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Existence and non-existence of a positive solution for (p, q)-Laplacian
with singular weights

Abdellah Zerouali and Belhadj Karim

abstract: We use the Hardy-Sobolev inequality to study existence and non-
existence results for a positive solution of the quasilinear elliptic problem

−△pu− µ△qu = λ[mp(x)|u|
p−2u+ µmq(x)|u|

q−2u] in Ω

driven by nonhomogeneous operator (p, q)-Laplacian with singular weights under
the Dirichlet boundary condition. We also prove that in the case where µ > 0 and
with 1 < q < p < ∞ the results are completely different from those for the usual
eigenvalue problem for the p-Laplacian with singular weight under the Dirichlet
boundary condition, which is retrieved when µ = 0. Precisely, we show that when
µ > 0 there exists an interval of eigenvalues for our eigenvalue problem.

Key Words: Nonlinear eigenvalue problem; (p, q)-Laplacian; singular weight;
Indefinite weight; Hardy-Sobolev inequality; Harnack inequality .
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1. Introduction

Consider the (p, q)-Laplacian eigenvalue problem

(Pλ,µ)







To find (u, λ) ∈ (W 1,p
0 (Ω) \ {0})× R such that

−△pu− µ△qu = λ[mp(x)|u|
p−2u+ µmq(x)|u|

q−2u] in Ω,
u = 0 on ∂Ω

where Ω is a bounded domain in R
N with piecewise C1 boundary ∂Ω, λ, µ ∈ R

+

and 1 < q < p < ∞. For r = p, q, △ru = div(|∇u|r−2∇u) indicate the r-Laplacian
and the weight mr may be unbounded and change sign. As in [14], we assume for
r = p, q that mrδ

τ ∈ La(Ω) with δ(x) = dist(x, ∂Ω) and m+
r 6≡ 0, where a, r and

τ satisfy one of the following conditions:
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(H1): ∂Ω is piecewise C1, 0 < τ < 1, r
1−τ ≤ a and a ≤ Nr

N−τr if N > τr;

(H2): ∂Ω is piecewise C1, 0 < τ < 1, r < N
1−τ ≤ a;

(H3): ∂Ω is piecewise C1, τ = 1 and a = ∞;

(H4): Ω is any bounded domain, τ = 0 and a = ∞.

The problem (Pλ,µ) comes, for example, from a general reaction diffusion system

ut = div(D(u)∇u) + c(x, u), (1.1)

where D(u) = (|∇u|p−2+µ|∇u|q−2). This system has a wide range of applications
in physics and related sciences like chemical reaction design [2], biophysics [8] and
plasma physics [18]. In such applications, the function u describes a concentration,
the first term on the right-hand side of (1.1) corresponds to the diffusion with a
diffusion coefficient D(u); whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the
reaction term c(x;u) has a polynomial form with respect to the concentration.

Our problem was addressed in [15] for domains with boundary C2 and bounded
weights, when only the condition (H4) holds true. These work proved that in the
case where µ > 0, there exists an interval of eigenvalues. The authors proved the
existence of positive solutions in resonant cases. A non-existence result is also given.
Here we will assume that the boundary ∂Ω is a piecewise C1 and singular weights
mr (r = p, q) which satisfy one of the conditions (H1), (H2), (H3) or (H4). Our
work represent developments of the study performed in [15] because we prove all
results of this paper by considering others conditions that represent the singularity
of the domain and the weights. Our main tool is the Hardy-Sobolev inequality, see
Lemma 2.2 in preliminary section.
Many authors have studied the nonhomogeneous operator (p, q)-Laplacian (see [12,
16,21,22]). However, there are few results one the eigenvalue problems for the (p, q)-
Laplacian. In [4,5], the authors established the existence of the principal eigenvalue
and of a continuous family of eigenvalues for problem

−△pu−△qu = λg(x)|u|p−2u in R
N .

where g is a bounded positive weight. Eigenvalue problem for a (p, 2)-Laplacian
was studied in [3]. The existence of non trivial solution for the following Dirichlet
equation is proved in [6]

−△pu− µ△u = λ|u|p−2u+ g(u) in Ω, u = 0 on ∂Ω,

in the case where p > 2, g ∈ C1 and λ 6∈ σ(−∆p), where σ(−∆p) is the spectrum
of (−∆p). Under the Neumann boundary condition, [13] determined the set of
eigenvalues for the equation

−△pu−△u = λu in Ω,
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where p > 2. In [19], M. Tanaka has completely described the generalized eigen-
value λ for which the following equation

−△ru− µ△ur∗ = λmr|u|
r−2u in Ω, u = 0 on ∂Ω.

has a positive solution, where 1 < r 6= r∗ < ∞ and µ > 0.
We recall that a value λ ∈ R is an eigenvalue of problem (Pλ,µ) if and only if

there exists u ∈ W 1,p
0 (Ω)\{0} such that

∫

Ω

(|∇u|p−2 + µ|∇u|q−2)∇u∇ϕdx = λ

[
∫

Ω

(mp(x)|u|
p−2 + µmq(x)|u|

q−2)uϕdx

]

(1.2)
for all ϕ ∈ W 1,p

0 (Ω). u is then called an eigenfunction of λ.
Letting µ → 0+, our problem (Pλ,µ) turns into the (p−1)-homogeneous problem

known as the usual weighted eigenvalue problem for the p-Laplacian with singular
weight mp:

(Pλ,mp
)

{

−△pu = λmp(x)|u|
p−2u in Ω,

u = 0 on ∂Ω

Moreover, after multiplying our equation (Pλ,µ) by 1/µ and then letting µ → +∞,
we obtain the (q − 1)-homogeneous equation:

(Pλ,mq
)

{

−△qu = λmq(x)|u|
q−2u in Ω,

u = 0 on ∂Ω

Nonlinear eigenvalue problem (Pλ,mr
), where r = p, q and with bounded weight

have been studied by several authors, for example (see [1,7,9,11,17,18]). These
works proved that there exists a first eigenvalue λ1(r,mr) > 0, where

λ1(r,mr) := inf

{

1

r

∫

Ω

|∇u|rdx;u ∈ W 1,r
0 (Ω) and

1

r

∫

Ω

mr(x)|u|
rdx = 1

}

, (1.3)

which is simple in the sense that two eigenfunctions corresponding to it are
proportional. Moreover, the corresponding first eigenfunction φ1(r,mr) can be
assumed to be positive. It was also shown (see [1]) that λ1(r,mr) is simple and
isolated. Recently, the problem (Pλ,mr

) with singular weight mr satisfying the
conditions (H1), (H2), (H3) or (H4), was studied in [14]. The authors use the
Hardy-Sobolev inequality to characterize the first eigenvalue. In some cases it
is shown that λ1(r,mr) > 0 is positive simple, isolated and has a nonnegative
corresponding eigenfunction φ1(r,mr) ∈ L∞(Ω). Higher eigenvalues, in particular
the second one, are also determined.

The plan of this paper is the following. In Section 2, which has a preliminary
character, we collect some results concerning the first eigenvalue λ1(r,mr) of prob-
lem (Pλ,mr

), where r = p, q. In Section 3, we study Rayleigh quotient for our prob-
lem (Pλ,µ). In contrast to homogeneous case, we prove that if λ1(p,mp) 6= λ1(q,mq)
or φ1(p,mp) 6= kφ1(q,mq) for every k > 0, then the infimum in Rayleigh quotient
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is not attained. We also show nonexistence results for positive solutions of the
eigenvalue problem (Pλ,µ) formulated as Theorem 3.5. Our existence results for
positive solutions of the eigenvalue problem (Pλ,µ) are presented in Section 4. Af-
ter studying the non-resonant cases (Theorem 4.1) which prove that when µ > 0
there exists an interval of positive eigenvalues for the problem (Pλ,µ), we present
the resonant cases in Theorem 4.8.

2. Preliminaries

Throughout this paper Ω will be a bounded domain of RN with piecewise C1

boundary,
1 < q < p < ∞ and r = p or q. We will always assume for r = p, q that mrδ

τ ∈
La(Ω) with δ(x) = dist(x, ∂Ω) and m+

r 6≡ 0, where a, r and τ satisfy one of the
conditions (H1), (H2), (H3) or (H4).

Remark 2.1. Condition (H4) implies mrδ
τ = m

r
∈ L∞(Ω), including results of

the previously cited paper [15]. Here ∂Ω is piecewise C1 except for (H4).

We will write ‖u‖r :=
(∫

Ω
|u|rdx

)1/r
for the Lr(Ω)−norm and W 1,r

0 (Ω) will
denote the usual Sobolev space with usual norm ‖∇u‖r.

In the sequel, we collects some results relative to the first eigenvalue λ1(r,mr)
defined by (1.3) and its corresponding normalized eigenfunction φ1(r,mr). The
following lemma concerns the Hardy-Sobolev inequality proved in [10], which char-
acterize the first eigenvalue λ1(r,mr) of problem (Pλ,mr

). This inequality is our
main tool in this paper.

Lemma 2.2. [10] Let 0 ≤ τ ≤ 1 and s such that 1
s = 1

r − 1−τ
N for r < N and

1
s = τ

r for r ≥ N . If ∂Ω is piecewise C1, then
∥

∥

u
δτ

∥

∥

Ls(Ω)
≤ C‖∇u‖Lr(Ω) for all

u ∈ W 1,r
0 (Ω), where δ(x) = dist(x, ∂Ω) and C = C(N, r, τ ) > 0 is a constant. In

the case s = r = p, q, no regularity on ∂Ω is needed.

We give now an example of the weight mr such that mrδ
τ ∈ La(Ω) with m+

r 6≡ 0,
where a, τ and r satisfying the condition (H2).

Example 2.3. The weight mr(x) = δ(x)−β = (1−|x|)−β is admissible in the open
unit ball of RN (i.e. Ω = B1(0)). For 1/2 < β < 25/42, p = 3/2, N = 3, τ = 1/2
and a = 21/2, we have mr 6∈ LN/r(Ω) = L2(Ω), but mrδ

τ ∈ La(Ω) = L21/2(Ω).

To use Harnack inequality as in [14] and [20], we make now the following
definitions involving locally integrable weights. Let ǫ(ρ) be a smooth function
defined for ρ > 0 such that

lim
ρ→0+

ǫ(ρ) = 0 and

∫ ρ∗

0

ǫ(ρ)

ρ
dρ < ∞, (2.1)
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for some ρ∗ > 0. We denote by Kx0(ρ) an N -dimensional cube contained in Ω
whose edges are of length ρ and are parallel to the coordinate axes. We define

Lt
ǫ(ρ)(Ω) = {u ∈ Lt(Ω) : ‖u‖t,ǫ(ρ),Ω < ∞}, where

‖u‖t,ǫ(ρ),Ω = sup
x0∈Ω,ρ>0

‖u‖Lt(Kx0 (ρ)∩Ω)

ǫ(ρ)
. (2.2)

Remark 2.4. The weight mr in Example 2.3 is such that mr ∈ L
N/r
ǫ(ρ) (Ω), but

mr 6∈ Ls(Ω) for s > N/r if 1 < r ≤ N.

The following theorem guarantees the simplicity and isolation of λ1(r,mr),
where r = p, q. This result is proved by M. Montenegro and S. Lorca in [14].
To ensure positiveness of φ1(r,mr), the authors apply the Harnack inequality of
[20].

Theorem 2.5. [14] If one supposes ∂Ω is piecewise C1 and mrδ
τ ∈ La(Ω) with

m+
r 6≡ 0, where a, τ and r satisfy (H1), (H2), (H3) or (H4), then the number

λ1(r,mr) is attained by some φ1(r,mr) ∈ W 1,p
0 (Ω), where we may assume that

φ1(r,mr) ≥ 0 a.e. in Ω, φ1(r,mr)
+ 6≡ 0. Moreover λ1(r,mr) is positive and

isolated.
If in addition one assumes mr ∈ L1(Ω) for r > N or mr ∈ L

N/p
ǫ(ρ) (Ω) for 1 < r ≤ N ,

then the first eigenvalue λ1(r,mr) is simple and any positive eigenvalue other than
λ1(r,mr) has no positive eigenfunctions.

3. Rayleigh quotient and non-existence results

3.1. Rayleigh quotient for the problem (Pλ,µ)

This subsection concerns the Rayleigh quotient for our problem (Pλ,µ).

Remark 3.1. We start by pointing out to find a solution for the problem (Pλ,µ) is
equivalent to seek a solution in the case µ = 1, that is to solve the problem (Pλ,1).
Indeed, if u is a solution of (Pλ,1), then multiplying equation (Pλ,1) by sp−1 for
s > 0 we deduce that v = su is a solution for problem (Pλ,µ=sp−q ).

Conversely, let u be a solution of problem (Pλ,µ). Then it follows that v = µ1/q−pu
is a solution of (Pλ,1).

We introduce now the functionals A and B on W 1,p
0 (Ω) by

A(u) :=
1

p

∫

Ω

|∇u|pdx+
1

q

∫

Ω

|∇u|qdx (3.1)

B(u) :=
1

p

∫

Ω

mp(x)|u|
pdx+

1

q

∫

Ω

mq(x)|u|
qdx (3.2)

for all u ∈ W 1,p
0 (Ω).
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Proposition 3.2. (i) The functional A is well defined and sequently weakly lower
semi-continuous.
(ii) If mrδ

τ ∈ La(Ω) and m+
r 6≡ 0 (r = p, q), where a, r and τ satisfy one of the

conditions (H1), (H2), (H3) or (H4), then the functional B are also well defined
and weakly continuous.

Proof: (i) The functional A is well defined. indeed, since Ω bounded and q < p,
we have W 1,p

0 (Ω) ⊂ W 1,q
0 (Ω). Then for all u ∈ W 1,p

0 (Ω), 1
p

∫

Ω |∇u|pdx < ∞ and
1
q

∫

Ω
|∇u|qdx < ∞. It follows that A(u) < ∞. It is clear that A is sequently weakly

lower semi-continuous.
(ii) The functional B is also well defined. Indeed, for u ∈ W 1,p

0 (Ω), by Hölder’s
inequality with 1

a + 1
b + r−1

r = 1, where r = p, q and b = b(r) = ar
a−r if a < ∞ and

b = b(r) = r if a = ∞, we obtain

1

r

∫

Ω

mr(x)|u|
rdx ≤

1

r

∫

Ω

mrδ
τ |u|

δτ
|u|r−1dx

≤
1

r
‖mrδ

τ‖a

∥

∥

∥

u

δτ

∥

∥

∥

b
‖|u|r−1‖ r

r−1
.

Under assumption (H1) and Lemma 2.2, we have
∥

∥

∥

u

δτ

∥

∥

∥

b
‖ ≤ C‖∇u‖τb < ∞, because τb ≤ r.

Condition (H2) and Lemma 2.2 imply
∥

∥

∥

u

δτ

∥

∥

∥

b
‖ ≤ C‖∇u‖ bN

N+b(1−τ)
< ∞, because bN < r(N + b(1− τ ).

By virtue Lemma 2.2 and (H3) or (H4),
∥

∥

∥

u

δτ

∥

∥

∥

b
‖ ≤ C‖∇u‖r < ∞.

Finally, in each case B(u) < ∞ and C = C(r,N, a, τ ) > 0 is a constant that may
differ in each case except if a = ∞, C = C(N, r) > 0.
Let us now show that B is weakly continuous. If un → u weakly in W 1,p

0 (Ω), up to a
subsequence, un → u strongly in Lr(Ω) and |un|

r−1 → |u|r−1 strongly in Lr/r−1(Ω)
with r = p, q, because ‖∇un‖p is bounded and the embedding W 1,p

0 (Ω) ⊂ Lr(Ω) is
compact. Hence by Hölder’s inequality, we have

|B(un)−B(u)| ≤
1

p

∣

∣

∣

∣

∫

Ω

mp(x)(|un|
p − |u|p)dx

∣

∣

∣

∣

+
1

q

∣

∣

∣

∣

∫

Ω

mq(x)(|un|
q − |u|q)dx

∣

∣

∣

∣

≤ Cp‖mpδ
τ‖a

∥

∥

∥

∥

|un|+ |u|

δτ

∥

∥

∥

∥

b(p)

∥

∥|un|
p−1 − |u|p−1

∥

∥

p/p−1

+ Cq‖mqδ
τ‖a

∥

∥

∥

∥

|un|+ |u|

δτ

∥

∥

∥

∥

b(q)

∥

∥|un|
q−1 − |u|q−1

∥

∥

q/q−1

→ 0.
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because
∥

∥|un|
r−1 − |u|r−1

∥

∥

r/r−1
→ 0 and under (H1), (H2), (H3) or (H4) the norms

‖mrδ
τ‖a and

∥

∥

∥

|un|+|u|
δτ

∥

∥

∥

b(r)
are bounded. The constant C(r) = C/r > 0, where C

comes from the inequality |αr − βr| ≤ C(α+ β)|αr−1 − βr−1| for positive numbers
α and β. To be precise, C = 1 if r ≥ 2 and C > r/(r − 1) if 1 < r < 2. Thus B is
weakly continuous. ✷

Define now the Rayleigh quotient

λ∗ = inf

{

A(u)

B(u)
;u ∈ W 1,p

0 (Ω), B(u) > 0

}

. (3.3)

Proposition 3.3. One assumes the same conditions as for Theorem 2.5.
If λ1(p,mp) 6= λ1(q,mq) or φ1(p,mp) 6= kφ1(q,mq), for every k > 0. Then the
infimum in 3.3 is not attained.

For the proof of Proposition 3.3, we will need to use the following lemma.

Lemma 3.4. The infimum in 3.3 verifies

λ∗ = min{λ1(p,mp), λ1(q,mq)}

Proof: For sufficiently large k > 0, using (3.1) et (3.2), we have

B(kφ1(p,mp)) = kq
(

kp−q +
1

q

∫

Ω

mq(x)φ
q
1(p,mp)dx

)

> 0.

and

A(kφ1(p,mp)) = kp
(

λ1(p,mp) +
1

q
kq−p

∫

Ω

|∇φ1(p,mp)|
qdx

)

.

By (3.3), we find

λ∗ ≤
A(kφ1(p,mp))

B(kφ1(p,mp))

=
λ1(p,mp) +

1
q k

q−p
∫

Ω
|∇φ1(p,mp)|

qdx

1 + 1
qk

q−p
∫

Ω
mq(x)φ

q
1(p,mp)dx

→ λ1(p,mp) as k → +∞, because q < p.

It follows that λ∗ ≤ λ1(p,mp). On the other hand, we also have

λ∗ ≤
A(kφ1(q,mq))

B(kφ1(q,mq))

=
λ1(q,mq) +

1
pk

p−q
∫

Ω |∇φ1(q,mq)|
pdx

1 + 1
pk

p−q
∫

Ω mp(x)φ
p
1(q,mq)dx

→ λ1(q,mq) as k → 0+, because q < p.
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Thus, we obtain λ∗ ≤ λ1(q,mq), which implies that

λ∗ ≤ min{λ1(p,mp), λ1(q,mq)}

Conversely, suppose by contradiction that λ∗ < min{λ1(p,mp), λ1(q,mq)}. Then,

by (3.3), there exists u ∈ W 1,p
0 (Ω) such that B(u) > 0 and

A(u)

B(u)
< min{λ1(p,mp), λ1(q,mq)}.

We distinguish three cases.
Case (i): Suppose that

∫

Ω
mp|u|

pdx > 0 and
∫

Ω
mq|u|

qdx ≤ 0. There hold pB(u) ≤
∫

Ω mp|u|
pdx and pA(u) ≥ ‖∇u‖pp. Using the definition of λ1(p,mp), we arrive at

the contradiction.

min{λ1(p,mp), λ1(q,mq)} >
A(u)

B(u)
≥

‖∇u‖pp
∫

Ωmp|u|pdx
≥ λ1(p,mp). (3.4)

Case (ii): Suppose that
∫

Ω mp|u|
pdx ≤ 0 and

∫

Ω mq|u|
qdx > 0. Using the defini-

tion of λ1(q,mq), we also arrive at contradiction

min{λ1(p,mp), λ1(q,mq)} >
A(u)

B(u)
≥

‖∇u‖qq
∫

Ω
mq|u|qdx

≥ λ1(q,mq). (3.5)

Case (iii): Suppose now that
∫

Ω
mp|u|

pdx > 0 and
∫

Ω
mq|u|

qdx > 0. It follows
from the definition of λ1(r,mr), where r = p, q that

‖∇u‖rr ≥ λ1(r,mr)

∫

Ω

mr|u|
rdx.

Hence we get

A(u) ≥
λ1(p,mp)

p

∫

Ω

mp|u|
pdx+

λ1(q,mq)

q

∫

Ω

mq|u|
qdx

≥ min{λ1(p,mp), λ1(q,mq)}B(u).

(3.6)

Against the assumption in our reasoning by contradiction.
✷

Proof: [Proof of Proposition 3.3.] By contradiction, we suppose that there exists

u ∈ W 1,p
0 (Ω) such that B(u) > 0 and A(u)

B(u) = λ∗. Using Lemma 3.4, we give

A(u)

B(u)
= λ∗ = min{λ1(p,mp), λ1(q,mq)}. (3.7)

We argue by considering the three cases in the proof of Lemma 3.4.
Case (i): By (3.4), (3.7) and

∫

Ω
mq|u|

qdx ≤ 0, we have

λ∗ =
A(u)

B(u)
≥

‖∇u‖pp +
p
q ‖∇u‖qq

∫

Ω
mp|u|pdx

≥
‖∇u‖pp

∫

Ω
mp|u|pdx

≥ λ1(p,mp) ≥ λ∗.
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We deduce that

‖∇u‖pp = λ1(p,mp)

∫

Ω

mp|u|
pdx and ‖∇u‖q = 0.

This contradicts the fact that u 6= 0.
Case (ii): similarly, By (3.5), (3.7) and

∫

Ωmp|u|
pdx ≤ 0, we get

‖∇u‖qq = λ1(q,mq)

∫

Ω

mq|u|
qdx and ‖∇u‖p = 0.

Which contradicts u 6= 0.
Case (iii): In this case, using (3.6) and (3.7), we find

A(u) = λ∗B(u) =
λ1(p,mp)

p

∫

Ω

mp|u|
pdx+

λ1(q,mq)

q

∫

Ω

mq|u|
qdx.

It follows

[λ1(p,mp)− λ∗]

∫

Ω

mp|u|
pdx+ [λ1(q,mq)− λ∗]

∫

Ω

mq|u|
qdx = 0.

Since
∫

Ω mp|u|
pdx > 0,

∫

Ωmq|u|
qdx > 0 and λ∗ = min{λ1(p,mp), λ1(q,mq)}, we

have
λ∗ = λ1(p,mp) = λ1(q,mq).

We deduce that

‖∇u‖pp
∫

Ωmp|u|pdx
= λ1(p,mp) = λ1(q,mq) =

‖∇u‖qq
∫

Ωmq|u|qdx
.

Hence, the simplicity of eigenvalue λ1(r,mr) (for r = p, q), given by Theorem 2.5,
guarantees that u = tφ1(p,mp) = sφ1(q,mq) for some t 6= 0 and s 6= 0. The
hypothesis of proposition is thus contradicted. ✷

3.2. Non-existence results

This subsection studies a non-existence results for the problem (Pλ,1) , so for
the problem (Pλ,µ). This work is inspired from [15]. The following theorem is the
main result of this section.

Theorem 3.5. One assumes the same conditions as for Theorem 2.5.

1. If it holds 0 < λ < λ∗, then the problem (Pλ,1) has no non-trivial solutions.

2. Moreover, if one of the following conditions holds

(i) λ1(p,mp) 6= λ1(q,mq);

(ii) φ1(p,mp) 6= kφ1(q,mq), for every k > 0,

then the problem (Pλ,1), with λ = λ∗ has no non-trivial solutions.
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Remark 3.6. It is easy to see that if λ1(p,mp) = λ1(q,mq) and φ1(p,mp) =
kφ1(q,mq), for some k > 0, then φ1(p,mp) and φ1(q,mq) are positive solutions of
problem (Pλ,1), with λ = λ1(p,mp) = λ1(q,mq).

Proof: [Proof of Theorem 3.5.] Assume by contradiction that there exists a non-
trivial solution u of problem (Pλ,1). Then, for every s > 0, we have that v = su is
a non-trivial solution of problem (Pλ,sp−q) (see Remark 3.1). Choose sp−q = p/q
and then act with su as test function on the problem (Pλ,sp−q ). We arrive at

0 < pA(su) = pλB(su). (3.8)

From the estimate (3.8) and according to Lemma 3.4, we obtain

λ =
A(su)

B(su)
≥ λ∗ = min{λ1(p,mp), λ1(q,mq)}.

This contradiction yields the first assertion of the theorem.
The second part of the Theorem 3.5 follows by Proposition 3.3. ✷

4. Existence results

4.1. Non-resonant cases

The following theorem is our main existence result for problem (Pλ,1) (or (Pλ,µ))
in the non-resonant cases. This result prove that there exists an interval of positive
eigenvalues for the problem (Pλ,1) (or (Pλ,µ), with µ > 0).

Theorem 4.1. In addition to the hypotheses of Theorem 2.5 one supposes that
λ1(p,mp) 6= λ1(q,mq). If

min{λ1(p,mp), λ1(q,mq)} < λ < max{λ1(p,mp), λ1(q,mq)},

then the problem (Pλ,1) has at least one positive solution.

Remark 4.2. The proof of Theorem 4.1 reduces to provide a non-trivial critical
point of the functional Iλ,mp,mq

defined for all u ∈ W 1,p
0 (Ω) by

Iλ,mp,mq
(u) := A(u)− λB(u+),

where u+ = max{u, 0} and A, B are the functionals defined by (3.1) and (3.2).
This non-trivial critical point u of Iλ,mp,mq

is a non-negative solution of the problem
(Pλ,1). We can check that u ∈ L∞(Ω) (see Remark 1.7 in [14]). Then the Harnack
inequality of [20] can be applied to ensure positiveness of u.

The argument will be separately developed in two cases:
(a) λ1(q,mq) < λ < λ1(p,mp).
(b)λ1(p,mp) < λ < λ1(q,mq).
In case (a), we apply the minimum principle and in case (b), we use the mountain
pass theorem.
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Proof of case (a). By Proposition 3.2, A is sequently weakly lower semi-
continuous and B is weakly continuous. It follows that Iλ,mp,mq

is sequently weakly
lower semi-continuous. It is remains to show that Iλ,mp,mq

is coercive and bounded
from below.
We distinguish two cases:
(i) For u ∈ W 1,p

0 (Ω) such that
∫

Ω
mp(u

+)pdx ≤ 0. A calculation similar to that in
the proof of Proposition 3.2 for r = q gives

Iλ,mp,mq
(u) ≥

1

p
‖∇u‖pp −

λ

q
‖mqδ

τ‖a

∥

∥

∥

∥

u+

δτ

∥

∥

∥

∥

b(q)

∥

∥(u+)q−1
∥

∥

q/q−1

≥
1

p
‖∇u‖pp −

Cλ

q
‖mqδ

τ‖a‖∇u‖q‖u‖
q−1
q

≥
1

p
‖∇u‖pp −

CC′λ

q
‖mqδ

τ‖a‖∇u‖qq

≥
1

p
‖∇u‖pp −

CC′C′′λ

q
‖mqδ

τ‖a‖∇u‖qp,

(4.1)

where C,C′, C′′ > 0 are the constants given respectively by the Hardy-Sobolev
inequality (see Lemma 2.2), the compact embedding W 1,q

0 (Ω) ⊂ Lq(Ω) and the
continuous embedding W 1,p

0 (Ω) ⊂ W 1,q
0 (Ω).

(ii) For u ∈ W 1,p
0 (Ω) such that

∫

Ωmp(u
+)pdx > 0. Fix ǫ > 0 such that

(1 − ǫ)λ1(p,mp) > λ, (4.2)

which is possible due to the assumption in case (a). By the definition of λ1(p,mp)
we have

‖∇u+‖pp ≥ λ1(p,mp)

∫

Ω

mp(u
+)pdx.

Then taking into account (4.2), we derive

Iλ,mp,mq
(u) ≥

ǫ

p
‖∇u‖pp +

(1− ǫ)λ1(p,mp)− λ

p

∫

Ω

mp(u
+)pdx

−
Cλ

q
‖mqδ

τ‖a‖∇u‖q‖u‖
q−1
q

≥
ǫ

p
‖∇u‖pp −

CC′C′′λ

q
‖mqδ

τ‖a‖∇u‖qp.

(4.3)

Since q < p, it follows from (4.1) and (4.3) that the functional Iλ,mp,mq
is coercive

and bounded from below. Consequently, by minimum principle, there exists a
global minimizer u0 of Iλ,mp,mq

. Finally, u0 6= 0, indeed it suffices to prove that
Iλ,mp,mq

(u0) = minW 1,p
0 (Ω) Iλ,mp,mq

< 0. For sufficiently small k > 0, we have

Iλ,mp,mq
(kφ1(q,mq)) = kq

(

kp−q

p
‖∇φ1(q,mq)‖

p
p −

λkp−q

p

∫

Ω

mpφ
p
1(q,mp)dx

+
λ1(q,mq)− λ

q

)

.
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Then Iλ,mp,mq
(kφ1(q,mq)) < 0, because λ1(q,mq) < λ, which completes the

proof of case (a).

Proof of case (b). We organize the proof of this case in several lemmas. In
the sequel, we design by o(1) a quantity tending to 0 as n → ∞.

Lemma 4.3. Suppose that mrδ
τ ∈ La(Ω) and m+

r 6≡ 0 (r = p, q), where a, r and
τ satisfy one of the conditions (H1), (H2), (H3) or (H4). In addition, we assume

that mr ∈ L1(Ω) for r > N or mr ∈ L
N/p
ǫ(ρ) (Ω) for 1 < r ≤ N . If λ 6= λ1(p,mp),

then the functional Iλ,mp,mq
satisfies the Palais-Smale condition on W 1,p

0 (Ω).

Proof: Let (un) ⊂ W 1,p
0 (Ω) be a sequence such that

Iλ,mp,mq
(un) → c for c ∈ R and I ′λ,mp,mq

(un) → 0 in (W 1,p
0 (Ω))∗ as n → ∞.

Let us first show that the sequence un is bounded. It is sufficient only to prove the
boundedness of ‖un‖p because

‖∇un‖
p
p ≤ pc+ o(1) + Cp‖∇un‖p‖un‖

p−1
p +

pαβCq

q
‖∇un‖p‖un‖

q−1
p , (4.4)

where α, β and C are respectively the constants in inequalities ‖u‖q ≤ α‖u‖p,
‖∇u‖q ≤ β‖∇u‖p(since Ω bounded and q < p) and

∥

∥

u
δτ

∥

∥

b(r)
≤ C‖∇u‖r (in

each case (H1), (H2), (H3) or (H4), see the proof of Proposition 3.2) and Cr =
λC‖mrδ

τ‖a (r = p, q). Suppose by contradiction that ‖un‖p → ∞ and let vn :=
un

‖un‖p
. The sequence vn is bounded in W 1,p

0 (Ω). Indeed, dividing (4.4) by ‖un‖
p
p,

we have

‖∇vn‖
p
p ≤ o(1) + Cp‖∇vn‖p +

pαβ

q‖un‖
p−q
p

Cq‖∇vn‖p

= o(1) + (Cp + o(1))‖∇vn‖p.

(4.5)

Since p > 1, the inequality (4.5) implies the boundedness of vn in W 1,p
0 (Ω). For a

subsequence, vn → v weakly in W 1,p
0 (Ω). By the compact embedding W 1,p

0 (Ω) ⊂
Lr(Ω) (r = p, q), we have vn → v strongly in Lr(Ω) (r = p, q). First we, observe
that v− ≡ 0 in Ω. In fact, acting with −u−

n as test function, we have

o(1)‖∇(u−
n )‖p = 〈I ′λ,mp,mq

(un),−u−
n 〉 = ‖∇(u−

n )‖
p
p + ‖∇(u−

n )‖
q
q ≥ ‖∇(u−

n )‖
p
p.
(4.6)

Because p > 1, the inequality (4.6) guarantees the boundedness of ‖∇(u−
n )‖p and

so ‖∇v−n ‖p = ‖∇(u−
n )‖p/‖un‖p → 0. Thus v− ≡ 0 holds, hence v ≥ 0 in Ω.
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Now, by taking (vn − v)/‖un‖
p−1
p as test function, we have

o(1) =

〈

I ′λ,mp,mq
(un),

vn − v

‖un‖
p−1
p

〉

=

∫

Ω

|∇vn|
p−2∇vn∇(vn − v)dx +

1

‖un‖
p−q
p

∫

Ω

|∇vn|
q−2∇vn∇(vn − v)dx

− λ

∫

Ω

mp|vn|
p−2vn(vn − v)dx −

λ

‖un‖
p−q
p

∫

Ω

mq|vn|
q−2vn(vn − v)dx

=

∫

Ω

|∇vn|
p−2∇vn∇(vn − v)dx + o(1),

(4.7)
because q < p, ‖un‖p → +∞, vn is bounded in W 1,p

0 (Ω) and converges to v

strongly in Lr(Ω) (r=p,q). Thus by (4.7) and (S+) property of (−∆p) on W 1,p
0 (Ω),

we deduce that vn → v strongly in W 1,p
0 (Ω). For any ϕ ∈ W 1,p

0 (Ω), by taking
ϕ/‖un‖

p−1
p as test function, we obtain

o(1) =

〈

I ′λ,mp,mq
(un),

ϕ

‖un‖
p−1
p

〉

=

∫

Ω

|∇vn|
p−2∇vn∇ϕdx+

1

‖un‖
p−q
p

∫

Ω

|∇vn|
q−2∇vn∇ϕdx

− λ

∫

Ω

mp|vn|
p−2vnϕdx −

λ

‖un‖
p−q
p

∫

Ω

mq|vn|
q−2vnϕdx.

(4.8)

Passing to the limit in (4.8), we see that v is a non-negative and non-trivial solution
of problem (Pλ,mp

) (note v ≥ 0 and ‖∇v‖p = 1). According to the Harnack
inequality (see Remark 1.7 in [14]), we have v > 0 in Ω. This implies that λ =
λ1(p,mp) because any positive eigenvalue other than λ1(p,mp) has no positive
eigenfunctions (see Theorem 2.5). Therefore, we obtain a contradiction since we
assumed λ 6= λ1(p,mp). Hence un is bounded in W 1,p

0 (Ω). For a subsequence,

un → u weakly in W 1,p
0 (Ω) and un → u strongly in Lr(Ω) (r = p, q).

We claim now that un → u strongly in W 1,p
0 (Ω). It suffices to prove that

‖∇un‖p → ‖∇u‖p, because W 1,p
0 (Ω) is uniformly convex. It is clear that

o(1) =〈I ′λ,mp,mq
(un)− I ′λ,mp,mq

(u), un − u〉

=

∫

Ω

(|∇un|
p−2∇un − |∇u|p−2∇u)∇(un − u)dx

+

∫

Ω

(|∇un|
q−2∇un − |∇u|q−2∇u)∇(un − u)dx+ o(1).

(4.9)
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Using Hölder inequality and for r = p, q, we have
∫

Ω

(|∇un|
r−2∇un − |∇u|r−2∇u)∇(un − u)dx

=

∫

Ω

|∇un|
rdx+

∫

Ω

|∇u|rdx−

∫

Ω

|∇un|
r−2∇un∇udx−

∫

Ω

|∇u|r−2∇u∇undx

≥

∫

Ω

|∇un|
rdx+

∫

Ω

|∇u|rdx−

(
∫

Ω

|∇un|
rdx

)(r−1)/r (∫

Ω

|∇u|rdx

)1/r

−

(
∫

Ω

|∇un|
rdx

)1/r (∫

Ω

|∇u|rdx

)(r−1)/r

= (‖∇un‖
r−1
r − ‖∇u‖r−1

r )(‖∇un‖r − ‖∇u‖r)

≥ 0.
(4.10)

Moreover, (4.9) and (4.10) imply that ‖∇vn‖r → ‖∇v‖r (for r = p, q). Thus
un → u strongly in W 1,p

0 (Ω).
✷

Lemma 4.4. Suppose mrδ
τ ∈ La(Ω) and m+

r 6≡ 0 (r = p, q), where a, r and τ
satisfy one of the conditions (H1), (H2), (H3) or (H4) If λ < λ1(q,mq), then there
exist α > 0 and β > 0 such that

Iλ,mp,mq
(u) ≥ α whenever ‖u‖q = β. (4.11)

To prove the Lemma 4.4, we need the following lemma.

Lemma 4.5. Suppose τ , a and p as in Lemma 4.4 and let b be such that b = ap
a−p if

a < ∞ and b = p if a = ∞. Set X(d) := {u ∈ W 1,p
0 (Ω); ‖∇u‖pp ≤ d‖ u

δτ ‖b‖u‖
p−1
p },

for d > 0. Then there exists α(d) > 0 such that ‖∇u‖p ≤ α(d)‖u‖q, for all
u ∈ X(d).

Remark 4.6. Conditions (H4) implies that the Lemma 4.5 includes the Lemma
11 of the previously cited paper [15].

Proof: Suppose, by contradiction, that

(∀n ∈ N
∗) (∃un ∈ X(d)) :

1

n
‖∇un‖p > ‖un‖q. (4.12)

Because of ‖∇un‖p 6= 0, we set vn := un

‖∇un‖p
. Thus, by (4.12), vn → 0 strongly

in Lq(Ω). Since ‖∇vn‖p = 1, the sequence vn is bounded in W 1,p
0 (Ω). For a

subsequence, vn → v weakly in W 1,p
0 (Ω). By the compact embedding W 1,p

0 (Ω) ⊂
Lr(Ω) (r = p, q), we have vn → v strongly in Lr(Ω) (r = p, q). Hence, ‖vn‖q → ‖v‖q
and ‖vn‖p → ‖v‖q. By uniqueness of limit, we deduce that ‖v‖r = 0. It follows
that v = 0. As un ∈ X(d), we obtain

1

d
≤

‖un

δτ ‖b

‖∇un‖p
‖vn‖

p−1
p . (4.13)
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By Lemma 2.2 and under one of the properties (H1), (H2), (H3) or (H4), the

sequence
‖un

δτ
‖b

‖∇un‖p
is bounded (see the proof of Proposition 3.2). Passing to the limit

in (4.13), we get 1
d ≤ 0. This contradiction completes the proof of Lemma 4.5. ✷

Proof: [Proof of Lemma 4.4.] According to Lemma 4.5, choose

d > max{1, λ‖mpδ
τ‖a, Cλ‖mpδ

τ‖a}, (4.14)

where C > 0 is a constant that may differ in each case (H1), (H2), (H3) or (H4)
(see the proof of Proposition 3.2).
For any u ∈ X(d) satisfying

∫

Ω
mq(u

+)qdx ≤ 0, there exists α(d) > 0 such that
‖∇u‖p ≤ α(d)‖u‖q and we have

Iλ,mp,mq
(u) ≥

1− d

p
‖∇u‖pp +

λ1(q, 1)

q
‖u‖qq +

d

p
‖∇u‖pp −

Cλ‖mpδ
τ‖a

p
‖∇u‖pp

≥
1− d

p
‖∇u‖pp +

λ1(q, 1)

q
‖u‖qq +

1

p
‖∇u‖pp (d− Cλ‖mpδ

τ‖a)

≥
(1 − d)[α(d)]p

p
‖u‖pq +

λ1(q, 1)

q
‖u‖qq.

(4.15)
For any u 6∈ X(d) satisfying

∫

Ω
mq(u

+)qdx ≤ 0, we have ‖∇u‖pp > d‖ u
δτ ‖b‖u‖

p−1
p .

It follows that

Iλ,mp,mq
(u) ≥

(

d− λ‖mpδ
τ‖a

p

)

∥

∥

∥

u

δτ

∥

∥

∥

b
‖u‖p−1

p +
λ1(q, 1)

q
‖u‖qq

≥
λ1(q, 1)

q
‖u‖qq.

(4.16)

If u ∈ W 1,p
0 (Ω) satisfying

∫

Ωmq(u
+)qdx > 0, by the definition of λ1(q,mq), we get

‖∇u‖qq ≥ ‖∇u+‖qq ≥ λ1(q,mq)

∫

Ω

mq(u
+)qdx. (4.17)

Our assumption in λ enables us to fix 0 < ǫ < 1 with

(1− ǫ)λ1(q,mq) > λ. (4.18)

If in addition u 6∈ X(d), then due to (4.14), (4.17) and (4.18) we have

Iλ,mp,mq
(u) ≥

(

d− λ‖mpδ
τ‖a

p

)

∥

∥

∥

u

δτ

∥

∥

∥

b
‖u‖p−1

p

+
ǫ

q
‖∇u‖qq +

1

q
[(1 − ǫ)λ1(q,mq)− λ]

∫

Ω

mq(u
+)qdx

≥
λ1(q, 1)

q
‖u‖qq. (4.19)
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Finally, if u ∈ X(d) and
∫

Ωmq(u
+)qdx > 0, then (4.14), (4.17) and (4.18) imply

Iλ,mp,mq
(u) ≥

1− d

p
‖∇u‖pp +

ǫ

q
‖∇u‖qq +

1

q
[(1− ǫ)λ1(q,mq)− λ]

∫

Ω

mq(u
+)qdx

+
d

p
‖∇u‖pp −

λ‖mpδ
τ‖a

p

∥

∥

∥

u

δτ

∥

∥

∥

b
‖u‖p−1

p

≥
(1− d)[α(p)]p

p
‖u‖pq +

ǫλ1(q, 1)

q
‖u‖qq +

d− Cλ‖mpδ
τ‖a

p
‖∇u‖pp

≥
(1− d)[α(p)]p

p
‖u‖pq +

ǫλ1(q, 1)

q
‖u‖qq.

(4.20)
Using that q < p, the claim (4.11) in Lemma 4.4 follows from (4.15), (4.16), (4.19)
and (4.20).

✷

Lemma 4.7. Suppose mrδ
τ ∈ La(Ω) and m+

r 6≡ 0 (r = p, q), where a, r and τ
satisfy one of the conditions (H1), (H2), (H3) or (H4). If λ1(p,mp) < λ, then
there is R > 0 such that

‖Rφ1(p,mp)‖q > β and Iλ,mp,mq
(Rφ1(p,mp)) < 0, (4.21)

where β > 0 is the constant in (4.11).

Proof: For sufficiently large R > 0, taking into account that q < p and λ1(p,mp) <
λ, we have

Iλ,mp,mq
(Rφ1(p,mp))

Rβ
=

λ1(p,mp)− λ

p

+
1

qRp−q

(

‖φ1(p,mp)‖
q
q −

∫

Ω

mqφ
q
1(p,mp)dx

)

< 0.

✷

Recalling that the functional Iλ,mp,mq
satisfies the Palais-Smale condition by

virtue of Lemma 4.3, the properties (4.11) of Lemma 4.4 and (4.21) of Lemma
4.7 allow us to apply the mountain pass theorem, which guarantees the exis-
tence of a critical value c ≥ α of Iλ,mp,mq

, with α > 0 in (4.11), namely c :=

inf
γ∈Σ

max
t∈[0,1]

Iλ,mp,mq
(γ(t)), where Σ := {γ ∈ C([0, 1],W 1,p

0 (Ω)); γ(0) = 0, γ(1) =

Rφ1(p,mp)}. This completes the proof of Theorem 4.1.

4.2. Resonant cases

In this section, we study the existence result for problem (Pλ,1) (or (Pλ,µ)) in
the resonant cases. The following theorem is our main result in this section.
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Theorem 4.8. One assumes the same conditions as for Theorem 2.5. If one of
the following assertions holds

(i) λ = λ1(p,mp) > λ1(q,mq) and
∫

Ω |∇φ1(p,mp)|
qdx−λ

∫

Ω mq|φ1(p,mp)|
qdx >

0;

(ii) λ = λ1(q,mq) > λ1(p,mp) and
∫

Ω |∇φ1(q,mq)|
pdx−λ

∫

Ω mp|φ1(q,mq)|
pdx >

0,

then the problem (Pλ,1) (or (Pλ,µ)) has at least one positive solution.

Proof: Proof of case (i): Since m+
p 6≡ 0, the Lebesgue mesure of {x ∈ Ω;mp(x) >

0} is positive. Thus there exists an n0 ∈ N such that (mp− 1/n0) 6≡ 0. For n ≥ n0,

we define, as in [15], the functional In on W 1,p
0 (Ω) by

In(u) = Iλ,mp,mq
(u) +

λ

pn
‖u+‖pp = Iλ,mp−1/n,mq

(u).

Using the strict monotonicity of the first eigenvalue of problem (Pλ,mp
) (see [14]),

we obtain λ1(p,mp − 1/n) > λ1(p,mp) = λ. Thus we are able to apply Theorem
3.5 obtaining a positive solution un of the problem

{

−△pu−△qu = λ[(mp(x) − 1/n)|u|p−2u+mq(x)|u|
q−2u] in Ω,

u = 0 on ∂Ω.

We may assume that un is a global minimizer of In and In(un) < 0 (see the case
(a) in the proof of Theorem 3.5). In addition, observing that In ≤ In0 provided
n ≥ n0, we infer that for all n ≥ n0,

In(un) = min
W 1,p

0 (Ω)
In ≤ In(un0) ≤ In0(un0) < 0.

We claim that if un is bounded in W 1,p
0 (Ω), then un is a bounded Palais-Smale

sequence of Iλ,mp,mq
. Indeed, there exists c ∈ R such that Iλ,mp,mq

(un) → c
because In(un) is a convergent sequence and ‖∇un‖p is bounded. On the other
hand, since I ′n(un) = 0, we have

‖I ′λ,mp,mq
(un)‖(W 1,p

0 (Ω))∗ = ‖I ′λ,mp,mq
(un)− I ′n(un)‖(W 1,p

0 (Ω))∗

≤
λ[λ1(p, 1)]

−1/p

n
‖∇(un)

+‖p−1
p .

As ‖∇un‖p is bounded, we obtain ‖I ′λ(un‖(W 1,p
0 (Ω))∗ → 0. This completes the

proof of our claim.
We prove now the boundedness of un in W 1,p

0 (Ω) by way of contradiction. Suppose
that ‖∇un‖p → ∞ and let vn := un/‖∇un‖p. For a subsequence, vn → v weakly

in W 1,p
0 (Ω) and vn → v strongly in Lp(Ω). Following the same steps of the proof of



164 Abdellah Zerouali and Belhadj Karim

Lemma 4.3, we show that v is a positive solution of problem (Pλ,mp
). This entails

v is a positive eigenfunction corresponding to λ1(p,mp). Thus the simplicity of
λ1(p,mp) implies that v = φ1(p,mp). The facts that In(un) < 0 for all n ≥ n0 and
un is a critical point of In result in

0 >
In(un)

‖∇un‖
q
p
=

(

1

q
−

1

p

)(

‖∇vn‖
q
q − λ

∫

Ω

mqv
q
ndx

)

.

Passing to the limit, we obtain
∫

Ω
|∇φ1(p,mp)|

qdx − λ
∫

Ω
mq|φ1(p,mp)|

qdx ≤ 0
which contradicts second point of assertion (i). Thus un is a bounded Palais-Smale
sequence of Iλ,mp,mq

. Since λ 6= λ1(p,mp), Iλ,mp,mq
satisfies Pais-Smale condition

(see Lemma 4.3). It follows that un has a subsequence converging to some critical
point u0 of Iλ,mp,mq

.
We note that u0 6= 0 because Iλ,mp,mq

(u0) = lim
n

In(un) ≤ In0(u0) < 0. Therefore

u0 is a positive solution of problem (Pλ,1) (see Remark 4.2).
Proof of case (ii): As in the proof of case (i), we can choose n0 ∈ N such that

(mq − 1/n0) 6= 0. For n ≥ n0, we define the functional Jn on W 1,p
0 (Ω) by

Jn(u) = Iλ,mp,mq
(u) +

λ

pn
‖u+‖qq = Iλ,mp,mq−1/n(u).

Using the strict monotonicity of the first eigenvalue of problem (Pλ,mq
), we obtain

λ1(q,mq − 1/n) > λ1(q,mq) = λ, for any n ≥ n0. Thus we may apply Theorem
3.5 obtaining a positive solution un of the problem

{

−△pu−△qu = λ[mp(x)|u|
p−2u+ (mq(x)− 1/n)|u|q−2u] in Ω,

u = 0 on ∂Ω.

Following the pattern of the proof of case (i), this time proceeding as in case (b)
in the proof of Theorem 3.5, we deduce that Jn(un) > 0 for all n ≥ n0. For
the boundedness of un in W 1,p

0 (Ω), proceeding as in the proof of case (i) and the
contradiction follows from the condition λ = λ1(q,mq) > λ1(p,mp). The bounded
sequence un is a Palais-Smale sequence for the functional Iλ,mp,mq

as can be seen
from the estimate

‖I ′λ,mp,mq
(un)‖(W 1,p

0 (Ω))∗ = ‖I ′λ,mp,mq
(un)− J ′

n(un)‖(W 1,p
0 (Ω))∗ ≤

c

n
‖un‖

q−1
q ,

where c is a positive constant independent of n. It follows that un has a subsequence
converging to some critical point u0 of Iλ,mp,mq

. In order to complete the proof,
due to the Harnack inequality, it suffices to justify that u0 6= 0. We assume, by
contradiction, that un → 0 strongly in W 1,p

0 (Ω). Set vn := un

‖∇un‖p
. Then, for a

subsequence, vn → v weakly in W 1,p
0 (Ω), weakly in W 1,q

0 (Ω) and strongly in Lp(Ω).
It is easy to see that v ≥ 0 in Ω. Using vn−v

‖∇un‖
q−1
p

as test function, we obtain

0 =

〈

J ′
n(un),

vn − v

‖un‖q−1

〉

=

∫

Ω

|∇vn|
q−2∇vn∇(vn − v)dx + o(1).
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By (S+) property for −∆q on W 1,q
0 (Ω), we have vn → v strongly in W 1,q

0 (Ω). We
claim that v 6= 0 in Ω. Using un as test function, we may write

0 = 〈J ′
n(un), un〉

= ‖∇un‖
p
p − λ

∫

Ω

mpu
p
ndx+ ‖∇un‖

q
q − λ

∫

Ω

(mq −
1

n
)uq

ndx

≥ ‖∇un‖
p
p − λ

∫

Ω

mpu
p
ndx,

(4.22)

because λ = λ1(q,mq) and by the definition of λ1(q,mq), we have ‖∇un‖
q
q −

λ
∫

Ω
mqu

q
ndx ≥ 0. Thus according (H1), (H2), (H3) or (H4), we have ‖∇u‖pp ≤

λ‖mpδ
τ‖a‖

u
δτ ‖b‖u‖

p−1
p , where τ , a and b as in Lemma 4.5. Whence un ∈ X(d)

with d = λ‖mpδ
τ‖a. Therefore, Lemma 4.5 guarantees the existence of a constant

α(d) > 0 such that

‖∇u‖p ≤ α(d)‖un‖q ≤ α(d)[λ1(q, 1)]
−1/q‖∇un‖q, for all n ≥ n0.

Consequently, recalling that vn → v strongly in W 1,q
0 (Ω), we have

‖∇v‖q = lim ‖∇vn‖q = lim
‖∇un‖q
‖∇un‖p

≥
1

α(d)[λ1(q, 1)]−1/q
> 0,

thus proving our claim.
For any ϕ ∈ W 1,p(Ω), by using ϕ

‖∇un‖
q−1
p

as test function we show, as in proof of

case (i), that v is a nonnegative nontrivial solution of (Pλ,mq
). The simplicity of

λ1(q,mq) guarantees that v = φ1(q,mq) is a positive eigenfunction corresponding
to λ1(q,mq).
Using that Jn(un) > 0 for all n ≥ n0 in conjunction with (4.22), we have

0 ≤
Jn(un)

‖∇un‖
p
p
=

(

1

p
−

1

q

)(

‖∇vn‖
p
p − λ

∫

Ω

mpv
p
ndx

)

.

Since q < p, it follows that

‖∇vn‖
p
p − λ

∫

Ω

mpv
p
ndx ≤ 0.

By passing to the limit inferior we obtain

‖∇φ1(q,mq)‖
p
p − λ

∫

Ω

mp[φ1(q,mq)]
pdx ≤ 0.

By this contradiction the proof of Theorem 4.8 is achieved.
✷
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