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Constant Angle Spacelike Surface in de Sitter Space S3
1

Tuğba Mert and Baki Karliğa

abstract: In this paper; using the angle between unit normal vector field of
surfaces and a fixed spacelike axis in R4

1
, we develop two class of spacelike surface

which are called constant timelike angle surfaces with timelike and spacelike axis in
de Sitter space S3

1
. Moreover we give constant timelike angle tangent surfaces which

are examples constant angle surfaces in de Sitter space S3

1
.
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1. Introduction And Results

A constant angle curve whose tangents make constant angle with a fixed direc-
tion in ambient space is called a helix. A surface whose tangent planes makes a
constant angle with a fixed vector field of ambient space is called constant angle
surface. Constant angle surfaces have been studied for arbitrary dimension in Eu-
clidean space E

n [13,14] and recently in product spaces S2×R [15] , H2×R [16] or
different ambient spaces Nil3 [17] . In [1] , Lopez and Munteanu studied constant
hyperbolic angle surfaces whose unit normal timelike vector field makes a constant
hyperbolic angle with a fixed timelike axis in Minkowski space R

4
1. In the literature

constant timelike and spacelike angle surface have not been investigated both in
hyperbolic space H3 and de sitter space S3

1 . A constant timelike and a spacelike
angle surface in Hyperbolic space H3 are developed in our paper [19]. In this paper
we introduce constant timelike angle spacelike surfaces in de Sitter space S3

1 .
Let x : M −→ R

4
1 be an immersion of a surface M into R

4
1. We say that x is

timelike (resp. spacelike, lightlike) if the induced metric on M via x is Lorentzian
(resp. Riemannian, degenerated). If 〈x, x〉 = 1 , then x is an immersion of S3

1 .
Let x : M −→ S3

1 be a immersion and let ξ be a timelike unit normal vector
field to M . If there exists spacelike direction W such that timelike angle θ (ξ, U)
is constant on M , then M is called constant timelike angle surfaces with
spacelike axis.
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Let x : M −→ S3
1 be a immersion and let ξ be a timelike unit normal vector

field to M. If there exists timelike direction W such that timelike angle θ (ξ, U)
is constant on M , then M is called constant timelike angle surfaces with
timelike axis.

2. Differantial Geometry of de Sitter Space S3
1

In this section, Differential geometry of curves and surfaces are summarized in
de Sitter space S3

1 . Let R
4
1 be 4-dimensional vector space equipped with the scalar

product 〈, 〉 which is defined by

〈x, y〉 = −x1y1 + x2y2 + x3y3 + x4y4 .

From now on, the constant angle surface is proposed in Minkowskian ambient space
R

4
1 . R

4
1 is 4-dimensional vector space equipped with the scalar product 〈, 〉 , than

R
4
1 is called Lorentzian 4- space or 4-dimensional Minkowski space. The Lorentzian

norm (length) of x is defined to be

‖x‖ = |〈x, x〉|
1

2 .

If
(
xi0, x

i
1, x

i
2, x

i
3

)
is the coordinate of xi with respect to canonical basis {e0, e1, e2,

e3} of R4
1, then the lorentzian cross product x1×x2×x3 is defined by the symbolic

determinant

x1 × x2 × x3 =

∣∣∣∣∣∣∣∣

−e0 e1 e2 e3
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

∣∣∣∣∣∣∣∣
.

One can easly see that

〈x1 × x2 × x3, x4〉 = det (x1, x2, x3, x4) .

In [2], [3] and [5] Izimuya at all introduced and investigated differantial ge-
ometry of curves and surfaces Hyperbolic 3-space. If 〈x, x〉 > 0 , 〈x, x〉 = 0 or
〈x, x〉 < 0 for any non-zero x ∈ R

4
1, then we call that x is spacelike, ligtlike or

timelike ,respectively. In the rest of this section, we give background of context in
[20].

Given a vector v ∈ R
4
1 and a real number c, the hyperplane with pseudo normal

v is defined by
HP (v, c) =

{
x ∈ R

4
1 |〈x, v〉 = c

}

We say that HP (v, c) is a spacelike hyperplane, timelike hyperplane or lightlike
hyperplane if v is timelike, spacelike or lightlike respectively ın [20]. We have
following three types of pseudo-spheres in R

4
1 :

Hyperbolic-3 space : H3 (−1) =
{
x ∈ R

4
1 |〈x, x〉 = −1, x0 ≥ 1

}
,

de Sitter 3- space:S3
1 =

{
x ∈ R

4
1 |〈x, x〉 = 1

}
,

(open) lightcone:LC∗ =
{
x ∈ R

4
1/ {0} |〈x, x〉 = 0, x0 > 0

}
.
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We also define the lightcone 3−sphere

S3
+ = {x = (x0, x1, x2, x3) |〈x, x〉 = 0, x0 = 1} .

A hypersurface given by the intersection of S3
1 with a spacelike (resp.timelike)

hyperplane is called an elliptic hyperquadric (resp. hyperbolic hyperquadric). If
c 6= 0 and HP (v, c) is lightlike , then HP (v, c)∩S3

1 is a de Sitter horosphere, [20].
Let U ⊂ R

2 be open subset, and let x : U → S3
1 be an embedding. If the vector

subspace Ũ whih generated by {xu1
, xu2

} is spacelike, then x is called spacelike
surface, if Ũ contain at least a timelike vector field, then x is called timelike surface
in S3

1 .
In point of view Kasedou [20], we construct the extrinsic differential geometry

on curves in S3
1 . Since S3

1 is a Riemannian manifold, the regular curve γ : I → S3
1

is given by arclength parameter.

Theorem 2.1. i) If γ : I → S3
1 is a spacelike curve with unit speed, then Frenet-

Serre type formulae is obtained





γ′ (s) = t (s)

t
′

(s) = κd (s)n (s)− γ (s)
n′ (s) = −κd (s) t (s)− τd (s) e (s)
e′ (s) = −τd (s)n (s)

where κd (s) = ‖t′ (s) + γ (s)‖ and τd (s) = −
det (γ (s) , γ′ (s) , γ′′ (s) , γ′′′ (s))

(κd (s))
2

.

ii) If γ : I → S3
1 is a timelike curve with unit speed, then Frenet-Serre type formulae

is obtained 




γ′ (s) = t (s)

t
′

(s) = κd (s)n (s) + γ (s)
n′ (s) = −κd (s) t (s) + τd (s) e (s)
e′ (s) = −τd (s)n (s)

where κd (s) = ‖t′ (s)− γ (s)‖ and τd (s) = −
det (γ (s) , γ′ (s) , γ′′ (s) , γ′′′ (s))

(κd (s))
2

.

It is easily see that κd (s) = 0 if and only if there exists a lightlike vector c such
that γ (s)− c is a geodesic.

Now we give extrinsic differential geometry on surfaces in S3
1 due to Kasedou

[20].
Let U ⊂ R

2 is an open subset and x : U → S3
1 is a regular surface M = x (U) .

If e (u) is defined as follows

e (u) =
x (u) ∧ xu1

(u) ∧ xu2
(u)

‖x (u) ∧ xu1
(u) ∧ xu2

(u)‖

then
〈e, x〉 ≡ 〈e, xui

〉 ≡ 0, 〈e, e〉 = −1
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where xui
=

∂x

∂ui
. Thus there is de Sitter Gauss image of x which is defined by

mapping

E : U → S3
1 , E (u) = e (u) .

The lightcone Gauss image of x is defined by map

L± : U → LC∗, L± (u) = x (u)± e (u) .

Let dx (u0) and 1TpM be identify mapping on the tangent space TpM. So
derivate dx (u0) can be identified with TpM relate to identification of U and M .
That is

dL± (u0) = 1TpM ± dE (u0) .

The linear transformation

S±
p := −dL± (u0) : TpM → TpM

and

Ap := −dE (u0) : TpM → TpM

is called the hyperbolic shape operator and de Sitter shape operator of M at p =
x (uo).

Let K̄±
i (p) and Ki (p), (i = 1, 2) be the eigenvalues of S±

p and Ap. Since

S±
p = −1TpM ±Ap,

S±
p and Ap have same eigenvectors and relations

K̄±
i (p) = −1±Ki (p) .

K̄±
i (p) andKi (p), (i = 1, 2) are called hyperbolic and de Sitter principal curvatures

of M at p = x (u0) .
Let γ (s) = x (u1 (s) , u2 (s)) be a unit speed curve on M, with p = γ (u1 (s0) ,

u2 (s0)) . We consider the hyperbolic curvature vector k (s) = t′ (s)− γ (s) and the
de Sitter normal curvature

K±
n (s0) =

〈
k (s0) , L

± (u1 (s0) , u2 (s0))
〉
=
〈
t′ (s0) , L

± (u1 (s0) , u2 (s0))
〉
+ 1

of γ (s) at p = γ (s0) . The de Sitter normal curvature depends only on the point p
and the unit tangent vector of M at p analogous to the Euclidean case. Hyperbolic
normal curvature of γ (s) is defined to be

K̄±
n (s) = K±

n (s)− 1.

The Hyperbolic Gauss curvature of M = x (U) at p = x (u0) is defined to be

K±
h (u0) = detS±

p = K̄±
1 (p) K̄±

2 (p) .
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The Hyperbolic mean curvature of M = x (u) at p = x (u0) is defined to be

H±
h (u0) =

1

2
TraceS±

p =
K̄±

1 (p) + K̄±
2 (p)

2
.

The extrinsic (de Sitter) Gauss curvature is defined to be

Ke (u0) = detAp = K1 (p)K2 (p) ,

and the de Sitter mean curvature is

Hd (u0) =
1

2
TraceAp =

K1 (p) +K2 (p)

2
.

3. Constant Timelike Angle Spacelike Surfaces

Let us show the space of the tangent vector fields on M with X (M) and denote

the Levi-Civita connections of R
4
1, S

3
1 and M by D,D and D. Then for each

X,Y ∈ X (M) , we have

DXY =
(
DXY

)T
, Ṽ (X,Y ) =

(
DXY

)⊥

and
DXY = D̄XY − 〈X,Y 〉 x , DXY = DXY + Ṽ (X,Y ) , (3.1)

where the superscript T and ⊥ denote the tangent and normal component of DXY.
(3.1) equation is called the Gauss formula of S3

1 and M.
If ξ is a normal vector field of M on S3

1 , then the Weingarten Endomorphism

Aξ (X) and Bx (X) are denoted by the tangent components of −DXξ and −DXx.
So the Weingarten equations of the vector field ξ and x is like





Aξ (X) = −DXξ −
〈
DXx, ξ

〉
x ,

Bx (X) = −DXx−
〈
DXx, ξ

〉
ξ .

(3.2)

It is obvious that Aξ (X) and Bx (X) are linear and self adjoint map for each p ∈M.
That is

〈Aξ (X) , Y 〉 = 〈X,Aξ (Y )〉 and 〈Bx (X) , Y 〉 = 〈X,Bx (Y )〉 .

The eigenvalues Ki (p) and K̃i (p) of (Aξ)p are called the principal curvature of

M on S3
1 . The eigenvalues K̃i (p) of (Bx)p are called the principal curvature of M

in R
4
1. Also, for X,Y ∈ X (M) we have

〈Aξ (X) , Y 〉 =
〈
Ṽ (X,Y ) , ξ

〉
, 〈Bx (X) , Y 〉 =

〈
Ṽ (X,Y ) , x

〉
.

Since Ṽ (X,Y ) is second fundamental form of M on R
4
1 , so we can write as follows

Ṽ (X,Y ) = −
〈
Ṽ (X,Y ) , ξ

〉
ξ +

〈
Ṽ (X,Y ) , x

〉
x
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and
Ṽ (X,Y ) = −〈Aξ (X) , Y 〉 ξ + 〈Bx (X) , Y 〉x .

Let {v1, v2} be a base of TpM tangent plane and let us denote

aij =
〈
Ṽ (vi, vj) , ξ

〉
= 〈Aξ (vi) , vj〉 (3.3)

bij =
〈
Ṽ (vi, vj) , x

〉
= 〈Bx (vi) , vj〉 (3.4)

Therefore
DXY = DXY + Ṽ (X,Y )

and also since

D̄XY = DXY − 〈Aξ (X) , Y 〉 ξ and DXY = D̄XY − 〈X,Y 〉x ,

we obtain
DXY = DXY − 〈Aξ (X) , Y 〉 ξ − 〈X,Y 〉x .

On the other hand for {v1, v2} base , we get

Dvivj = Dvivj − aijξ − 〈vi, vj〉x . (3.5)

If this basis is orthonormal, then we have from (3.1) and (3.2)

Dvivj = Dvivj − aijξ , (3.6)

Dviξ = −ai1v1 − ai2v2 , (3.7)

Dvix = −bi1v1 − bi2v2 . (3.8)

3.1. Constant Timelike Angle Surfaces With Spacelike Axis

Definition 3.1. Let U ⊂ R
2 be open set,let x : U → S3

1 be an embedding where
M = x (U). Let x : M → S3

1 and ξ is timelike unit normal vector field on M , if
there exist a constant spacelike vector W which has a constant timelike angle with
ξ, then M is called constant timelike angle surface with spacelike axis.

Since our surface is a spacelike surface, {xu, xv} tangent vectors must be space-
like vectors. Let M be a spacelike surface with constant angle with spacelike axis
and ξ is unit normal vector of M on S3

1 . Let us denote that the timelike angle
between timelike vector ξ and spacelike vector W with θ . That is from [11]

〈ξ,W 〉 = sinh (−θ) .

If timelike angle θ = 0, then ξ = W. Throughout this section, without loss of
generality we assume that θ 6= 0. If WT is the projection of W on the tangent
plane of M, then we decompose W as

W =WT +WN .



Constant Angle Spacelike Surface in de Sitter Space S
3

1 85

So that we write
W =WT + λ1ξ + λ2x .

If we take inner product of both sides of this inequality first with ξ, then with x

λ1 = − sinh (−θ) , λ2 = 〈W,x〉 .

On the other hand, since W and x are two spacelike vector fields, then we can use
define of the spacelike and timelike angle between W and x.

Theorem 3.2. i) If ϕ is the spacelike angle between spacelike vectors W,x then we
can write for [11]

W =

√
sinh2 θ + sin2 ϕe1 + (sinh θ) ξ + cosϕx

and de Sitter projection Wd of W as follows

Wd =

√
sinh2 θ + sin2 ϕe1 + (sinh θ) ξ (3.9)

ii)If ϕ is timelike angle between spacelike vectors W and x, then we can write

W =
√∣∣cosh2 θ − cosh2 ϕ

∣∣e1 + (sinh θ) ξ − (coshϕ) x .

and de sitter projection Wd of W as follows

Wd =
√∣∣cosh2 θ − cosh2 ϕ

∣∣e1 + (sinh θ) ξ . (3.10)

Let e1 =
WT

‖WT ‖
and let consider e2 be a unit vector field on M orthogonal to

e1 . Then we have an oriented orthonormal basis {e1, e2, ξ, x} for R
4
1.Since Wd is

constant vector field on S3
1 and De2Wd = De2Wd = 0, we have

√
sinh2 θ + sin2 ϕDe2e1 + (sinh θ)De2ξ = 0. (3.11)

By (3.11), we obtain

√
sinh2 θ + sin2 ϕ

〈
De2e1, ξ

〉
+ (sinh θ)

〈
De2ξ, ξ

〉
= 0,

or √
sinh2 θ + sin2 ϕa21 = 0.

Since
√
sinh2 θ + sin2 ϕ 6= 0, we conclude a21 = a12 = 0. Using (3.7) in (3.11), we

get

De2e1 =
sinh θ√

sinh2 θ + sin2 ϕ
a22e2. (3.12)
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Similarly, since Wd is a constant vector field on S3
1 , then we have

De1Wd = 0 and De1Wd = −

√
sinh2 θ + sin2 ϕx . (3.13)

By (3.9), we obtain

De1Wd =

√
sinh2 θ + sin2 ϕDe1e1 + sinh θDe1ξ. (3.14)

By (3.13) and (3.14), we conclude that
√
sinh2 θ + sin2 ϕDe1e1 + sinh θDe1ξ = −

√
sinh2 θ + sin2 ϕx . (3.15)

By (3.15), we get √
sinh2 θ + sin2 ϕ

〈
De1e1, ξ

〉
= 0,

or √
sinh2 θ + sin2 ϕa11 = 0.

Since
√
sinh2 θ + sin2 ϕ 6= 0, we conclude a11 = 0. Also ,using (3.7) in (3.15) , we

obtain
De1e1 = −x . (3.16)

Now we have proved the following theorem.

Theorem 3.3. If D is Levi-Civita connection for a constant timelike angle with
spacelike axis spacelike surface in S3

1 is given by

De1e1 = 0, De2e1 =
sinh θ√

sinh2 θ + sin2 ϕ
a22e2

De1e2 = 0, De2e2 =
− sinh θ√

sinh2 θ + sin2 ϕ
a22e1

Corollary 3.4. Let M be a spacelike surface which is a constant timelike angle
with spacelike axis on S3

1 . Then, there exist local coordinates u and v such that the
metric on M writes as 〈, 〉 = du2 + β2dv2, where β = β (u, v) is a smooth function
on M , i.e. the coefficients of the first fundamental form are E = 1, F = 0, G = β2.

Now we find the x = x (u, v) parametrization of the surface M with respect
to the metric 〈, 〉 = du2 + β2dv2 on M. By the above parametrization x (u, v) can
obtain the following corollary.

Corollary 3.5. There exist an equation system for constant timelike angle with
spacelike axis spacelike surface on S3

1 which is






xuu = −x

xuv =
βu

β
xv

xvv = −ββuxu +
βv

β
xv − β2a22ξ − β2x.

(3.17)
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Corollary 3.6. Let ξ be unit normal vector of the constant timelike angle with
spacelike axis spacelike surface M . Then the equation below hold

{
ξu = Dxu

ξ = 0

ξv = Dxv
ξ = −a22xv.

(3.18)

Since ξuv = ξvu = 0, we have Dxu
(−a22xv) = 0 . Using a12 = 0, Dxu

xv =

Dxv
xu and Theorem 2.1, we obtain

(a22)u +
sinh θ√

sinh2 θ + sin2 ϕ
(a22)

2
= 0 (3.19)

So that

(a22)u +
βu

β
a22 = 0 (3.20)

and than we get obtain
(βa22)u = 0 . (3.21)

By (3.21), we see that there exist a smooth function ψ = ψ (v) depending on v
such that

βa22 = ψ (v) . (3.22)

Proposition 3.7. Let x = x (u, v) be parametrization of a spacelike surface which
is constant timelike angle with spacelike axis on S3

1 . If a22 = 0 on M , then the x
describes an flat plane of de Sitter space S3

1 .

Proof. If a22 = 0 on M,then by (3.18)

{
ξu = 0
ξv = 0

This imply we have ξ is a constant vector field which normal vector is M surface.
Thus x = x (u, v) is de-Sitter plane in S3

1 . ✷

From now on, we are going to assume that a22 6= 0. By solving equation (3.19),
we obtain a function α = α (v) such that

a22 =

√
sinh2 θ + sin2 ϕ

u sinh θ + α (v)
.

Therefore by (3.22) ,we obtain

β (u, v) =
ψ (v)√

sinh2 θ + sin2 ϕ
(u sinh θ + α (v)) .

Consequently,
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xu u = −x,

xuv =
sinh θψ (v)

u sinh θ + α (v)
xv,

xvv =

[
−ψ2 (v) sinh θ (u sinh θ + α (v))

sinh2 θ + sin2 ϕ

]
xu +

[
ψ′ (v)

ψ (v)
+

α
′

(v)

u sinh θ + α (v)

]
xv

−

[
ψ2 (v) (u sinh θ + α (v))√

sinh2 θ + sin2 ϕ

]
ξ −

[
ψ2 (v) (u sinh θ + α (v))

2

sinh2 θ + sin2 ϕ

]
x.

Here, if we spesificly choose ψ (v) = ev
√
sinh2 θ + sin2 ϕ and α (v) = e−v, then

this equation system becomes




xu u = −x

xuv =
ev sinh θ

1 + uev sinh θ
xv

xvv = −ev sinh θ (uev sinh θ + 1)xu +
uev sinh θ

uev sinh θ + 1
xv−

−ev
√
sinh2 θ + sin2 ϕ (uev sinh θ + 1) ξ − (uev sinh θ + 1)

2
x .

(3.23)

Now we have the following Theorem.

Theorem 3.8. If M is satisfying (3.23), then there exist local coordinates u and
v on M with having the parametrization

xi (u, v) =

(
−c1i (v)

2ev sinh θ (uev sinh θ + 1)2
+ c2i (v)

)
, i = 1, 2, 3, 4 (3.24)

Proof. From (3.23), the proof is clear. ✷

Example 3.9. We can calculate Gauss and mean curvature of a spacelike surface
with constant angle spacelike axis in de Sitter space S3

1 . Since

DXξ = D̄Xξ

we can write
Dviξ =

〈
Dviξ, v1

〉
v1 +

〈
Dviξ, v2

〉
v2.

Thus from (3.7), we have

Dviξ = −ai1v1 − ai2v2.

From Aξ (vi) = −Dviξ and a21 = a12 = 0 , a11 = 0 , we obtain

Aξ =

(
0 0
0 a22

)
.

Since eigenvalues of linear transformation Ap : TpM → TpM are principal curva-
tures of M at p, we obtain the following principal curvatures of M

K1 (p) = 0 and K2 (p) = a22.
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Hence Gauss and mean curvature of M at p are

Ke (p) = 0

Hd (p) =
1

2
a22,

where a22 is

a22 =

√
sinh2 θ + sin2 ϕ

e−v + u sinh θ
.

Remark 3.10. If we consider

Wd =

√
cosh2 θ − cosh2 ϕe1 + sinh θξ

the constant direction of spacelike surface with constant timelike angle in de Sitter
space S3

1 , then we obtain similar results in Theorem 3.2-i.

Remark 3.11. If the Wd constant direction of spacelike surface is chosen a timelike
vector, then we obtain similar resultys in chapter 3.1

4. Constant Timelike Angle Tangent Surfaces

4.1. Tangent Surface with Spacelike Axis

In this section we will focus on constant timelike angle spacelike tangent surfaces
with spacelike axis in de Sitter space S3

1 .( see [2] and [6] for the Minkowski ambient
space and Euclidean ambient space,respectively). Let α : I → S3

1 ⊂ R
4
1 be a regular

spacelike curve given by arc-length. We define the tangent surface M ,which is
generated by α , with

x (s, t) = α (s) cos t+ α′ (s) sin t , (s, t) ∈ I × R . (4.1)

The tangent plane at a point (s, t) of M is spanned by {xs, xt} , where

{
xs = α′ (s) cos t+ α′′ (s) sin t ,
xt = −α (s) sin t+ α′ (s) cos t .

. (4.2)

By computing the coefficients of first fundamental form {E,F,G} ofM with respect
to basis {xs, xt} , we get





E = 〈xs, xs〉 = 1 + κ2d (s) sin
2 t ,

F = 〈xs, xt〉 = 1 ,
G = 〈xt, xt〉 = 1 .

Hence we have

EG− F 2 = κ2d (s) sin
2 t .
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Then, since EG − F 2 > 0, it is obvious that M is a spacelike surface. From
Frenet-Serre type formulae , we obtain





x (s, t) = α (s) cos t+ t (s) sin t ,
xs (s, t) = α (s) sin t+ t (s) cos t+ n (s)κd (s) sin t ,
xt (s, t) = −α (s) sin t+ t (s) cos t .

(4.3)

Now let us calculate normal vector of M. As we already know the normal vector
of M is

e =
x ∧ xs ∧ xt

‖x ∧ xs ∧ xt‖
. (4.4)

Then, since
x ∧ xs ∧ xt = − (α ∧ α′ ∧ α′′) sin t ,

and
‖x ∧ xs ∧ xt‖ = |κd sin t| , κd 6= 0

we find

e = ±
α ∧ α′ ∧ α′′

|κd|
(4.5)

Let us find Wd direction of constant timelike angle with spacelike axis surface M .
Since (3.9) and

e1 =
xs
‖xs‖

and ‖xs‖ =
√
1 + κ2d sin

2 t .

we get

Wd = sin t

√
sinh2 θ − sinh2 ϕ

1 + κ2d sin
2 t

α (s) + cos t

√
sinh2 θ − sinh2 ϕ

1 + κ2d sin
2 t

t (s)+

+κd (s) sin t

√
sinh2 θ − sinh2 ϕ

1 + κ2d sin
2 t

n (s) + e (s) cosh θ .

. (4.6)

Theorem 4.1. Let α : I → S3
1 ⊂ R

4
1 be a curve with κd 6= 0. If x (s, t) tan-

gent surface is constant timelike angle surface with spacelike axis, then α curve is
planarly.

Proof. Suppose that x (s, t) tangent surface is constant timelike angle surface with
spacelike axis such that α is a curve with κd 6= 0. Since

ξ =
x ∧ xs ∧ xt

‖x ∧ xs ∧ xt‖
= e ,

there exsist a θ > 0 real number such that

〈ξ,Wd〉 = 〈e (s) ,Wd〉 = cosh θ .

If we differentiate the both sides of the last equation with respect to s then we get
that

〈e′ (s) ,Wd〉 = 0 .
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By the way we know that from Frenet-Serret equation system

e′ (s) = τd (s)n (s) .

Hence we get

〈n (s) ,Wd〉 = 0 or τd (s) = 0 . (4.7)

If in equation (4.7) 〈n (s) ,Wd〉 = 0 then scalar producting of (4.6) equation with
n (s) that we have t = 0. This is contradict with definition of tangent surface.
Therefore using equation (4.7) τd (s) = 0 is obvious. It means that α is planarly
line. ✷

Example 4.2. Let α : I → S3
1 ⊂ R

4
1 be a regular curve given by arc-length

α (s) =
(
s sinh (arccoshs) , s cosh (arccoshs) ,

√
1− s2, 0

)
.

Since the tangent surface M generated by α as the surface parametrized by

x (s, t) = α (s) cos t+ α′ (s) sin t , (s, t) ∈ I × R .

The picture of the Stereographic projection of tangent surface appear in Figure 1

Figure 1:

Remark 4.3. If we consider

Wd =
√∣∣cosh2 θ − cosh2 ϕ

∣∣e1 + sinh θξ,

then we will get similar result.

Remark 4.4. If the Wd constant direction of spacelike surface is chosen timelike,
then we obtain similar results in chapter 4.1
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