

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 34** 1 (2016): 203–212. ISSN-00378712 IN PRESS doi:10.5269/bspm.v34i1.25102

$g_{*\lambda_{\mu}}$ -closed sets in Generalized Topological Spaces

P. Jeyanthi, P. Nalayini, M. Mocana

ABSTRACT: In this paper we introduce some new classes of generalized closed sets called ${}^*\lambda_\mu - g_-$ closed, ${}^*\lambda_\mu - g_\mu$ -closed and $g_{{}^*\lambda_\mu}$ -closed sets in generalized topological spaces, which are related to the classes of g_μ -closed sets, $g_-\lambda_\mu$ -closed sets and $\lambda_\mu - g_-$ closed sets. We investigate the properties of the newly introduced classes, as well as the connections among the above mentioned classes of generalized closed sets. Also, we give a unified framework for the study of several types of generalized closed sets in a space endowed with two generalized topologies.

Key Words: Generalized topology, λ_{μ} -closed, $^*\lambda_{\mu}$ -closed, $^*\lambda_{\mu}$ -closed, $^*\lambda_{\mu}$ -closed and $g_{^*\lambda_{\mu}}$ -closed sets.

Contents

1	Introduction	203
2	$^*\lambda_\mu - g$ -closed sets	206
3	$^*\lambda_\mu - g_\mu - ext{Closed sets}$	208
4	$g_{^*\lambda_\mu}-$ Closed sets	21 0
5	A Unified framework of generalized closed sets in GTS'	211

1. Introduction

In 1997, $\dot{A}.Cs\dot{a}sz\dot{a}r$ [2] introduced the concept of generalization of topological space, which is a generalized topological space. A subset μ of exp(X) is called a generalized topology [4] on X if $\emptyset \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A set X with a GT μ on it is said to be a generalized topological space (briefly GTS) and is denoted by (X,μ) . For a subset A of X, we denote by $c_{\mu}(A)$ the intersection of all closed sets containing A and by $i_{\mu}(A)$ the union of all μ -open sets contained in A. Then $c_{\mu}(A)$ is the smallest closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. A point $x \in X$ is called a μ -cluster point of A if for every $U \in \mu$ with $x \in U$ we have $A \cap U \neq \emptyset$. It is known from [4] that $c_{\mu}(A)$ is the set of all μ -cluster points of A. A GTS (X,μ) is called a quasi-topological space [3] if μ is closed under finite intersections. A subset A of X is said to be π -regular [5] (resp. σ -regular) if $A = i_{\mu}c_{\mu}(A)$ (resp. $A = c_{\mu}i_{\mu}(A)$).

2000 Mathematics Subject Classification: 54A05

Definition 1.1. [6] Let (X, μ) be a GTS and $A \subset X$. Then the subsets $\wedge_{\mu}(A)$ and $\vee_{\mu}(A)$ are defined as follows:

$$\wedge_{\mu}(A) = \begin{cases} \bigcap \{G : A \subseteq G, G \in \mu\} & \text{if there exists } G \in \mu \text{ such that } A \subseteq G \\ X & \text{otherwise.} \end{cases}$$

$$\wedge_{\mu}(A) = \left\{ \begin{array}{ll} \cap \{G : A \subseteq G, G \in \mu\} & \textit{if there exists } G \in \mu \; \textit{such that } A \subseteq G; \\ X & \textit{otherwise.} \end{array} \right.$$

$$\text{and}$$

$$\vee_{\mu}(A) = \left\{ \begin{array}{ll} \cup \{H : H \subseteq A, H^c \in \mu\} & \textit{if there exists } H \; \textit{such that } H^c \in \mu \; \textit{and} \; H \subseteq A; \\ \emptyset & \textit{otherwise.} \end{array} \right.$$

Definition 1.2. [1] A subset A of a GTS (X, μ) is said to be a (\land, μ) -closed (briefly λ_{μ} -closed) set if $A = T \cap C$, where T is a \wedge_{μ} -set and C is a μ -closed set. The complement of a λ_{μ} -closed set is called a λ_{μ} -open set.

Given a GTS (X, μ) , we denote the class of μ -closed sets by $C(X, \mu)$ and the class of \wedge_{μ} -sets by $\wedge_{\mu}(X,\mu)$. Moreover, following [1] we denote the class of λ_{μ} -closed sets (resp. λ_{μ} -open sets) by $\wedge_{\mu} - C(X, \mu)$ (resp. $\wedge_{\mu} - O(X, \mu)$).

It is known that $\mu \subset \wedge_{\mu}(X,\mu)$ and $\wedge_{\mu}(X,\mu)$ is a GT closed to arbitrary intersections, by Proposition 2.3 of [6] and Theorem 2.7, Remark 2.8 [6]. Note that $X \in \wedge_{\mu}(X,\mu) \cap C(X,\mu)$ by Theorem 2.7 [6]. By Theorem 2.6 and 2.7 [1], we have

$$\wedge_{\mu} - C(X, \mu) \supset \wedge_{\mu} (X, \mu) \cup C(X, \mu)$$

and $\wedge_{\mu} - C(X, \mu)$ is closed to arbitrary intersections, hence $\wedge_{\mu} - O(X, \mu)$ is a GT. From $\mu \subset \wedge_{\mu} - C(X, \mu)$ and $C(X, \mu) \subset \wedge_{\mu} - C(X, \mu)$ we conclude that μ -closed sets and μ -open sets are simultaneously λ_{μ} -closed and \wedge_{μ} -open, i.e.

$$\mu \cup C(X, \mu) \subset \wedge_{\mu} - C(X, \mu) \cap \wedge_{\mu} - O(X, \mu)$$
.

Definition 1.3. [1] Let (X, μ) be a GTS. A point $x \in X$ is called a (\land, μ) -cluster point of A if for every (\land, μ) - open set U of X containing x, we have $A \cap U \neq \emptyset$. The set of all (\land, μ) - cluster points of A is called the (\land, μ) -closed of A and is denoted by $A^{(\wedge,\mu)}$.

Lemma 1.4. [1] Let (X, μ) be a GTS. Then the following properties hold:

- (a). $A \subseteq A^{(\wedge,\mu)}$
- (b). $A^{(\wedge,\mu)} = \bigcap \{F : A \subseteq FandFis(\wedge,\mu) closed\};$
- (c). $A \subseteq B \Rightarrow A^{(\wedge,\mu)} \subseteq B^{(\wedge,\mu)};$
- (d). A is (\land, μ) closed iff $A = A^{(\land, \mu)}$; (e). $A^{(\land, \mu)}$ is (\land, μ) closed.

Also, throughout the paper, it should be " $A^{(\wedge,\mu)}$ " instead " $c_{\lambda_{\mu}}(A)$ "

Definition 1.5. [10] A subset A of a GTS (X, μ) is said to be $^* \wedge_{\mu}$ -set if $A = ^*$ $\wedge_{\mu}(A)$ where $* \wedge_{\mu}(A) = \cap \{U \subset X | A \subset U \text{ and } U \text{ is a } \lambda_{\mu} - open \}$. Denote the class of * \wedge_{μ} -sets by * \wedge_{μ} (X, μ) .

We have $\wedge_{\mu} - O(X, \mu) \subset^* \wedge_{\mu} (X, \mu)$ and $X \in^* \wedge_{\mu} (X, \mu)$. Since $^* \wedge_{\mu}$ $(\bigcup_{i\in I} A_i) = \bigcup_{i\in I}^* \wedge_{\mu} (A_i)$ whenever $A_i, i\in I$, are subsets of X, the class $^* \wedge_{\mu} (X,\mu)$ is a generalized topology. Since ${}^* \wedge_{\mu} (\cap_{i \in I} A_i) \subset \cap_{i \in I}^* \wedge_{\mu} (A_i)$ whenever $A_i, i \in I$, are subsets of X, the class * $\wedge_{\mu}(X,\mu)$ is closed to arbitrary intersections.

Definition 1.6. [10] A subset A of a GTS (X, μ) is said to be a $^*\lambda_{\mu}$ -closed set if $A = T \cap C$, where T is a $^*\wedge_{\mu}$ -set and C is a λ_{μ} -closed set. The complement of a $^*\lambda_{\mu}$ -closed set is called a $^*\lambda_{\mu}$ -open set.

Denote the class of ${}^*\lambda_{\mu}$ -closed sets (resp. ${}^*\lambda_{\mu}$ -open sets) by ${}^*\wedge_{\mu} - C(X, \mu)$ (resp. ${}^*\wedge_{\mu} - O(X, \mu)$).

The class of ${}^*\lambda_{\mu}$ -closed sets is closed to arbitrary intersections, since ${}^*\wedge_{\mu}$ (X,μ) and $\wedge_{\mu} - C(X,\mu)$ have this property. In addition, X is a ${}^*\lambda_{\mu}$ -closed set. Therefore, the class of ${}^*\lambda_{\mu}$ -open sets is a generalized topology.

Lemma 1.7. For a GTS (X, μ) , $\wedge_{\mu}(X, \mu) \subset^* \wedge_{\mu}(X, \mu) \subset^* \wedge_{\mu} - C(X, \mu)$.

Proof: a) Since every μ -open set is λ_{μ} -open, we have ${}^*\wedge_{\mu}(A) \subset \wedge_{\mu}(A)$ for every $A \subset X$. Now assume that A is a \wedge_{μ} -set, i.e. $\wedge_{\mu}(A) \subset A$. Then ${}^*\wedge_{\mu}(A) \subset A$, hence A is a ${}^*\wedge_{\mu}$ -set.

b) Let $B \in {}^* \wedge_{\mu} (X, \mu)$. Writing $B = T \cap C$, where T = B is a ${}^* \wedge_{\mu}$ -set and C = X is a λ_{μ} -closed set, we see that $B \in {}^* \wedge_{\mu} - C(X, \mu)$.

Theorem 1.8. [10] For a GTS (X, μ) , λ_{μ} -closed sets and λ_{μ} -open sets are $^*\lambda_{\mu}$ -closed and $^*\lambda_{\mu}$ -open, i.e.

$$\wedge_{\mu} - C\left(X, \mu\right) \cup \wedge_{\mu} - O\left(X, \mu\right) \subset^{*} \wedge_{\mu} - C\left(X, \mu\right) \cap^{*} \wedge_{\mu} - O\left(X, \mu\right).$$

Proof. a) Let $A \in \wedge_{\mu} - C(X, \mu)$. Writing $A = T \cap C$, where T = X is a $^* \wedge_{\mu}$ -set and C = A is a λ_{μ} -closed set, we see that $A \in ^* \wedge_{\mu} - C(X, \mu)$.

- b) Since $\wedge_{\mu} O(X, \mu) \subset^* \wedge_{\mu} (X, \mu) \subset^* \wedge_{\mu} C(X, \mu)$, all the λ_{μ} -open sets are $*\lambda_{\mu}$ -closed.
- c) By a) and b), λ_{μ} -closed sets and λ_{μ} -open sets are $^*\lambda_{\mu}$ -closed, hence they are $^*\lambda_{\mu}$ -open.

The above disscusion can be summarized in the following diagram:

$$\mu$$
-open $\Rightarrow \lambda_{\mu}$ -open $\downarrow \downarrow \qquad \downarrow \downarrow$
 \wedge_{μ} -set $\Rightarrow * \wedge_{\mu}$ -set $\downarrow \downarrow \qquad \downarrow \downarrow$

 μ -closed $\Rightarrow \lambda_{\mu}$ -closed $\Rightarrow {}^*\lambda_{\mu}$ -closed

From the above diagram, we have the following observation, which are used in the subsequent chapters.

Observation 1.9. For a GTS (X, μ) , the following hold:

- i). Since X is μ -closed and Φ is a \wedge_{μ} -set, X and Φ are λ_{μ} -closed.
- ii). μ -closed sets and μ -open sets are λ_{μ} -closed and λ_{μ} -open.
- iii). Every λ_{μ} -open set is a * \wedge_{μ} set.
- iv). λ_{μ} -closed sets and λ_{μ} -open sets are $^*\lambda_{\mu}$ -closed and $^*\lambda_{\mu}$ -open.

Definition 1.10. A subset A of a GTS (X, μ) is called g_{μ} -closed [11] (resp. $g - \lambda_{\mu}$ -closed [9], $\lambda_{\mu} - g$ -closed [9]) if $c_{\mu}(A) \subset U$ (resp. $c_{\lambda_{\mu}}(A) \subset U$, $c_{\mu}(A) \subset U$) whenever $A \subset U$ and U is μ -open (resp. U is μ -open, U is λ_{μ} -open) in (X, μ) .

For $A \subset X$ we denote by $c_{\lambda_{\mu}}(A)$ the intersection of all λ_{μ} -closed subsets of X containing A, we have

$$c_{*\lambda_{\mu}}(A) \subset c_{\lambda_{\mu}}(A) \subset c_{\mu}(A)$$

for every $A \subset X$.

The purpose of this present paper is to define some new class of generalized closed sets called ${}^*\lambda_\mu - g - {\rm closed}$, ${}^*\lambda_\mu - g_\mu - {\rm closed}$ and $g_{{}^*\lambda_\mu} - {\rm closed}$ sets and also we obtain some basic properties of these closed sets in generalized topological spaces. Moreover the relations between these classes of sets are established.

2.
$$\lambda_{\mu} - g$$
-closed sets

Definition 2.1. Let (X, μ) be a GTS. A subset A of X is called ${}^*\lambda_{\mu} - g$ -closed set if $c_{\mu}(A) \subset U$ whenever $A \subset U$ and U is ${}^*\lambda_{\mu}$ -open in X. The complements of a ${}^*\lambda_{\mu} - g$ -closed sets are called ${}^*\lambda_{\mu} - g$ -open sets.

Theorem 2.2. Every μ -closed set is a * λ_{μ} - g-closed set.

Proof: Let A be μ -closed set and U be any $^*\lambda_{\mu}$ -open set containing A. Since A is μ -closed, $c_{\mu}(A) = A$. Therefore $c_{\mu}(A) \subset U$ and hence A is $^*\lambda_{\mu} - g$ -closed. Example 2.3 shows that the converse of the above theorem is not true.

Example 2.3. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. Then $\{a, c\}$ is ${}^*\lambda_{\mu} - g-closed$ but $not\mu-closed$.

Theorem 2.4 shows that every $\lambda_{\mu}^* - g$ -closed set is a g_{μ} -closed set (a $g - \lambda_{\mu}$ -closed set, a $\lambda_{\mu} - g$ -closed set) and Example 2.5 shows that no converse is **true.**

Theorem 2.4. Let (X, μ) be a GTS. Then the following hold:

- a). Every $\lambda_{\mu} g$ -closed set is a g_{μ} -closed set.
- b). Every $\lambda_{\mu} g$ -closed set is a $g \lambda_{\mu}$ -closed set.
- c). Every $\lambda_{\mu} g$ -closed set is a $\lambda_{\mu} g$ -closed set.

Proof: a). Let A be a ${}^*\lambda_{\mu} - g$ -closed set and U be an μ -open set containing A in (X, μ) . Since every μ - open set is ${}^*\lambda_{\mu}$ -open and A is ${}^*\lambda_{\mu} - g$ -closed, $c_{\mu}(A) \subset U$. Therefore A is g_{μ} -closed.

- b). Let A be a ${}^*\lambda_{\mu} g$ -closed set and U be an μ -open set containing A in (X, μ) . From the above part, $c_{\mu}(A) \subset U$. Since $c_{\lambda_{\mu}}(A) \subset c_{\mu}(A), c_{\lambda_{\mu}}(A) \subset U$ and hence A is $g \lambda_{\mu}$ -closed.
- c). Let A be a ${}^*\lambda_{\mu} g$ -closed set and U be an λ_{μ} -open set containing A in (X, μ) . Since every λ_{μ} -open set is ${}^*\lambda_{\mu}$ -open and A is ${}^*\lambda_{\mu} g$ -closed, $c_{\mu}(A) \subset U$. Therefore A is $\lambda_{\mu} g$ -closed.

Example 2.5. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}\{b, c, d\}, X\}$. If $A = \{a, b, d\}$ then A is both g_{μ} - closed and $g - \lambda_{\mu}$ -closed but not ${}^*\lambda_{\mu} - g$ -closed. Further if $B = \{a, c, d\}$ is $\lambda_{\mu} - g$ -closed but not ${}^*\lambda_{\mu} - g$ -closed.

Theorem 2.6 gives a characterization of ${}^*\lambda_{\mu} - g$ -closed sets.

Theorem 2.6. Let (X, μ) be a GTS. Then a subset A of X is ${}^*\lambda_{\mu} - g$ -closed set if and only if $F \subset c_{\mu}(A) \setminus A$ and F is ${}^*\lambda_{\mu}$ -closed imply that F is empty.

Proof: Let F be a ${}^*\lambda_{\mu}$ -closed subset of $c_{\mu}(A)\backslash A$. Then $A \subset X\backslash F$ and $X\backslash F$ is ${}^*\lambda_{\mu}$ -open. Since A is ${}^*\lambda_{\mu} - g$ -closed, we have $c_{\mu}(A) \subset X\backslash F$. Consequently $F \subset X\backslash c_{\mu}(A)$. Hence F is empty.

Conversely, Suppose the implication holds and $A \subset U$, where U is ${}^*\lambda_{\mu}$ -open. If $c_{\mu}(A) \not\subset U$, then $c_{\mu}(A) \cap (X - U)$ is a non-empty ${}^*\lambda_{\mu}$ -closed subset of $c_{\mu}(A) \setminus A$. Therefore A is ${}^*\lambda_{\mu} - g$ -closed.

Theorem 2.7. If A is ${}^*\lambda_{\mu} - g$ -closed set in a GTS (X, μ) , then $c_{\mu}(A) \setminus A$ contains no non-empty λ_{μ} -closed $(\lambda_{\mu}$ -open $/ \mu$ -open $/ \mu$ -closed) subset of X.

Proof: Suppose $c_{\mu}(A)\backslash A$ contains on non empty λ_{μ} -closed $(\lambda_{\mu}$ -open $/\mu$ -open $/\mu$ -closed) subset of X. Since every λ_{μ} -closed $(\lambda_{\mu}$ -open $/\mu$ -open $/\mu$ -closed) is $*\lambda_{\mu}$ -closed, we have F is a non-empty $*\lambda_{\mu}$ -closed set contained in $c_{\mu}(A)\backslash A$, which is a contradiction to Theorem 2.6. Hence the proof.

Example 2.8 shows that the converse of the above theorem is not true.

Example 2.8. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}\{b, c, d\}, X\}$. If $A = \{a, b, d\}$ then $c_{\mu}(A) \setminus A = \{c\}$, which is neither contain a nonempty λ_{μ} -closed set nor contain a nonempty λ_{μ} -open set, but A is not a $^*\lambda_{\mu} - g$ -closed set. If $B = \{a, c, d\}$ then $c_{\mu}(B) \setminus B = \{b\}$, which is neither contain a nonempty μ -closed set nor contain a nonempty μ -open set, but B is not a $^*\lambda_{\mu} - g$ -closed set.

Lemma 2.9. [7] For a GTS (X, μ) and $S, T \subset X$, the following properties hold: $(a).i_{\mu}(s \cap T) \subset i_{\mu}(S) \cap i_{\mu}(T)$. $(b).c_{\mu}(s) \cup c_{\mu}(T) \subset c_{\mu}(S) \cup T$.

Remark 2.10. [7] $i_{\mu}(s \cap T) \supset i_{\mu}(S) \cap i_{\mu}(T)$ is not true in general for subset S and T of a $GTS(X, \mu)$.

Theorem 2.11. [5] Let (X, μ) be a quasi-topological space. Then $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B)$ for every A and B of X.

Theorem 2.12. Let (X, μ) be a quasi-topological space. Then $A \cup B$ is a ${}^*\lambda_{\mu} - g$ -closed set whenever A and B are ${}^*\lambda_{\mu} - g$ -closed sets.

Proof: Let U be a ${}^*\lambda_{\mu}$ -closed set such that $A \cup B \subset U$. Then $A \subset U$ and $B \subset U$. Since A and B are ${}^*\lambda_{\mu} - g$ -closed, $c_{\mu}(A) \subset U$ and $c_{\mu}(B) \subset U$. Hence $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B) \subset U$ and so that proof follows.

Example 2.13. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\} \{b, c\}, X\}$. Then μ is a GT but not a quasi-topology. If $A = \{a\}$ and $B = \{c\}$, then A and B are $^*\lambda_{\mu} - g$ -closed sets but their union is not a $^*\lambda_{\mu} - g$ -closed set.

Example 2.14. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{a, b\}$ and $B = \{a, c\}$, then A and B are ${}^*\lambda_{\mu} - g$ -closed sets but $A \cap B = \{a\}$ is not a ${}^*\lambda_{\mu} - g$ -closed set.

Theorem 2.15. Let (X, μ) be a GTS. If A is ${}^*\lambda_{\mu} - g$ -closed and B is μ -closed, then $A \cap B$ is a ${}^*\lambda_{\mu} - g$ -closed set.

Proof: Suppose $A \cap B \subset U$ where U is ${}^*\lambda_{\mu}$ -open. Then $A \subset U \cup (X \backslash B)$. Since A is ${}^*\lambda_{\mu} - g$ - closed, $c_{\mu}(A) \subset U \cup (X \backslash B)$ and so $c_{\mu}(A) \cap B \subset U$. Hence $c_{\mu}(A \cap B) \subset U$, which implies that $A \cap B$ is a ${}^*\lambda_{\mu} - g$ -closed set.

Theorem 2.16. Let (X, μ) be a GTS. If A is $*\lambda_{\mu}$ -open and $*\lambda_{\mu}$ -g-closed, then A is μ -closed.

Proof: Since A is $^*\lambda_{\mu}$ -open and $^*\lambda_{\mu}-g$ -closed, $c_{\mu}(A)\subset A$ and hence A is μ -closed.

3.
$$^*\lambda_{\mu}-g_{\mu}-$$
 Closed sets

Definition 3.1. Let (X, μ) be a GTS. A subset A of X is called ${}^*\lambda_{\mu} - g_{\mu}$ -closed set if $c_{\lambda_{\mu}}(A) \subset U$ whenever $A \subset U$ and U is ${}^*\lambda_{\mu}$ -open set in X. The complements of a ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets are called ${}^*\lambda_{\mu} - g_{\mu}$ -open sets.

Theorem 3.2. For a GTS (X, μ) , Every λ_{μ} -closed set is λ_{μ} - g_{μ} -closed.

Proof: Let A be λ_{μ} -closed set and U be any $^*\lambda_{\mu} - g$ -open set containing A. Since A is λ_{μ} -closed, $c_{\lambda_{\mu}}(A) = A$. Therefore $c_{\lambda_{\mu}}(A) \subset U$ and hence A is $^*\lambda_{\mu} - g_{\mu}$ -closed.

Corollary 3.3. For a GTS (X, μ) , the following hold:

- a). Every μ -closed set is λ_{μ} g_{μ} -closed.
- b). Every μ -open set is λ_{μ} g_{μ} -closed.

Example 3.4 shows that the converse of the above theorem is not true.

Example 3.4. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{c\}$ then A is neither μ -closed nor μ -open but it is ${}^*\lambda_{\mu} - g_{\mu}$ -closed. If $B = \{a, b\}$, then B is ${}^*\lambda_{\mu} - g_{\mu}$ -closed but not ${}^*\lambda_{\mu}$ -closed.

Theorem 3.5. Let(X, μ) be a GTS. If $A \subset X$ and A is a $^*\lambda_{\mu} - g_{\mu}$ -closed set, then A is a $g - \lambda_{\mu}$ -closed set.

Proof: Let U be a μ -open set containing A in (X, μ) . Since every μ - open set is ${}^*\lambda_{\mu}$ -open and A is ${}^*\lambda_{\mu}$ -closed, $c_{\lambda_{\mu}}(A) \subset U$. Therefore A is $g - \lambda_{\mu}$ -closed. Example 3.6 shows that the converse of Theorem 3.5 is not true.

Example 3.6. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}\{b, c\}, X\}$. If $A = \{a, c\}$ then A is $g - \lambda_{\mu}$ -closed but not ${}^*\lambda_{\mu} - g_{\mu}$ -closed.

Theorem 3.7 shows that the relation between $^*\lambda_{\mu} - g$ -closed set and $^*\lambda_{\mu} - g_{\mu}$ -closed set.

Theorem 3.7. In a GTS (X, μ) , every $^*\lambda_{\mu} - g$ -closed set is $^*\lambda_{\mu} - g_{\mu}$ -closed.

Proof: Let A be a ${}^*\lambda_{\mu} - g$ -closed set and U be an λ_{μ} -open set containing A in (X,μ) . Then $c_{\mu}(A) \subset U$. Since $c_{\lambda_{\mu}}(A) \subset c_{\mu}(A)$, we have $c_{\lambda_{\mu}}(A) \subset U$. Therefore A is ${}^*\lambda_{\mu} - g_{\mu}$ -closed.

Example 3.8 shows that the converse of the above theorem is not true.

Example 3.8. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. If $A = \{a\}$, then A is $*\lambda_{\mu} - g_{\mu}$ -closed set but it is not $*\lambda_{\mu} - g$ -closed.

Remark 3.9. The concepts of g_{μ} -closed set and ${}^*\lambda_{\mu}-g_{\mu}$ -closed set are independent.

Example 3.10. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $\{b, d\}$ is g_{μ} -closed but not ${}^*\lambda_{\mu} - g_{\mu}$ -closed and $\{c\}$ is ${}^*\lambda_{\mu} - g_{\mu}$ -closed but not g_{μ} -closed.

Theorem 3.11 gives a characterization of ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets.

Theorem 3.11. Let (X, μ) be a GTS. Then a subset A of X is ${}^*\lambda_{\mu} - g_{\mu} -$ closed set if and only if $F \subset c_{\lambda_{\mu}}(A) \setminus A$ and F is ${}^*\lambda_{\mu} -$ closed imply that F is empty.

Proof: The proof is similar to that of Theorem 2.6 so that it is omitted.

Theorem 3.12. If A is ${}^*\lambda_{\mu} - g_{\mu} - closed$ set in a GTS (X, μ) , then $c_{\lambda_{\mu}}(A) \setminus A$ contains no non empty $\lambda_{\mu} - closed$ ($\lambda_{\mu} - open / \mu - open / \mu - closed$) subset of X.

Proof: The proof is similar to that of Theorem 2.7 so that it is omitted. Example 3.13 shows that the converse of above Theorem is not true.

Example 3.13. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}\{b, c, d\}, X\}$. If $A = \{a, d\}, c_{\lambda_{\mu}}(A) \setminus A = \{b, c\}, which does not contain both a nonempty <math>\mu$ -open set and λ_{μ} -open set but A is not λ_{μ} -closed set. If $A = \{c, d\}, c_{\lambda_{\mu}}(A) \setminus B = \{b\}, which does not contain both a nonempty <math>\mu$ -closed set and λ_{μ} -closed set but $A = \{b, c\}, c_{\lambda_{\mu}}(B) \setminus B = \{b\}, which does not contain both a nonempty <math>\mu$ -closed set and λ_{μ} -closed set but $A = \{b, c\}, c_{\lambda_{\mu}}(B) \setminus B = \{b\}, which does not contain both a nonempty <math>\mu$ -closed set and λ_{μ} -closed set but $A = \{b, c\}, c_{\lambda_{\mu}}(B) \setminus B = \{b\}, c_{\lambda_{\mu$

Theorem 3.14. Let (X, μ) be a GTS and A and B be subsets of X. If $A \subset B \subset c_{\lambda_{\mu}}(A)$ and A is $^*\lambda_{\mu} - g_{\mu}$ -closed set then B is $^*\lambda_{\mu} - g_{\mu}$ -closed.

Proof: If F is ${}^*\lambda_{\mu}$ -closed such that $F \subset c_{\lambda_{\mu}}(B) \backslash B$, then $F \subset c_{\lambda_{\mu}}(A) \backslash A$. Since A is ${}^*\lambda_{\mu} - g_{\mu}$ -closed, by Theorem 3.10, $F = \emptyset$ and so B is ${}^*\lambda_{\mu} - g_{\mu}$ -closed.

Theorem 3.15. Let A be a $^*\lambda_{\mu}-g_{\mu}-closed$ set in a quasi-topological space (X,μ) . Then the following hold:

a). If A is a π -regular set, then $i_{\pi}(A)$ and $c_{\sigma}(A)$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets. b). If A is a σ -regular set, then $c_{\pi}(A)$ and $i_{\sigma}(A)$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets.

Proof: a). Since A is π -regular set, $c_{\sigma}(A) = A \cup i_{\mu}c_{\mu}(A) = A$ and $i_{\pi}(A) = A \cap i_{\mu}c_{\mu}(A) = A$. Thus $i_{\pi}(A)$ and $c_{\sigma}(A)$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets. b). Since A is a σ -regular set, $c_{\pi}(A) = A$ and $i_{\sigma}(A) = A$. Thus $c_{\pi}(A)$ and $i_{\sigma}(A)$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets. **Remark 3.16.** The union (resp. intersection) of two $^*\lambda_{\mu} - g_{\mu}$ -closed sets need not be $^*\lambda_{\mu} - g_{\mu}$ -closed set.

Example 3.17. Let $X = \{a, b, c, d, e\}$ and $\mu = \{\emptyset, \{a\}, \{a, b, c\}, X\}$. Then $\{a\}$ and $\{d, e\}$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets but their union is not a ${}^*\lambda_{\mu} - g_{\mu}$ -closed set. Further $\{a, b, d\}$ and $\{a, c, d, e\}$ are ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets but their intersection is not a ${}^*\lambda_{\mu} - g_{\mu}$ -closed set.

4. $g_{\lambda_{\mu}}$ - Closed sets

Definition 4.1. Let (X, μ) be a GTS. A subset A of X is called $g_{\lambda_{\mu}}$ -closed set if $c_{\lambda_{\mu}}(A) \subset U$ whenever $A \subset U$ and U is λ_{μ} -open set in X. The complements of a $g_{\lambda_{\mu}}$ -closed sets are called $g_{\lambda_{\mu}}$ -open sets.

Theorem 4.2. For a GTS (X, μ) , Every λ_{μ} -closed set is $g_{\lambda_{\mu}}$ -closed.

Proof: Let A be ${}^*\lambda_{\mu}$ -closed set and U be any ${}^*\lambda_{\mu}$ -open set containing A.Since A is ${}^*\lambda_{\mu}$ -closed, $c_{{}^*\lambda_{\mu}}(A) = A$. Therefore $c_{{}^*\lambda_{\mu}}(A) \subset U$ and hence A is $g_{{}^*\lambda_{\mu}}$ -closed.

Corollary 4.3. For a GTS (X, μ) , the following hold:

- a). Every λ_{μ} closed set is $g_{*\lambda_{\mu}}$ closed.
- b). Every λ_{μ} -open set is $g_{*\lambda_{\mu}}$ -closed.
- c). Every μ -closed set is $g_{*\lambda_{\mu}}$ -closed.
- d). Every μ open set is $g_{*\lambda_{\mu}}$ -closed.

Example 4.4 shows that the converse of Theorem 4.2 and the converses of a)-d) from corollary 4.3 are not true.

Example 4.4. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. If $A = \{c\}$ then A is neither μ -closed nor μ -open but it is $g_{*\lambda_{\mu}}$ -closed. If $B = \{a, b\}$, then B is neither λ_{μ} -closed but nor λ_{μ} -open but it is $g_{*\lambda_{\mu}}$ -closed. If $C = \{a, c\}$ then C is $*\lambda_{\mu}$ -colsed but is not $g_{*\lambda_{\mu}}$ -closed.

Remark 4.5. The concepts of $g - \lambda_{\mu}$ -closed set and $g_{\lambda_{\mu}}$ -closed set are independent.

Example 4.6. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b, c\}\{b, c, d\}, X\}$. Then $\{a, d\}$ is $g_*\lambda_{\mu}$ -closed but $g - \lambda_{\mu}$ -closed and $\{c\}$ is $g - \lambda_{\mu}$ -closed but not $g_*\lambda_{\mu}$ -closed.

Theorem 4.7 shows that the relation between $g_{*\lambda_{\mu}}$ —closed set and generalized closed sets defined in section 3.

Theorem 4.7. For a GTS (X, μ) , Every ${}^*\lambda_{\mu} - g_{\mu}$ -closed set is $g_{{}^*\lambda_{\mu}}$ -closed.

Proof: Let A be a ${}^*\lambda_{\mu} - g_{\mu}$ -closed sets and U be an ${}^*\lambda_{\mu}$ -open set containing A in (X, μ) . Then $c_{\lambda_{\mu}}(A) \subset U$. Since $c_{{}^*\lambda_{\mu}}(A) \subset c_{\lambda_{\mu}}(A)$, we have $c_{{}^*\lambda_{\mu}}(A) \subset U$. Therefore A is $g_{{}^*\lambda_{\mu}}$ -closed.

Example 4.8 shows that the converse of Theorem 4.7 is not true.

Example 4.8. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. If $A = \{a, c\}$ then A is $g_*_{\lambda_{\mu}} - closed$ but not $^*\lambda_{\mu} - g_{\mu} - closed$.

5. A Unified framework of generalized closed sets in GTS'

Given an ordered pair of topologies (τ_1,τ_2) on X, a subset $A\subset X$ is said to be (i,j)-g-closed if $\tau_j-cl(A)\subset U$ whenever $A\subset U$ and $U\in\tau_i$, where $i,j\in\{1,2\}$ with $i\neq j$ [6]. This definition could be easily generalized: Given a pair of generalized topologies (μ_1,μ_2) on X, a subset $A\subset X$ is said to be $g(\mu_i,\mu_j)$ -closed if $c_{\mu_j}(A)\subset U$ whenever $A\subset U$ and $U\in\mu_i$, where $i,j\in\{1,2\}$. If i=j, the class of $g(\mu_i,\mu_i)$ -closed sets is the class of g_{μ_i} -closed sets.

Observation 5.1. For a space (X, μ_1, μ_2) , the following are hold:

- a). If $\mu_1 = \mu$ and μ_2 is the class of λ_{μ} -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $g \lambda_{\mu}$ -closed.
- b). If μ_1 is the class of λ_{μ} -open sets and $\mu_2 = \mu$, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $\lambda_{\mu} g$ -closed.
- c). If μ_1 is the class of $^*\lambda_{\mu}$ -open sets and $\mu_2 = \mu$, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $^*\lambda_{\mu} g$ -closed.
- d). If μ_1 is the class of ${}^*\lambda_{\mu}$ -open sets and μ_2 is the class of λ_{μ} -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is ${}^*\lambda_{\mu} g_{\mu}$ -closed.
- e). If $\mu_1 = \mu_2$ represents the class of λ_{μ} -open sets, then A is $g(\mu_1, \mu_2)$ -closed if and only if A is $g_{\lambda_{\mu}}$ -closed.

Theorem 5.2. If $\mu_1 \subset \mu_2$, then:

- a). A is $g(\mu_2, \mu_1)$ -closed \Rightarrow A is g_{μ_1} -closed and g_{μ_2} -closed.
- b). A is g_{μ_1} -closed \Rightarrow A is $g(\mu_1, \mu_2)$ -closed.
- c). A is μ_1 -closed \Rightarrow A is $g(\mu_2, \mu_1)$ -closed.

Proof: Since $\mu_1 \subset \mu_2$, we have $c_{\mu_2}(A) \subset c_{\mu_1}(A)$ for every $A \subset X$.

a) Let A be $g(\mu_2, \mu_1)$ -closed. Assume that $A \subset U$ and $U \in \mu_1$. We prove that $c_{\mu_1}(A) \subset U$. Since $\mu_1 \subset \mu_2$, we have $U \in \mu_2$. But A is $g(\mu_2, \mu_1)$ -closed, therefore $c_{\mu_1}(A) \subset U$.

Assume that $A \subset V$ and $V \in \mu_2$. We prove that $c_{\mu_2}(A) \subset V$. Since A is $g(\mu_2, \mu_1)$ -closed, we have $c_{\mu_1}(A) \subset V$. But $c_{\mu_2}(A) \subset c_{\mu_1}(A)$, hence $c_{\mu_2}(A) \subset V$. b) Let A be g_{μ_1} -closed. Assume that $A \subset U$ and $U \in \mu_1$. We prove that $c_{\mu_2}(A) \subset U$. By our assumption, we have $c_{\mu_1}(A) \subset U$, but $c_{\mu_2}(A) \subset c_{\mu_1}(A)$, hence the claim follows.

c) Let A be μ_1 -closed. If $A \subset W$ and $W \in \mu_2$, then $c_{\mu_1}(A) = A \subset W$.

Theorem 5.3. Assume that $\mu'_1 \subset \mu''_1$ and $\mu''_2 \subset \mu'_2$. If A is $g(\mu''_1, \mu''_2)$ -closed, then A is $g(\mu'_1, \mu'_2)$ -closed.

Proof: Let A be $g(\mu_1'', \mu_2'')$ -closed. Consider $U \in \mu_1'$ such that $A \subset U$. We prove that $c_{\mu_2'}(A) \subset U$. Since $U \in \mu_1''$ and A is $g(\mu_1'', \mu_2'')$ -closed, we have $c_{\mu_2''}(A) \subset U$. But $\mu_2'' \subset \mu_2'$ implies $c_{\mu_2'}(A) \subset c_{\mu_2''}(A)$, therefore the claim holds true.

Remark 5.4. Assume that μ_1 and μ_2 are generalized topologiesbon X. (i). Let $\mu_1 = \mu$ and μ_2 be the class of $^*\lambda_{\mu}$ -open sets. From remark 5.2 a), we obtain Theorem 2.4 (a) and Theorem 4.7.

- (ii). Let $\mu_1 = \mu$ and μ_2 be the class of λ_{μ} -open sets. From remark 5.2 b), we recover the fact every g_{μ} -closed set $g \lambda_{\mu}$ -closed. So Theorem 2.4 b), follows from this and Theorem 2.4.
- (iii). Let μ_1' be the class of λ_{μ} -open sets and μ_1'' be the class of $^*\lambda_{\mu}$ -open sets and take $\mu_2' = \mu_2'' = \mu$. From Theorem 5.3, we obtain Theorem 2.4 c.
- (iv) Let μ_1 be the class of $^*\lambda_\mu$ -open sets and μ_2 be the class of λ_μ -open sets. Since $\mu_2 \subset \mu_1$, by Theorem 5.2 we obtain that every $^*\lambda_\mu g$ -closed set is g_{λ_μ} -closed (and $g_{^*\lambda_\mu}$ -closed). By Theorem 5.2 c) we get Theorem 3.2 a).
- (and $g_{^*\lambda_{\mu}}$ -closed). By Theorem 5.2 c) we get Theorem 3.2 a). (v) Let $\mu_1' = \mu$ and μ_1'' be the class of λ_{μ}^* -open sets, and let $\mu_2' = \mu_2''$ be the class of λ_{μ} -open sets. From Theorem 5.3 we obtain Theorem 3.4.
- (vi) Let $\mu'_1 = \mu''_1$ be the class of λ^*_{μ} -open sets and let μ'_2 be the class of λ_{μ} -open sets, while $\mu''_2 = \mu$. From Theorem 5.3 we get Theorem 3.6.

References

- Bishwarbhar Roy and Erdal Ekici, On (∧, µ)- closed sets in Generalized topological spaces, Methods of Functional Analysis and Topology.,17(2)(2011), 174-179.
- 2. . A.Császár, Generalized open sets, Acta Math. Hungar., 75(1-2) (1997), 65-87.
- 3. $\dot{A}.Cs\acute{a}sz\acute{a}r$, Further remark on the formula for γ -interior, Acta Math.Hungar., 113(4):(2006), 325-332.
- 4. . $\acute{A}.Cs\acute{a}sz\acute{a}r$, Generalized open sets in generalized topologies, Acta Math. Hungar., 2005, 106(53-66).
- 5. . Á.Császár, $\delta-$ and $\theta-$ modifications of generalized topologies, Acta Math.Hungar., 120 (2008), 275-279.
- 6. E. Ekici and B. Roy , New generalized topologies on generalized topological spaces due to $Cs\acute{a}sz\acute{a}r$, Acta Math.Hungar., 132(1-2) (2011),117-124.
- 7. E. Ekici, Generalized submaximal spaces, Acta Math. Hungar., 134(1-2) (2012),132-138.
- 8. A. Ghareeb and T. Noiri, \land —generalized closed sets in bitopological spaces, Journal of Egyptian Mathematical Society., 19 (2011) 142-145.
- 9. R. Jamunarani, P. Jeyanthi and M. Velrajan, Generalized λ_{μ} —closed sets in Generalized Topological Spaces, Journal of Advance Studies in Topology, Vol 4, No 3, 2013, 39-46.
- 10. . P.Jeyanthi and P.Nalayini, * \wedge_{μ} sets and * \vee_{μ} sets in Generalized Topological Spaces., (Communicated).
- 11. . S.Maragathavalli, M.Sheiljohn and D.Sivaraj, On g-closed sets in generalized topological spaces., Journal of Advanced Research in Pure Mathematics, Vol 2, 2010, (57-64).

P. Jeyanthi, P. Nalayini
Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamil Nadu, India
E-mail address: jeyajeyanthi@rediffmail.com
E-mail address: nalayini4@gmail.com

an d

Marcelina Mocana
Department of Mathematics, informatics and Education Science
V. Alecsadri University of Bacau, Romania
E-mail address: mmocanu@ub.ro