm by the formula:

|u|p(x) = inf{µ > 0;

∫

Ω

|
u(x)

µ
|p(x) dx ≤ 1}.

Variable exponent Lebesgue spaces (Lp(x)(Ω), |.|p(x)) resemble to classical Lebesgue
spaces in many respects; they are reflexive and Banach space.
On Lp(x)(Ω) we also consider the function ϕp(x) : L

p(x)(Ω) → R defined by:

ϕp(x)(u) =

∫

Ω

|u|p(x)dx.

Proposition 2.1. ( [3])

1. We have the equivalence:
|u|p(x) < (>,=)1 ⇔ ϕp(x)(u) < (>,=)1.

2. |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ϕp(x)(u) ≤ |u|p
+

p(x).

3. |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ϕp(x)(u) ≤ |u|p
−

p(x).



Existence of Solution for Dirichlet Problem with p(x)-Laplacian 245

4. A ⊆ Lp(x)(Ω) is bounded if and only if ϕp(x)(A) ⊆ R is bounded.

5. For a sequence (un) ⊂ Lp(x)(Ω) and an element u ∈ Lp(x)(Ω), the following
statements are equivalent:

• lim
n→+∞

un = u in Lp(x)(Ω).

• lim
n→+∞

ϕp(x)(un − u) = 0.

• un → u in measure in Ω and lim
n→+∞

ϕp(x)(un) = ϕp(x)(u).

6. lim
n→+∞

|un|p(x) = +∞ if and only if lim
n→+∞

ϕp(x)(un) = +∞.

We define the variable Sobolev space

W 1,p(x)(Ω) =

{

u ∈ Lp(x)(Ω);
∂u

∂xi

∈ Lp(x)(Ω) for all 1 ≤ i ≤ N

}

and equipp it with the norm

||u||1,p(x) = |u|p(x) + |∇u|p(x),

denote by W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.2. (see [2])

1. W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable reflexive Banach spaces.

2. If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding from
W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

3. There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈ W
1,p(x)
0 (Ω).

By the assertion 3 of Proposition 2.2, we know that |∇u|p(x) and ||u||1,p(x) are

equivalent norms on W
1,p(x)
0 (Ω).

Let E denote the generalized Sobolev space W
1,p(x)
0 (Ω) equipped with the norm

||u|| = |∇u|p(x), the p(x)-laplacian operator is defined by:

−∆p(x) : E −→ E∗

< −∆p(x)u, v >=

∫

Ω

|∇u|p(x)−2∇u∇v dx; u, v ∈ E.

Proposition 2.3. (see [4])
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1. −∆p(x) : E −→ E∗ is a homeomorphisme from E into E∗.

2. −∆p(x) : E −→ E∗ is a strictly monotone operator, that is

< −∆p(x)u− (−∆p(x))v, u− v >> 0, ∀u 6= v

3. −∆p(x) : E −→ E∗ is a mapping of type S+, that is, if un ⇀ u in E and
lim sup
n→+∞

< −∆p(x)un − (−∆p(x))u, un − u >≤ 0 then un −→ u in E

Proposition 2.4. ( [4]) The functional H : E −→ R defined by:

H(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx

is continuously Fréchet differentiable and H ′(u) = −∆p(x)u, for all u ∈ E.

In the last part of this section we recall the basic results of the Nemytskii
operator.
Let f : Ω×R → R a Carathéodory function and u ∈ M , the function Nf (u) : Ω → R

defined by Nf (u)(x) = f(x, u(x)) is mesurable in Ω, thus the Carathéodory function
f defines an operator Nf : M → M , which is called the Nemytskii operator.

Proposition 2.5. ( [12]) Suppose f : Ω× R → R is a Carathéodory function and
satisfies the growth condition

|f(x, t)| ≤ c|t|
α(x)
β(x) + h(x), for any x ∈ Ω, t ∈ R,

where α(.), β(.) ∈ C+(Ω̄), c ≥ 0 is constant and h ∈ Lβ(x)(Ω). Then Nf (L
α(x)(Ω)) ⊂

Lβ(x)(Ω). Moreover, Nf is continuous from Lα(x)(Ω) to Lβ(x)(Ω) and maps bounded
set into bounded set.

For a function α(.) ∈ C+(Ω), we recall that β(.) ∈ C+(Ω) is its conjugate
function if 1

α(x) +
1

β(x) = 1 for all x ∈ Ω.

Proposition 2.6. ( [6], [3]) Suppose f : Ω× R −→ R is a Carathéodory function
and satisfies the growth condition

|f(x, t)| ≤ c|t|α(x)−1 + h(x), for any x ∈ Ω, t ∈ R

where c ≥ 0 is constant, α ∈ C+(Ω), h ∈ Lβ(x)(Ω) and β ∈ C+(Ω) is the conjugate
function of α.
Let F : Ω× R −→ R, defined by F (x, t) =

∫ t

0 f(x, s)ds, then:

1. F is a Carathéodory function and there exist a constant c1 ≥ 0 and σ ∈ L1(Ω)
such that:

|F (x, t)| ≤ c1|t|
α(x) + σ(x); x ∈ Ω, t ∈ R.

2. The functional J̄ : Lα(x)(Ω) −→ R defined by J̄(u) =
∫

Ω F (x, u(x))dx is

continuously Fréchet differentiable and < J̄
′

(u), v >=
∫

Ω f(x, u(x))v(x) dx

for all u, v ∈ Lα(x)(Ω).
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Lemma 2.7. Suppose f : Ω×R −→ R is a Carathéodory function and satisfies the
growth condition as in proposition 2.6 above and α(x) < p∗(x), then N̄f : E −→ E∗,
where N̄f (u)v =

∫

Ω
f(x, u(x))v(x)dx is strongly continuous.

Proof: The embedding E →֒ Lα(x)(Ω) is compact, hence the diagram

E
I
→֒ Lα(x)(Ω)

Nf

−→ Lβ(x)(Ω)
I∗

→֒ E∗

shows that N̄f : E −→ E∗ is strongly continuous. ✷

3. The main results

Let the functional Φ defined by:

Φ : E −→ R

Φ(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx−

∫

Ω

F (x, u(x)) dx.

Under assymption (H1), the result from proposition 2.4 and proposition 2.6,
show that Φ is a C1 functional on E and

Φ
′

(u) = −∆p(x)u− N̄f (u), ∀u ∈ E.

It is obvious that u ∈ E is a weak solution for problem (1.1) if and only if Φ
′

(u) = 0.
For that we will apply a mountain pass type argument to find nonzero critical point
of Φ.
Our main result is given by the following theorem.

Theorem 3.1. Assume (H1), (H2), (H3) and (H4) hold, then the problem (1.1)
has a non trivial weak solution.

Definition 3.2. We say that a C1 functional I : E −→ R satisfies the Palais-
Smale condition (PS) if any sequence (un) ⊂ E such that (I(un)) is bounded and
I

′

(un) −→ 0 has a convergent subsequence.

Lemma 3.3. Assume (H1) and (H2) hold, then the functional Φ : E −→ R satisfies
the (PS) condition.

Proof: Let (un) ⊂ E such that

|Φ(un)| ≤ d for some d ∈ R and Φ
′

(un) −→ 0. (3.1)

We will show that (un)n∈N is bounded in E.
Arguing by contradiction and passing to a subsequence, we have ||un|| → +∞.
Using (3.1) it follows that for n large enough, we have

|Φ′(un)un − Φ(un)| ≤ d+ ||un|| (d ∈ R).
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So, we obtain

∫

Ω

|∇un|
p(x)dx−

∫

Ω

1

p(x)
|∇un|

p(x)dx+

∫

Ω

F (x, un(x))−unf(x, un(x))dx ≤ d+||un||,

hence
∫

Ω

(1−
1

p(x)
)|∇un|

p(x)dx+

∫

Ω

F (x, un(x))− unf(x, un(x))dx ≤ d+ ||un||.

The above inequalities combined with (H2) and proposition 2.1, yields:

(1−
1

p−
)||un||

p−

−B − β||un||
η ≤ d+ ||un|| (B =

∫

Ω

b(x) dx ∈ R). (3.2)

passing to the limit as n → +∞, taking account that, 1 < p− and η < p−, we
obtain a contradiction, so (un) is bounded, hence, up to a subsequence we may
assume that un ⇀ u.
Let J = J̄/E : J(u) =

∫

Ω
F (x, u(x))dx, J ′ : E → E∗ is completely continuous (see

[4]), since un ⇀ u, we have

J ′(un) → J ′(u).

In other hand

Φ′(un) = −∆p(x)(un)− J ′(un) → 0.

So

−∆p(x)(un) → J ′(u).

Since −∆p(x) is of type (S+), we deduce that un → u, and so Φ satisfies (PS)
condition. ✷

We will show that Φ satisfies conditions of Mountain Pass lemma.

Lemma 3.4. Assume (H1) and (H3), then there exist ρ > 0 and δ > 0 such that
Φ(u) ≥ δ > 0 for every u ∈ E and ||u|| = ρ.

Proof: From the embedding E →֒ Lp+

(Ω), there exists C0 > 0 such that:

|u|p+ ≤ C0||u|| ∀u ∈ E.

Let ǫ > 0 be small enough such that ǫCp+

0 ≤ 1
2p+ .

The assumptions (H1) and (H3) gives:

F (x, s) ≤ ǫ|s|p
+

+ C(ǫ)|s|α(x) ∀(x, s) ∈ Ω× R.

Without loss of generality, we assume p+ < α− (via (H1)), hence for ||u|| < 1 we
have:
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Φ(u) ≥

∫

Ω

1

p+
|∇u|p(x)dx− ǫ

∫

Ω

|u|p
+

dx− C(ǫ)

∫

Ω

|u|α(x)dx

≥
1

p+
||u||p

+

− ǫCP+

0 ||u||p
+

− kC(ǫ)||u||α− (||u||α(x) ≤ k||u||)

≥
1

2p+
||u||p

+

− kC(ǫ)||u||α−

≥ [
1

2p+
− kC(ǫ)||u||α−−p+

]||u||p
+

.

So the proof is complete. ✷

Lemma 3.5. Assume (H1) and (H4), then, there exist e ∈ E such that ||e|| > 0
and Φ(e) < 0.

Proof: Let ϕ ∈ C∞
0 (Ω) such that suppϕ ⊂ Ω1, and ||ϕ|| > 0.

For t > 1, we have:

Φ(tϕ) =

∫

Ω

1

p(x)
|∇tϕ|p(x)dx−

∫

Ω

F (x, tϕ(x))dx

≤ tp
+

∫

Ω

1

p(x)
|∇ϕ|p(x)dx− γtθ

∫

Ω1

|ϕ|θdx+ b
′

tr
∫

Ω1

|ϕ|rdx− C
′

(C
′

∈ R).

Since sup(r, p+) < θ,
∫

Ω1
|ϕ|θdx > 0 and γ > 0, the inequality above implies

Φ(tϕ) → −∞ as t → +∞, hence the proof is complete. ✷

Proof of theorem 3.1. To prove theorem 3.1, we will apply the Mountain
Pass theorem of Ambrosetti- Rabinowitz, taking e as given in lemma 3.5, and ρ as
follow in lemma 3.4.
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