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Constant Angle Spacelike Surface in de Sitter Space S}

Tugba Mert and Baki Karliga

ABSTRACT: In this paper; using the angle between unit normal vector field of
surfaces and a fixed spacelike axis in R‘ll, we develop two class of spacelike surface
which are called constant timelike angle surfaces with timelike and spacelike axis in
de Sitter space S{’. Moreover we give constant timelike angle tangent surfaces which
are examples constant angle surfaces in de Sitter space S%.
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1. Introduction And Results

A constant angle curve whose tangents make constant angle with a fixed direc-
tion in ambient space is called a helix. A surface whose tangent planes makes a
constant angle with a fixed vector field of ambient space is called constant angle
surface. Constant angle surfaces have been studied for arbitrary dimension in Eu-
clidean space E" [13,14] and recently in product spaces S* x R [15] , H? x R [16] or
different ambient spaces Nil3 [17] . In [1] , Lopez and Munteanu studied constant
hyperbolic angle surfaces whose unit normal timelike vector field makes a constant
hyperbolic angle with a fixed timelike axis in Minkowski space R}. In the literature
constant timelike and spacelike angle surface have not been investigated both in
hyperbolic space H® and de sitter space S7. A constant timelike and a spacelike
angle surface in Hyperbolic space H? are developed in our paper [19]. In this paper
we introduce constant timelike angle spacelike surfaces in de Sitter space S3.

Let z : M — R% be an immersion of a surface M into R}. We say that z is
timelike (resp. spacelike, lightlike) if the induced metric on M via x is Lorentzian
(resp. Riemannian, degenerated). If (z,x) = 1, then z is an immersion of S.

Let  : M — S} be a immersion and let £ be a timelike unit normal vector
field to M . If there exists spacelike direction W such that timelike angle 6 (&, U)
is constant on M , then M is called constant timelike angle surfaces with
spacelike axis.
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Let  : M — S} be a immersion and let £ be a timelike unit normal vector
field to M. If there exists timelike direction W such that timelike angle 6 (&, U)
is constant on M, then M is called constant timelike angle surfaces with
timelike axis.

2. Differantial Geometry of de Sitter Space S5}

In this section, Differential geometry of curves and surfaces are summarized in
de Sitter space S;. Let R} be 4-dimensional vector space equipped with the scalar
product (,) which is defined by

<$ay> = —T1Y1 + T2y2 + X3Y3 + TaYs .

From now on, the constant angle surface is proposed in Minkowskian ambient space
R} . R} is 4-dimensional vector space equipped with the scalar product (,) , than
R} is called Lorentzian 4- space or 4-dimensional Minkowski space. The Lorentzian
norm (length) of x is defined to be

1
]l =[Gz, 2)|* .

If (xf, %, x4, 2%) is the coordinate of x; with respect to canonical basis {eq, e1, €2,
e3} of R}, then the lorentzian cross product z1 x 9 X 23 is defined by the symbolic

determinant
—€p €1 €2 €3
1 1 1 1

x X x €z

— 0 1 2 3

T1 X To2 X XT3 = 2 2 2 2
Lo Xy T3 X3

G G I

One can easly see that
(21 X 23 X x3,24) = det (1, 22,23, 24) .

In [2], [3] and [5] Izimuya at all introduced and investigated differantial ge-
ometry of curves and surfaces Hyperbolic 3-space. If (z,z) > 0, (x,z) = 0 or
(x,z) < 0 for any non-zero x € R}, then we call that = is spacelike, ligtlike or
timelike ,respectively. In the rest of this section, we give background of context in
[20].

Given a vector v € R} and a real number ¢, the hyperplane with pseudo normal
v is defined by

HP (v,c)={z € R} [(z,v) =}

We say that HP (v,c) is a spacelike hyperplane, timelike hyperplane or lightlike
hyperplane if v is timelike, spacelike or lightlike respectively i [20]. We have
following three types of pseudo-spheres in R :
Hyperbolic-3 space : H* (—1) = {z e R} [z, 2) = —1,20 > 1 },
de Sitter 3- space:S} = {z € R} [(z,z) =1},
(open) lightcone:LC* = {z € R/ {0} [(z,2) = 0,20 >0} .
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We also define the lightcone 3—sphere
53 = {x = (w0, 21,72, 23) |(z,2) = 0,20 = 1}.

A hypersurface given by the intersection of S} with a spacelike (resp.timelike)
hyperplane is called an elliptic hyperquadric (resp. hyperbolic hyperquadric). If
c# 0 and HP (v,c) is lightlike , then HP (v,¢) NS is a de Sitter horosphere, [20].

Let U C R? be open subset, and let z : U — S be an embedding. If the vector
subspace U whih generated by {Zu,, Tu, } is spacelike, then z is called spacelike
surface, if U contain at least a timelike vector field, then x is called timelike surface
in S3.

In point of view Kasedou [20], we construct the extrinsic differential geometry
on curves in S3. Since S? is a Riemannian manifold, the regular curve v : I — S
is given by arclength parameter.

Theorem 2.1. i) If v: I — S3 is a spacelike curve with unit speed, then Frenet-
Serre type formulae is obtained

Vo) =t
t(s) =ral(s)n(s)—v(s)
n' (s) =—ra(s)t(s)—7a(s)e(s)

d t ! 1" "
where kq (s) = [|t' (s) + v (s)|| and 74 (s) = — et (v(s).7 (5) ’72(8) i (S))
(ka (s))
i) If v : I — S3 is a timelike curve with unit speed, then Frenet-Serre type formulae
is obtained
(s) =t(s)

)
t(s) =ra(s)n(
n' (s) =—kKq (s;t

e(s) =-74(s

s) +7(s)
()+Td() (s)
(s)

d t !/ / "
where kg (s) = ||t (s) — v (s)|| and 74 (s) = — et (v(s),7" () a72(3) 7" (s) '
(ka (s))

It is easily see that kg (s) = 0 if and only if there exists a lightlike vector ¢ such
that v (s) — ¢ is a geodesic.

Now we give extrinsic differential geometry on surfaces in S3 due to Kasedou
[20].

Let U C R? is an open subset and x : U — S} is a regular surface M =z (U) .
If e (u) is defined as follows

then
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where z,, = O . Thus there is de Sitter Gauss image of = which is defined by

Uj

mapping
E:U— S}, E(u)=c¢e(u).

The lightcone Gauss image of z is defined by map
LU = LO*, L* (u) =z (u) e (u).

Let dx (ug) and 17,5 be identify mapping on the tangent space T,M. So
derivate dx (up) can be identified with T, M relate to identification of U and M.
That is

dL* (ug) = 11,ar £ dE (uo) .
The linear transformation
S = —dL* (ug) : T,M — T,M
and
Ap = —dE (uo) : TyM — T,M

is called the hyperbolic shape operator and de Sitter shape operator of M at p =
2 (Up).
Let K (p) and K; (p), (i = 1,2) be the eigenvalues of S and A,. Since

+
S, =—lr,m £ Ap,
Spi and A, have same eigenvectors and relations

K (p) = -1+ K, (p).

K2

K li (p) and K; (p), (i = 1,2) are called hyperbolic and de Sitter principal curvatures
of M at p=a (ug).

Let v (s) = x (uy (s) ,uz2 (s)) be a unit speed curve on M, with p = 7 (u; (s9) ,
us (89)) . We consider the hyperbolic curvature vector k (s) = t' (s) — v (s) and the
de Sitter normal curvature

K (s0) = (k (s0), L™ (ua (s0) ,uz (s0))) = (¢’ (s0) , L* (u1 (s0) , uz (s0))) + 1

of v (s) at p =~ (sp) . The de Sitter normal curvature depends only on the point p
and the unit tangent vector of M at p analogous to the Euclidean case. Hyperbolic
normal curvature of 7 (s) is defined to be

KE(s)=K=*(s)—1.

n

The Hyperbolic Gauss curvature of M =z (U) at p = x (ug) is defined to be

K (uo) = det Sy = K7™ (p) K5 (p) -
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The Hyperbolic mean curvature of M = x (u) at p = z (ug) is defined to be

Ki () + K5 (p)
5 :

1
HhjE (ug) = iTTaceS;f =
The extrinsic (de Sitter) Gauss curvature is defined to be
Ke (Uo) = det Ap = Kl (p) K2 (p) 5

and the de Sitter mean curvature is

Ki(p) + K2 (p)
e

3. Constant Timelike Angle Spacelike Surfaces

1
Hy (uo) = §TraceAp =

Let us show the space of the tangent vector fields on M with X (M) and denote

the Levi-Civita connections of R}, S} and M by D,D and D. Then for each
X,Y € X (M), we have

DxY = (ﬁXY)T LV (X,Y) = @XY)l

and o _ .
DxY =DxY —(X,Y)z , DxY = DxY +V (X,Y) , (3.1)

where the superscript 7 and * denote the tangent and normal component of EXY.
(3.1) equation is called the Gauss formula of S} and M.
If ¢ is a normal vector field of M on S}, then the Weingarten Endomorphism

A¢ (X) and B, (X) are denoted by the tangent components of —Dx¢ and —Dy .
So the Weingarten equations of the vector field £ and x is like

Ae (X) = —ﬁxzf — <§Xx,§>x ,
B, (X)=-Dxx — <§Xx,§> €. (3:2)

It is obvious that A¢ (X) and B, (X) are linear and self adjoint map for each p € M.
That is
{(Ae (X),Y) = (X, 4 (V) and (B, (X),Y) = (X, B, (Y)) -

The eigenvalues K; (p) and K; (p) of (Ag),, are called the principal curvature of

M on S3. The eigenvalues K; (p) of (Bz),, are called the principal curvature of M
in R, Also, for X,Y € X (M) we have

(A (X),Y) = (V(X,Y),€) , (B (X),Y) = (V(X,) ) .
Since V (X,Y) is second fundamental form of M on R? , so we can write as follows

V(X,Y):—<‘7(X,Y),§>§+<‘~/(X,Y),z>:r
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and

Let {v1,v2} be a base of T, M tangent plane and let us denote

aiy = (V (0:,07),€) = (A (v) ,0y) (3:3)
bij = (V (i,05),0) = (B (v:) ,v5) (3.4)

Therefore o _
DxY =DxY +V (X,Y)

and also since
DxY = DxY — (A¢ (X),Y)¢ and DxY = DxV — (X,Y)z
we obtain _
DxY = DxY — (A¢ (X),Y)€— (X,Y)z.
On the other hand for {v1,v2} base , we get

Dy, vj = Dy,vj — aiz€ — (vi, v5) @ (3.5)

If this basis is orthonormal, then we have from (3.1) and (3.2)

ﬁmvg‘ = Dy, vj — ai€ (3.6)
ﬁvif = Q101 — QU2 (3.7)
ﬁvix = —bi1v1 — bigva . (3.8)

3.1. Constant Timelike Angle Surfaces With Spacelike Axis

Definition 3.1. Let U C R? be open setlet x : U — S} be an embedding where
M =z (U). Letx: M — S? and ¢ is timelike unit normal vector field on M, if
there exist a constant spacelike vector W which has a constant timelike angle with
&, then M is called constant timelike angle surface with spacelike axis.

Since our surface is a spacelike surface, {xu, xv} tangent vectors must be space-
like vectors. Let M be a spacelike surface with constant angle with spacelike axis
and ¢ is unit normal vector of M on S7. Let us denote that the timelike angle
between timelike vector € and spacelike vector W with 6 . That is from [11]

(€&, W) =sinh(~0).

If timelike angle 8 = 0, then ¢ = W. Throughout this section, without loss of
generality we assume that 6 # 0. If W7 is the projection of W on the tangent
plane of M, then we decompose W as

w=w"+wh.
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So that we write
W =W+ \&+ oz .

If we take inner product of both sides of this inequality first with £, then with z
AL =—sinh(=0) , Ao = (W, z) .

On the other hand, since W and z are two spacelike vector fields, then we can use
define of the spacelike and timelike angle between W and .

Theorem 3.2. i) If ¢ is the spacelike angle between spacelike vectors W, then we

can write for [11]
W = \/sinh? @ + sin® pe; + (sinh 6) & + cos gz

and de Sitter projection Wy of W as follows
Wy = \/sinh? @ + sin? pe; + (sinh 6) & (3.9)

w)If ¢ is timelike angle between spacelike vectors W and x, then we can write

W = \/|cosh2 0 — cosh? pler + (sinh 6) & — (coshg) z .

and de sitter projection Wy of W as follows

Wy = \/’cosh2 6 — cosh? pler + (sinh 6) € . (3.10)
WT
Wl
e1 . Then we have an oriented orthonormal basis {e1, €2, &, 2} for RY.Since Wy is
constant vector field on Sf and 362 Wgq = 562 Wy = 0, we have

\/sinh? @ + sin? (pﬁwel + (sinh 0) 5@25 = 0. (3.11)

By (3.11), we obtain

\/sinh2 6 + sin? o <i2el, §> + (sinh ) <izg, §> —0,
\/ sinh? 0 + sin® pasy = 0.

Since v/sinh” @ 4 sin” ¢ # 0, we conclude az; = ay2 = 0. Using (3.7) in (3.11), we
get

Let e; = and let consider es be a unit vector field on M orthogonal to

or

= sinh 6
De2€1 = = 5 —5 a22€9. (312)
sinh” 6 4 sin” ¢
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Similarly, since W, is a constant vector field on S , then we have

De,Wy =0 and Do, Wy = —/sinh? 0 + sin® oz . (3.13)

By (3.9), we obtain

De, Wy = 1/sinh?0 + sin? oD, e1 + sinh §De; £. (3.14)

By (3.13) and (3.14), we conclude that

\/sinh? @ + sin? wﬁelel + sinh 95615 = —y/sinh? @ + sin? gz . (3.15)

By (3.15), we get
sinh2 0+ SiIl2 2 <§el €1, §> =0,
sinh? 0 + sin® pai; = 0.

Since \/sinh?# + sin®  # 0, we conclude a;; = 0. Also ,using (3.7) in (3.15) , we
obtain

or

Delel = —T. (3.16)
Now we have proved the following theorem.

Theorem 3.3. If D is Levi-Civita connection for a constant timelike angle with
spacelike azis spacelike surface in S} is given by
sinh ¢
Deyer =0, Deye1 = —— —— 02262
sinh® @ 4 sin”
—sinh 6

—— — a22€1
sinh” 6 4 sin” ¢

Corollary 3.4. Let M be a spacelike surface which is a constant timelike angle
with spacelike axis on S3. Then, there exist local coordinates u and v such that the
metric on M writes as (,) = du® + 3*dv?, where 8 = B (u,v) is a smooth function
on M, i.e. the coefficients of the first fundamental form are E =1, F =0, G = 5>

Dele2 :07 De2€2 =

Now we find the z = x (u,v) parametrization of the surface M with respect
to the metric (,) = du? + %dv? on M. By the above parametrization x (u,v) can
obtain the following corollary.

Corollary 3.5. There exist an equation system for constant timelike angle with
spacelike azis spacelike surface on S} which is

Tyu = —T
_ B

Tuv = gl (3.17)

Tyy = _ﬁﬁuxu + &xv - 62a22§ - ﬁQ.’L'.

B
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Corollary 3.6. Let & be unit normal vector of the constant timelike angle with
spacelike axis spacelike surface M. Then the equation below hold

{§u=
£, =

Since &, = £,, = 0, we have ﬁmu (—agzy) = 0. Using aj2 = 0, ﬁmuzv =

0

—a22%y .

(3.18)

Silo

e, & =
zu‘f =

ﬁmku and Theorem 2.1, we obtain

inh 6
(a22), + — (a22)* =0 (3.19)
V/sinh? @ + sin? ¢
So that
(a22),, + %am =0 (3.20)
and than we get obtain
(Basz), =0 (3.21)

By (3.21), we see that there exist a smooth function ¢» = ¢ (v) depending on v
such that

Bazz = (v). (3.22)

Proposition 3.7. Let = x (u,v) be parametrization of a spacelike surface which
1s constant timelike angle with spacelike axis on Sf’. If aso = 0 on M |, then the x
describes an flat plane of de Sitter space S.

Proof. If azs = 0 on M,then by (3.18)

This imply we have £ is a constant vector field which normal vector is M surface.
Thus z = z (u,v) is de-Sitter plane in S}. O

From now on, we are going to assume that ase # 0. By solving equation (3.19),
we obtain a function o = « (v) such that

V/sinh? 0 + sin? ¢

usinh @ + a (v)

a22 =

Therefore by (3.22) ,we obtain

¥ (v)
V/sinh? 0 + sin? o

B (u,v) = (usinh @ + « (v)).

Consequently,
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Tyu = —T,
_ sinh 6y (v)
O usinh @ 4+ a(v)
L {_1#2 (v) sinh @ (usinh 6 + « (U))] - W (v) o (v) 1 )
v sinh? § 4 sin? ¢ “ P (v)  usinh®+a(v)| ™"

¢? (v) (usinh @ + o (v)) ¢ ¥? (v) (usinh 6 + o (v))?

- - x
/sinh? 6 + sin” sinh® 0 + sin® ¢

Here, if we spesificly choose 1) (v) = e?/sinh?# + sin® p and a (v) = e~ 7, then

this equation system becomes

Tuu = —2X
eV sinh 0
:EUU - 7.:1;1)
1+ ue?sinh 6
. . ue? sinh 6 (3.23)
Zyy = —eVsinh @ (ue’sinh 6 4+ 1)z, +

ue?sinh 6 + 1 Lo

—e¥/sinh? 0 + sin” @ (ue” sinh 6 + 1) € — (ue’sinh 6 + 1)° z .

Now we have the following Theorem.
Theorem 3.8. If M is satisfying (5.23), then there exist local coordinates u and

v on M with having the parametrization

x; (u,v) = —1i (v)
o 2evsinh 0 (ue? sinh 6 + 1)

7 +Cai (v)) . i=1,2,3,4  (3.24)
Proof. From (3.23), the proof is clear. O

Example 3.9. We can calculate Gauss and mean curvature of a spacelike surface
with constant angle spacelike azis in de Sitter space S3. Since

Dx& = Dxé

we can write

ﬁvif = <§ui§,vl> v+ <§vi§;v2> V2.
Thus from (3.7), we have

Sl

vif = —@j1V1 — Q3, V2.

From A¢ (v;) = —Dy,§ and as1 = a12 =0, a11 =0, we obtain

0 0
= (3 2).

Since eigenvalues of linear transformation Ay, : T,M — T,M are principal curva-
tures of M at p, we obtain the following principal curvatures of M

Ki (p) =0 and Ko (p) = ase.
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Hence Gauss and mean curvature of M at p are
K. (p) =0

1

Hy (P) = 56122,

V/sinh? 0 + sin? o

e~V +usinh @

where agy 18

a2 =

Remark 3.10. If we consider

Wy = \/cosh2 0 — cosh? pe; + sinh 0€

the constant direction of spacelike surface with constant timelike angle in de Sitter
space S, then we obtain similar results in Theorem 3.2-i.

Remark 3.11. If the Wy constant direction of spacelike surface is chosen a timelike
vector, then we obtain similar resultys in chapter 3.1

4. Constant Timelike Angle Tangent Surfaces
4.1. Tangent Surface with Spacelike Axis

In this section we will focus on constant timelike angle spacelike tangent surfaces
with spacelike axis in de Sitter space S3.( see |2] and [6] for the Minkowski ambient
space and Euclidean ambient space,respectively). Let a : I — S7 C Rf be a regular
spacelike curve given by arc-length. We define the tangent surface M ,which is
generated by « , with

x(s,t) =a(s)cost +a (s)sint , (s,t) e xR. (4.1)

The tangent plane at a point (s,t) of M is spanned by {x,, x+} , where

— ! 11 :
{ is 704 (s)cost+ o’ (s)sint , (4.2)
t

= —a(s)sint + o (s) cost .

By computing the coefficients of first fundamental form {F, F, G} of M with respect
to basis {zs, 2}, we get

E= (acs,xs>:1+/<;§(s)sin2t,
= <$s;$t> =1 5
G = <1't,$t> =1.

Hence we have
EG — F? = §2 (s)sin?t .
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Then, since EG — F? > 0, it is obvious that M is a spacelike surface. From
Frenet-Serre type formulae , we obtain

x(s,t) = a(s)cost+t(s)sint,
x5 (s,t) = a(s)sint+t(s)cost+n(s)rq(s)sint, (4.3)
xt (s,t) = —a(s)sint +t(s)cost .

Now let us calculate normal vector of M. As we already know the normal vector

of M is
e AANE AN

6= —". 44
|2 A xs A x| (44)
Then, since
rAxs Axy=—(aANd Ad)sint
and
|2 Axs Axt|| = |kasint| , kq #0
we find , Y
ANa N
PR A AL (4.5)

|Kal

Let us find Wy direction of constant timelike angle with spacelike axis surface M.

Since (3.9) and
Tg
*and ||z = 4/1 + KZsin’t .
[Js]] !

€1 =

we get

sinh? @ — sinh? ¢ sinh? @ — sinh? ¢
Wy =sinty| ———————a(s) +costy| ———————t(s) +
¢ \/ 1+ K2sin’t (5) \/ 1+ k2sin’t (5)

(4.6)

sinh? § — sinh? ¢
+rq (s)sinty | ————=5—n(s) +e(s)coshb .
.9 \/ o e e
Theorem 4.1. Let o : [ — S} C R} be a curve with kg # 0. If x(s,t) tan-

gent surface is constant timelike angle surface with spacelike axis, then a curve is
planarly.

Proof. Suppose that x (s,t) tangent surface is constant timelike angle surface with
spacelike axis such that « is a curve with x4 # 0. Since

e AANE AN
f= Tl e
|2 A as A x|
there exsist a # > 0 real number such that
(&, Wy) = (e(s),Wy) = cosh@ .

If we differentiate the both sides of the last equation with respect to s then we get
that
(e'(s),Wa)=0 .
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By the way we know that from Frenet-Serret equation system

e (s)=T1a(s)n(s) .

Hence we get
(n(s),Wag)=0o0r74(s)=0. (4.7)

If in equation (4.7) (n(s),Wyg) = 0 then scalar producting of (4.6) equation with
n (s) that we have ¢ = 0. This is contradict with definition of tangent surface.
Therefore using equation (4.7) 74 (s) = 0 is obvious. It means that « is planarly
line. O

Example 4.2. Let a: I — S? C R} be a reqular curve given by arc-length
a(s) = (s sinh (arccos hs) , s cosh (arccos hs) , /1 — s2, 0) .
Since the tangent surface M generated by o as the surface parametrized by
z(s,t) = a(s)cost +a’ (s)sint , (s,t) €I xR .

The picture of the Stereographic projection of tangent surface appear in Figure 1

>

Figure 1:

Remark 4.3. If we consider

Wa = \/}cosh2 0 — cosh? @}61 + sinh ¢,
then we will get similar result.

Remark 4.4. If the Wy constant direction of spacelike surface is chosen timelike,
then we obtain similar results in chapter 4.1
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