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Existence and non-existence of a positive solution for (p, ¢)-Laplacian
with singular weights

Abdellah Zerouali and Belhadj Karim

ABSTRACT: We use the Hardy-Sobolev inequality to study existence and non-
existence results for a positive solution of the quasilinear elliptic problem
— g — g = Al (@) [ul? =20 + pmg (@) ul9~ 2] in ©

driven by nonhomogeneous operator (p,q)-Laplacian with singular weights under
the Dirichlet boundary condition. We also prove that in the case where 1 > 0 and
with 1 < ¢ < p < oo the results are completely different from those for the usual
eigenvalue problem for the p-Laplacian with singular weight under the Dirichlet
boundary condition, which is retrieved when p = 0. Precisely, we show that when
1 > 0 there exists an interval of eigenvalues for our eigenvalue problem.
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1. Introduction

Consider the (p, ¢)-Laplacian eigenvalue problem

To find (u,\) € (WgP(Q)\{0}) xR such that
(Pau)q —Dpu—pulgu = Nmy(z)|ulP2u + pmg(z) |u|72u] in Q,
u = 0 on 0%

where €2 is a bounded domain in R with piecewise C' boundary 992, A, u € RT
and 1 < ¢ < p < co. For r = p,q, Nyu = div(|Vu|"~2Vu) indicate the r-Laplacian
and the weight m, may be unbounded and change sign. As in [14], we assume for
r = p,q that m,.0" € L*(Q) with §(z) = dist(x, Q) and m;” # 0, where a, r and
7 satisfy one of the following conditions:
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(H1): 09 is piecewise C1, 0 < 7 < 1, 77— <aanda< NZX’;T if N > 7r;

(H2): 09 is piecewise C1, 0 <7< 1,7 < % < a;
(H3): 09 is piecewise C!, 7 =1 and a = oc;
(H4): Q is any bounded domain, 7 =0 and a = cc.

The problem (P, ,,) comes, for example, from a general reaction diffusion system

uy = div(D(u)Vu) + c(z,u), (1.1)

where D(u) = (|Vu|P~2 + u|Vu|972). This system has a wide range of applications
in physics and related sciences like chemical reaction design [2], biophysics [8] and
plasma physics [18]. In such applications, the function u describes a concentration,
the first term on the right-hand side of (1.1) corresponds to the diffusion with a
diffusion coefficient D(u); whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the
reaction term c¢(x;u) has a polynomial form with respect to the concentration.
Our problem was addressed in [15] for domains with boundary C? and bounded
weights, when only the condition (H4) holds true. These work proved that in the
case where 1 > 0, there exists an interval of eigenvalues. The authors proved the
existence of positive solutions in resonant cases. A non-existence result is also given.
Here we will assume that the boundary 9€) is a piecewise C! and singular weights
m,. (r = p,q) which satisfy one of the conditions (H1), (H2), (H3) or (H4). Our
work represent developments of the study performed in [15] because we prove all
results of this paper by considering others conditions that represent the singularity
of the domain and the weights. Our main tool is the Hardy-Sobolev inequality, see
Lemma 2.2 in preliminary section.
Many authors have studied the nonhomogeneous operator (p, ¢)-Laplacian (see [12,
16,21,22]). However, there are few results one the eigenvalue problems for the (p, ¢)-
Laplacian. In [4,5], the authors established the existence of the principal eigenvalue
and of a continuous family of eigenvalues for problem

—Apu — Agu = Ag(@)|ulP~2u in RY.

where ¢ is a bounded positive weight. Eigenvalue problem for a (p,2)-Laplacian
was studied in [3]. The existence of non trivial solution for the following Dirichlet
equation is proved in [6]

—Apu — pAu = AMulP"2u+ g(u) in Q, u=0 on 99,

in the case where p > 2, g € C! and A € o(—4,), where o(—A,) is the spectrum
of (—A,). Under the Neumann boundary condition, [13] determined the set of
eigenvalues for the equation

—Apu — Au = Au in €,
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where p > 2. In [19], M. Tanaka has completely described the generalized eigen-
value A for which the following equation

— At — 1 AU = A |u|" "2 in Q, u = 0 on 9.

has a positive solution, where 1 < r # r* < oo and u > 0.
We recall that a value A € R is an eigenvalue of problem (P ,) if and only if

there exists u € W, P(Q2)\{0} such that
J Va2 s vl 9uT gz = [ [ mp@ ™2 + gz aftupds
Q Q

(1.2)
for all ¢ € W, *(Q). u is then called an eigenfunction of \.
Letting g — 07, our problem (Py ;) turns into the (p—1)-homogeneous problem
known as the usual weighted eigenvalue problem for the p-Laplacian with singular
weight m,,:

—Apu = Amy(x)|ulP2u in Q,
(PA,mp){ u = 0 on 9

Moreover, after multiplying our equation (P ,) by 1/u and then letting p — +oo,
we obtain the (¢ — 1)-homogeneous equation:

—DNqu = Amg(x)|u[T%u  in Q,
(Pxm,) { u = 0 on 99
Nonlinear eigenvalue problem (Pj ,,, ), where r = p, ¢ and with bounded weight
have been studied by several authors, for example (see [1,7,9,11,17,18]). These
works proved that there exists a first eigenvalue A1 (r, m,) > 0, where

1 1
A1(r,m,.) := inf {—/ |Vu|"da; u € Wy () and —/ my(x)|u|"dx = 1} , (1.3)
rJo T Jao

which is simple in the sense that two eigenfunctions corresponding to it are
proportional. Moreover, the corresponding first eigenfunction ¢,(r,m,) can be
assumed to be positive. It was also shown (see [1]) that A\ (r,m,) is simple and
isolated. Recently, the problem (P ,,.) with singular weight m, satisfying the
conditions (H1), (H2), (H3) or (H4), was studied in [14]. The authors use the
Hardy-Sobolev inequality to characterize the first eigenvalue. In some cases it
is shown that A;(r,m,) > 0 is positive simple, isolated and has a nonnegative
corresponding eigenfunction ¢, (r,m,) € L>(Q). Higher eigenvalues, in particular
the second one, are also determined.

The plan of this paper is the following. In Section 2, which has a preliminary
character, we collect some results concerning the first eigenvalue Ay (r, m,.) of prob-
lem (P, ), where r = p, ¢. In Section 3, we study Rayleigh quotient for our prob-
lem (P ;). In contrast to homogeneous case, we prove that if A\ (p, mp) # A1(q, mq)
or ¢, (p, mp) # ko, (q, mq) for every k > 0, then the infimum in Rayleigh quotient
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is not attained. We also show nonexistence results for positive solutions of the
eigenvalue problem (P ,) formulated as Theorem 3.5. Our existence results for
positive solutions of the eigenvalue problem (Pj ) are presented in Section 4. Af-
ter studying the non-resonant cases (Theorem 4.1) which prove that when p > 0
there exists an interval of positive eigenvalues for the problem (Pj ), we present
the resonant cases in Theorem 4.8.

2. Preliminaries

Throughout this paper € will be a bounded domain of RY with piecewise C*
boundary,
l1<g<p<ooandr=porq We will always assume for r = p, ¢ that m,.6” €
Le(Q) with §(z) = dist(z,09) and m;” # 0, where a, r and 7 satisfy one of the
conditions (H1), (H2), (H3) or (H4).

Remark 2.1. Condition (H4) implies m,.6" = m,_ € L>(Q), including results of
the previously cited paper [15]. Here 99 is piecewise C! except for (H4).

We will write [Jull, = ([, [u|"dz) Y7 for the L7 (Q)—norm and W, () will
denote the usual Sobolev space with usual norm ||Vu/.

In the sequel, we collects some results relative to the first eigenvalue Ay (r, m,.)
defined by (1.3) and its corresponding normalized eigenfunction ¢, (r,m,). The
following lemma concerns the Hardy-Sobolev inequality proved in [10], which char-
acterize the first eigenvalue A\ (r,m,) of problem (P, ). This inequality is our
main tool in this paper.

Lemma 2.2. [10] Let 0 < 7 < 1 and s such that 1 = 1 — 1T for 1 < N and
L—7 forr >N . If 00 is piecewise C', then H%T Le() < C||\Vullpry for all

u e Wy"(Q), where §(x) = dist(x,dQ) and C = C(N,r,7) > 0 is a constant. In
the case s =1 = p,q, no reqularity on OX) is needed.

We give now an example of the weight m,. such that m,.6" € L%(Q) with m;f # 0,
where a, 7 and r satisfying the condition (H2).

Example 2.3. The weight m,.(z) = §(z)™? = (1 — |z|)~” is admissible in the open
unit ball of RY (i.e. Q = B1(0)). For 1/2 < 3 <25/42,p=3/2, N=3,7=1/2
and a = 21/2, we have m, ¢ LY/"(Q) = L?(Q), but m,.0” € L*(Q) = L>'/2(Q).

To use Harnack inequality as in [14] and [20], we make now the following
definitions involving locally integrable weights. Let €(p) be a smooth function
defined for p > 0 such that

" e(p)
li =0 and ~Ldp < 2.1
pggf(p) an /O , <00 (2.1)
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for some px > 0. We denote by K, (p) an N-dimensional cube contained in
whose edges are of length p and are parallel to the coordinate axes. We define

Li(p)(ﬂ) = {uel'(Q): lull¢,e(p),0 < 00}, where

l[ull Lt(x., (p)n02)
Ulpepyo =  sup o xlel0) 2.2
Il ) £o€Q,p>0 €(P) 22)

Remark 2.4. The weight m, in Example 2.3 is such that m, € L?ZJ;(Q), but
m, & L¥(Q2) for s > N/rif 1 <r < N.

The following theorem guarantees the simplicity and isolation of Ai(r,m,.),
where » = p,q. This result is proved by M. Montenegro and S. Lorca in [14].
To ensure positiveness of ¢, (r,m,), the authors apply the Harnack inequality of
[20].

Theorem 2.5. [14] If one supposes OS) is piecewise C* and m,.8" € L*(Q) with
m; # 0, where a, T and v satisfy (H1), (H2), (H3) or (H}), then the number
A (r,my) s attained by some ¢, (r,m,) € WyP(), where we may assume that
d1(rymy) > 0 ace. in Q, ¢y(r,m,)T # 0. Moreover \i(r,m,) is positive and
isolated.

If in addition one assumes m,. € L*(Q) forr > N orm, € Li\(rg’(ﬂ) for1<r <N,
then the first eigenvalue A1(r,m,.) is simple and any positive eigenvalue other than

A1(r,my.) has no positive eigenfunctions.
3. Rayleigh quotient and non-existence results

3.1. Rayleigh quotient for the problem (P, ,)

This subsection concerns the Rayleigh quotient for our problem (Py ).

Remark 3.1. We start by pointing out to find a solution for the problem (P ,) is
equivalent to seek a solution in the case u = 1, that is to solve the problem (Pj 1).
Indeed, if u is a solution of (P 1), then multiplying equation (Py 1) by sP~! for
s > 0 we deduce that v = su is a solution for problem (P ,,—s-q).

Conversely, let u be a solution of problem (P ;). Then it follows that v = p!/7 Py
is a solution of (P 1).

We introduce now the functionals A4 and B on W, (Q) by

Au) :== l/ |Vu|Pdz + l/ |Vu|ldx (3.1)
bJa q.Ja
1 P 1 q
B(u) := = | mp()|ulPde+ = [ mg(z)|u|?de (3.2)
P Ja qJo

for all u € W, " ().
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Proposition 3.2. (i) The functional A is well defined and sequently weakly lower
semi-continuous.

(i) If m6" € L) and m} # 0 (r = p,q), where a, r and T satisfy one of the
conditions (H1), (H2), (H3) or (H4), then the functional B are also well defined
and weakly continuous.

Proof: (i) The functional A is well defined. indeed, since €2 bounded and ¢ < p,
we have Wy?(Q) € Wy(Q). Then for all u € Wy(Q), L [, [VulPde < oo and
% Jo IVu|%dz < oco. Tt follows that A(u) < co. It is clear that A is sequently weakly

lower semi-continuous.
(ii) The functional B is also well defined. Indeed, for u € W, (), by Holder’s

ar

inequality with % + % + ’“T;l =1, where r = p,q and b = b(r) = 2= if a < oo and
b=0b(r) =rif a = co, we obtain

1 1
—/mT($)|u|Tdac§ —/ |u||u|T Ydx
T Ja T Ja

1 _
< ~lmedTla [T [

5T b
Under assumption (H1) and Lemma 2.2, we have

u
Il
Condition (H2) and Lemma 2.2 imply

|5
By virtue Lemma 2.2 and (H3) or (H4),

Il

Finally, in each case B(u) < oo and C' = C(r,N,a,7) > 0 is a constant that may
differ in each case except if a = 0o, C = C(N,r) > 0.
Let us now show that B is weakly continuous. If u,, — u weakly in VVO1 P(Q), up to a
subsequence, u,, — u strongly in L"(Q) and |u,,|"~" — |u|"~! strongly in L™/"~1(Q)
with 7 = p, ¢, because ||V, |, is bounded and the embedding Wy ?(Q) C L"(Q) is
compact. Hence by Holder’s inequality, we have

| [ oot fupya

I < | Vull:» < oo, because 7b < r.

< 00, because bN < r(N +b(1 — 7).

I =Clivull o

,,-)

| < ClIVull, < oo.

Bun) = B < 2| [ (o)~ fupaa] +

ot + [ul S
< Cyllmyd” |l | =57 llen P~ = fal? ],
b(p)
[un| + |ul -1 -1
+ Callmadla | 225 el = Rl

— 0.
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T—lH

because ||[un|" ! = Jul »/r—1 — 0 and under (H1), (H2), (H3) or (H4) the norms

are bounded. The constant C(r) = C/r > 0, where C

|+
T
Ml

|[m-67]|a and

comes from the inequality [o” — 87| < C(a + B)|a” ! — 7!| for positive numbers
a and 8. To be precise, C =1if r >2and C > r/(r —1) if 1 <r < 2. Thus B is
weakly continuous. O

Define now the Rayleigh quotient

A* = inf {%;u e Wy P(Q), B(u) > o} : (3.3)

Proposition 3.3. One assumes the same conditions as for Theorem 2.5.

If Mi(p,my) # M(g.mq) or ¢1(p,my) # kdy(q, my), for every k > 0. Then the
infimum in 3.3 is not attained.

For the proof of Proposition 3.3, we will need to use the following lemma.

Lemma 3.4. The infimum in 3.3 verifies
A" = min{ i (p,mp), \1(q, mq) }

Proof: For sufficiently large k& > 0, using (3.1) et (3.2), we have

Bkoy(my)) = K0 (8774 % [ @6y o) >0

and
A(kgy(p,mp)) = kP (Al(p,mp) + ékzq_p/g Vo, (p, mp)|qu) )

By (3.3), we find

A< Ak, (p,my))
= B(k¢y(p,mp))
A1(p,my) + %kq_p Jo IV (p,my)|9da
1+ %kqu fQ mg(x)P](p, mp)dx
— A1 (p, mp) as k — 400, because ¢ < p.

It follows that A* < A;(p,m,). On the other hand, we also have

. _ Alkgy (g, myg))
)i AL LA EEA
~ B(k¢y(q,mq))
o Al(‘]a mq) + %kp—q fQ |v¢1(Qa mq)|pd$
1+ %krp_q Jo mp(2)8Y (q, mq)dx

— M(g,mg) as k — 07, because ¢ < p.
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Thus, we obtain \* < A1(g, my), which implies that
A" < min{)‘l (p’ mp)’ )‘1((15 mq)}
Conversely, suppose by contradiction that A* < min{\;(p, m;), A1(q,mq)}. Then,
by (3.3), there exists u € W, ?(Q) such that B(u) > 0 and
A(u)
B(u)

< min{As (p, mp), A(g,mq) }-

We distinguish three cases.
Case (i): Suppose that [, m,|u|Pdz > 0 and [, mg|u|?dz < 0. There hold pB(u) <
Jo mplulPdz and pA(u) > ||Vu|[h. Using the definition of \i(p,m,), we arrive at
the contradiction.

A(u) [ Vullb
B(u) = [, mp|ulPdz

min{ A1 (p, mp), Au(g, mg)} > > Ai(p, mp). (3-4)

Case (ii): Suppose that [, mplulPdz < 0 and [, mg|u|?dz > 0. Using the defini-
tion of A1(q, mg), we also arrive at contradiction

Au) V2 .
Blu) ~ Joymglulids — Mg, mq)- (3.5)

min{ Ay (p, m,), A1(q, mq)} >

Case (iii): Suppose now that [, m,|ufPdz > 0 and [, mg|u|?dz > 0. It follows
from the definition of A\ (r,m,), where r = p, ¢ that

IVull;. > Al(r,mr)/ my|u|"dx.
Q
Hence we get
A A
A(u) > M/ mplulPdz + M/ mglul?dz
p Q q Q

> min{ i (p,m;), M (g, mq) } B(u).

Against the assumption in our reasoning by contradiction.

(3.6)

d

Proof: [Proof of Proposition 3.3.] By contradiction, we suppose that there exists

u € WyP(Q) such that B(u) > 0 and ggzg = \*. Using Lemma 3.4, we give

A(u)
B(u)

= X" = min{\(p,mp), \1(g, mq)}. (3.7)

We argue by considering the three cases in the proof of Lemma 3.4.
Case (i): By (3.4), (3.7) and [, mq|u|%dz < 0, we have

IVullp + 2Vl [Vullp

fQ mplulPde fsz my|ulPdx

Z Al(pamp) Z A*
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We deduce that
IVulg = Nalp.my) | myful?de and [Vl =0,
Q

This contradicts the fact that u # 0.
Case (ii): similarly, By (3.5), (3.7) and [, mp|ulPdz <0, we get

IVull2 = A(q,my) [ mglul?dz and ||Vul, = 0.

Which contradicts u # 0.
Case (iii): In this case, using (3.6) and (3.7), we find

A A
Au) = N B(u) = 212 T0) / mplulpdz + 212 Ta) / my|u|dz.
p Q q Q
It follows
[M(p,myp) / myp|ulPdz + [A (g, mq) / mg|u|?dz = 0.

Since [, mplulPdx > 0, [, mglu/?dz > 0 and X" = min{A;(p,my), \1(q,mq)}, we
have

)\* == )\l(pv mp) = )\1((15 mq)-
We deduce that

(V| [Vullg

= Xi(p,my) = Mg, mg) =

Jo mplulpda Joy mglulada”

Hence, the simplicity of eigenvalue A\ (r,m,) (for r = p, q), given by Theorem 2.5,
guarantees that u = t¢,(p,mp) = s¢;(q, my) for some t # 0 and s # 0. The
hypothesis of proposition is thus contradicted. O

3.2. Non-existence results

This subsection studies a non-existence results for the problem (P 1) , so for
the problem (P ). This work is inspired from [15]. The following theorem is the
main result of this section.

Theorem 3.5. One assumes the same conditions as for Theorem 2.5.
1. If it holds 0 < A < X, then the problem (Px1) has no non-trivial solutions.

2. Moreover, if one of the following conditions holds

(Z) >‘1(p5 mp) 7é A1((]77”1(1);
(”) ¢1(p’ mp) 7é k¢1 (q’mq); fO?“ every k> 0;

then the problem (Px.1), with A = X" has no non-trivial solutions.
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Remark 3.6. It is easy to see that if A\i(p,m,) = Ai(g,my) and ¢, (p,mp) =
k¢, (g, mq), for some k > 0, then ¢, (p,m,) and ¢, (g, my) are positive solutions of
problem (P 1), with A = A1 (p, m;) = Ai(q, myq).

Proof: [Proof of Theorem 3.5.] Assume by contradiction that there exists a non-
trivial solution u of problem (P 1). Then, for every s > 0, we have that v = su is
a non-trivial solution of problem (Py s»-4) (see Remark 3.1). Choose sP~% = p/q
and then act with su as test function on the problem (P s»-q). We arrive at

0 < pA(su) = pAB(su). (3.8)

From the estimate (3.8) and according to Lemma 3.4, we obtain

Y]

)\* = min{Al (p7 mp)7 )\1((15 mq)}

This contradiction yields the first assertion of the theorem.
The second part of the Theorem 3.5 follows by Proposition 3.3. O

4. Existence results
4.1. Non-resonant cases

The following theorem is our main existence result for problem (P 1) (or (P, ,))
in the non-resonant cases. This result prove that there exists an interval of positive
eigenvalues for the problem (P 1) (or (P ), with 1 > 0).

Theorem 4.1. In addition to the hypotheses of Theorem 2.5 one supposes that
Al(pamp) # A\ (Qamq)- If

min{Al(p’ mp)a A1(qv mq)} < >\ < maX{Al (p7 mp)7 )\1((15 mq)}7
then the problem (Px.1) has at least one positive solution.

Remark 4.2. The proof of Theorem 4.1 reduces to provide a non-trivial critical
point of the functional Iy ,, . defined for all u € Wy*(Q) by

Iy mymg (0) == Au) — AB(u'),

where u™ = max{u,0} and A, B are the functionals defined by (3.1) and (3.2).
This non-trivial critical point u of Iy ;,,,m, is a non-negative solution of the problem
(Px,1). We can check that v € L>(€2) (see Remark 1.7 in [14]). Then the Harnack
inequality of [20] can be applied to ensure positiveness of w.

The argument will be separately developed in two cases:
(a) Al(q’mq) <AL Al(pamp)'
(b))‘l(pa m;D) <A< )‘1(Qa mq)'
In case (a), we apply the minimum principle and in case (b), we use the mountain
pass theorem.
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Proof of case (a). By Proposition 3.2, A is sequently weakly lower semi-
continuous and B is weakly continuous. It follows that Iy ,,,.m, is sequently weakly
lower semi-continuous. It is remains to show that Iy ., m, is coercive and bounded
from below.

We distinguish two cases:
(i) For u € W, *() such that Jomp(ut)Pdz < 0. A calculation similar to that in
the proof of Proposition 3.2 for r = ¢ gives

Iy (1) —HV II”——qu(VIIa 5T H(W)”*Hq/qﬂ
1 . B
> —||Vull) - —IImq5 HaHWHqHUHZ !
]17 ch’A (“.1)
> Z;I\Vulli - [mg07 [|al| V||
1 Co'C"\ |
> Z—jHVUIII’; - Tl\mq(S llall V|2,

where C,C’,C"” > 0 are the constants given respectively by the Hardy-Sobolev
inequality (see Lemma 2. 2) the compact embedding W, %(Q) C L4(2) and the
continuous embeddmg WP () € Wy9(Q).

(i) For u € Wy(Q) such that [, m,(ut)?dz > 0. Fix e > 0 such that

(I —e)Ai(p,mp) > A, (4.2)

which is possible due to the assumption in case (a). By the definition of A1 (p, m,)
we have

IVat|E > Au(p,my) / mp(ut)Pdz.
Q

Then taking into account (4.2), we derive

A1 (
Bumyon, 1) 2 S|Vl + EZIREIIZR [y

C>\ .

*7llmq5 lallVullglullg™ (4.3)
¢ [oledelo VS

> SIVullp = = llmad"lla[[Vull}.

Since ¢ < p, it follows from (4.1) and (4.3) that the functional Iy, m, is coercive
and bounded from below. Consequently, by minimum principle, there exists a
global minimizer ug of I\ m, m,. Finally, ug # 0, indeed it suffices to prove that
Inm, m, (o) = minWOl,p(Q) Ixm,.m, < 0. For sufficiently small £ > 0, we have

kP~ kP~
Do (61 ame)) = K0 (2190 0.l = 25 [ oty

L lemg) — )\) _

q
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Then Iy m,.m,(kd1(q,mq)) < 0, because Ai(q,mq) < A, which completes the
proof of case (a).

Proof of case (b). We organize the proof of this case in several lemmas. In
the sequel, we design by o(1) a quantity tending to 0 as n — oco.

Lemma 4.3. Suppose that m,.0" € L*(Q) and m;" #0 (r = p,q), where a, r and
T satisfy one of the conditions (H1), (H2), (H3) or (H4). In addition, we assume

that m, € L*(Q) for r > N or m, € L, /( Q) for1 <r < N. If X # A(p,my),

then the functional Iy m,.m, satisfies the Palais-Smale condition on WO P(Q).

Proof: Let (u,) C W,"”(2) be a sequence such that
Inm, m, (un) = c for ¢ € R and Iﬁ\ympqu (un) — 0 in (Wol’p(Q))* as n — o0o.

Let us first show that the sequence u,, is bounded. It is sufficient only to prove the
boundedness of ||uy,||, because

IVunllh < pe+o(1) + Col| Vunlplluallp ™ +

pafC _
qu\Wnllpllunllg Y (4.4)

where «, § and C are respectively the constants in inequalities |ull, < olul|p,
(IVullq < Bl|Vullp(since  bounded and ¢ < p) and H%Hbm < C||Vull, (in

each case (H1), (H2), (H3) or (H4), see the proof of Proposition 3.2) and C, =
AC||my07 || (1 = p,q). Suppose by contradiction that |[u,||, — oo and let v, =
;- The sequence vy, is bounded in WyP(Q). Indeed, dividing (4.4) by [|wnllb,
we have

paf3
C’ Vo,
gllu n|| IVl (4.5)

= o(1) + (Cp + o(1))[Vvnl|,-

IVunlly < o(1) + CplVonll, +

Since p > 1, the inequality (4.5) 1mphes the boundedness of vy, in W (Q) For a
subsequence v, — v weakly in W P(Q). By the compact embeddmg WO Q) c
L™(Q) (r = p,q), we have v,, = v strongly in L"(Q) (r = p,q). First we, observe
that v~ = 0 in €. In fact, acting with —u,, as test function, we have

oIV )l = (Ta iy g (), =t ) = [V () I+ IV ()G = ||V(U5)||(§- :

4.6

Because p > 1, the inequality (4.6) guarantees the boundedness of ||V (u,, )], and
so [|Vo, |l = IV(uy, )|lp/|ltnllp = 0. Thus v~ = 0 holds, hence v > 0 in Q.
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Now, by taking (v, — v)/Hunﬂg_l as test function, we have

Up — U
o(1) = <I§1mp1mq(un), 7p1>
l[unllp

:/ |V, [P~2Vu,V (v, —v)de + ——— /|an|q Vu,V (v, —v)dx
Q

[u nll

—)\/mp|vn|p_21)n(vn— v)dx /mq|vn| v)dx
o Hunl\

= / |V, P2V, V (v, — v)dz + o(1),
: (4.7)
because ¢ < p, |lunl, — 400, v, is bounded in W,*(Q) and converges to v
strongly in L"(Q) (r=p,q). Thus by (4.7) and (S4) property of (—A,) on Wol’p(Q),
we deduce that v, — v strongly in Wol’p(ﬂ). For any ¢ € Wol’p(Q), by taking
@/|lunll5~" as test function, we obtain

'
0(1) = (B 0): 57
fenl

:/ |VUH|P—2VUHV<,0CZ$+ B H /|Vun|‘1 Vu,Vpdx (4.8)
Q Unp
—/\/mp|vn|p72vn<pdz—ﬁ/mqwnr]*?vngpdm.

o lunllp™ Jo

Passing to the limit in (4.8), we see that v is a non-negative and non-trivial solution
of problem (Pj,,,) (note v > 0 and ||Vv||, = 1). According to the Harnack
inequality (see Remark 1.7 in [14]), we have v > 0 in Q. This implies that A =
A1 (p,my) because any positive eigenvalue other than Aq(p,m,) has no positive
eigenfunctions (see Theorem 2.5). Therefore, we obtain a contradiction since we
assumed A # Ai(p,m,). Hence u, is bounded in W, **(€2). For a subsequence,
U, — u weakly in WyP(Q) and u,, — u strongly in L"(Q) (r = p, q).

We claim now that w, — wu strongly in VVO1 P(Q). Tt suffices to prove that
[Vtenllp — [ Vulp, because WP () is uniformly convex. It is clear that

0(1) :<Ij\,mp,mq (u") - Ij\,mp,mq (u)a Unp — ’U,>

= /Q(|Vun|p72VUn — |[VulP2Vu)V (uy, — u)dx (4.9)

+ / (|Vtn |72V, — |[Vu|T2Vu)V (u, —u)dz + o(1).
Q
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Using Hélder inequality and for r» = p, ¢, we have

/(|Vun|T72Vun — |Vu|""2Vu)V (uy, — u)da
Q

:/ |Vun|Td:E+/ |Vu|szf/ |Vun|T_2VunVudzf/ |Vu|" " 2VuVu,dz
Q Q Q Q

(r—=1)/r 1/r
2/ |Vun|rdz+/ |Vu|"dx — (/ |Vun|rd:c) </ |Vu|rd:c)
Q Q Q Q
1/r (r—=1)/r
— (/ |Vun|sz) (/ |Vu|rdz)
Q Q

= (IVun 77" = 1VullZ= D) (I Vunllr — [Vull)
0

(4.10)

Moreover, (4.9) and (4.10) imply that |Vu,||, — |[|Vv|l, (for » = p,q). Thus
u, — u strongly in W, P ().

|

Lemma 4.4. Suppose m,d" € L*(Q) and m} £ 0 (r = p,q), where a, r and T
satisfy one of the conditions (H1), (H2), (H3) or (H4) If A < Mi(g,mq), then there
exist « > 0 and 8 > 0 such that

Inm, m, () > o whenever ||ulq = B. (4.11)
To prove the Lemma 4.4, we need the following lemma.

Lemma 4.5. Suppose 7, a and p as in Lemma 4./ and let b be such that b = aa—f; if
a<ooandb=pifa=oc. Set X(d):={ue WP ); [Vulls < dl|$[[s]lul5~'},
for d > 0. Then there exists a(d) > 0 such that ||Vull, < a(d)||ullq, for all
u € X(d).

Remark 4.6. Conditions (H4) implies that the Lemma 4.5 includes the Lemma
11 of the previously cited paper [15].

Proof: Suppose, by contradiction, that
. 1
(Vn € N*) (Ju, € X(d)) : EHVUHHP > ||unllq- (4.12)

Because of |Vuy,l|l, # 0, we set v, := ”v“u—"”. Thus, by (4.12), v, — 0 strongly

in L9(Q). Since |[Vu,|l, = 1, the sequence v, is bounded in W,?(Q). For a
subsequence, v, — v weakly in VVO1 P(Q). By the compact embedding VVO1 P(Q) C
L™(Q) (r = p, q), we have v,, — v strongly in L"(Q) (r = p, ¢). Hence, ||v,||q — ||v]l4
and ||vn||, — ||v]lq- By uniqueness of limit, we deduce that [|v]|, = 0. It follows
that v = 0. As u, € X(d), we obtain

[l

<
[Vunllp

1 .
p lonl15~". (4.13)
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By Lemma 2.2 and under one of the properties (H1), (H2), (H3) or (H4), the

sequence HIQT ””b is bounded (see the proof of Proposition 3.2). Passing to the limit

in (4.13), we get é < 0. This contradiction completes the proof of Lemma 4.5. O

Proof: [Proof of Lemma 4.4.] According to Lemma 4.5, choose
@ > max{1,A|myd” Lo, CAllmyd" o}, (4.14)

where C' > 0 is a constant that may differ in each case (H1), (H2), (H3) or (H4)
(see the proof of Proposition 3.2).

For any u € X(d) satisfying [, mq(u™)%dz < 0, there exists a(d) > 0 such that
[IVullp, < a(d)|lullq and we have

1—
Dymg,mg (0) 2 —llV 5+

17 A
> —— | Vulf + —— ( B
p q

> wn ||p
p

( 1) d _ CAMlmpdTlla
p

lllg + S IVl [Vl

1 T
lullg + SVl (d = CAlmy67lla)

( D o

(4.15)
For any u ¢ X (d) satisfying [, mq(u™)?dz < 0, we have ||Vul| > dl| 3= ||s||u]2".

It follows that
(d — A||mp67||a) ’ u
p

o7 b
)\1((15 )” ||q

Y

— Al(qal)
a5~ + THUHZ

Ik,mp,mq (u)
(4.16)

| \/

If u € W, P(Q) satisfying Jomg(uT)4dz > 0, by the definition of A; (g, mgq), we get
[Vul|d > HVU"'H‘] > M ( q,mq)/ mq(ut)?da. (4.17)
Q

Our assumption in A enables us to fix 0 < € < 1 with
(I —e)Ai(g,mqg) > A (4.18)

If in addition u ¢ X (d), then due to (4.14), (4.17) and (4.18) we have

d— A|mpd™||a
Do, (1) > <M)’£

; o

1
Il + 210 - Mhalamy) ~ N [ mg(uyids
)\1((151)
q

Y

[l 3. (4.19)
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Finally, if u € X (d) and [, mq(u™)%da > 0, then (4.14), (4.17) and (4.18) imply

1—-d € 1
Ixmymg (@) 2 ——[IVul[] + =[[Vul[§ + =[(1 = €)Ar(g, mq) — A]/ mg(u")Tdz
p q q Q
d AllmpéT[la || w -1
oIVl === |5 |, Il
(1 = d)[ap)]” Mg, 1) d = CA[mpd" ||
> |l + ——ull§ + —— ———IVull}
p q p
(1 = d)a(p)]” Ai(g, 1)
> —————lull§g + ———lull§.
p q
(4.20)
Using that ¢ < p, the claim (4.11) in Lemma 4.4 follows from (4.15), (4.16), (4.19)
and (4.20).
g

Lemma 4.7. Suppose m,d" € L*(Q) and m;} £ 0 (r = p,q), where a, r and T
satisfy one of the conditions (H1), (H2), (H3) or (H{). If Ai(p,m,) < A, then
there is R > 0 such that

[ Ry (p, mp)llq > B and Ixmy,mg (Roy1(p,myp)) <0, (4.21)

where B > 0 is the constant in (4.11).

Proof: For sufficiently large R > 0, taking into account that ¢ < p and A\ (p, m,) <
A, we have

Dumymy (RE1(Pmp))  Ma(p,my) — A
RA p
s (161 mll — [ bty ) <.

d

Recalling that the functional Iy ,,, m, satisfies the Palais-Smale condition by
virtue of Lemma 4.3, the properties (4.11) of Lemma 4.4 and (4.21) of Lemma
4.7 allow us to apply the mountain pass theorem, which guarantees the exis-
tence of a critical value ¢ > a of Iy m,m,, with & > 0 in (4.11), namely ¢ :=

inf max Iy, m,(7(t)), where ¥ := {y € C([O,l],Wol’p(Q));v(O) = 0,7(1) =
VEX te[0,1]

R¢y(p, mp)}. This completes the proof of Theorem 4.1.

4.2. Resonant cases

In this section, we study the existence result for problem (P 1) (or (Py,)) in
the resonant cases. The following theorem is our main result in this section.
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Theorem 4.8. One assumes the same conditions as for Theorem 2.5. If one of
the following assertions holds

(i) A= Xi(p,mp) > M(g,mg) and [o [Véy(p,myp)Tdz—A [o mg| (p,my)|?dz >
0;

(“) A= )‘1(% mq) > )‘1(17; mp) and fgz |V¢1 ((Za mq)lpdx_)‘f(z mp|¢1 ((Za mq)lpdgj >
0,

then the problem (Px1) (or (Px,)) has at least one positive solution.

Proof: Proof of case (i): Since m} # 0, the Lebesgue mesure of {z € Q;m,(z) >
0} is positive. Thus there exists an ng € N such that (m, —1/ng) # 0. For n > ny,
we define, as in [15], the functional I, on W, "*(€2) by

A
In(u) = Ixmy m, (0) + p—nIWH? = Ixm,—1/m.m, (1)

Using the strict monotonicity of the first eigenvalue of problem (P ;,,) (see [14]),
we obtain A\ (p,mp — 1/n) > Ai(p, mp) = A. Thus we are able to apply Theorem
3.5 obtaining a positive solution u,, of the problem

—Dpu—Dqu = N(mp(x) — 1/n)|ulP~u + mg(x)|u[?™%u]  in Q,
u = 0 on 0f.

We may assume that w,, is a global minimizer of I,, and I, (u,) < 0 (see the case
(a) in the proof of Theorem 3.5). In addition, observing that I, < I,, provided
n > ng, we infer that for all n > ng,

Ln(un) = min Iy < Iy(tny) < Ing (un,) < 0.
Wy P (9)

We claim that if u,, is bounded in WO1 P(Q), then wu, is a bounded Palais-Smale
sequence of Iy m,m,. Indeed, there exists ¢ € R such that Iy, m,(un) — ¢
because I,(u,) is a convergent sequence and [|Vu,||, is bounded. On the other
hand, since I}, (u,,) = 0, we have

ng\,mp,mq(un)”(wohp(g))* = ||I;,mp,mq(un)717{1(un)||(W01’p(Q))*

—-1/p
AR D 9y

<

As [[Vup| is bounded, we obtain |1} (unl| 1.7 (q))- — 0. This completes the
proof of our claim.

We prove now the boundedness of u,, in WO1 P(Q) by way of contradiction. Suppose

that [|[Vuy,l|l, — oo and let v, := u,/||Vuy,|/,. For a subsequence, v, — v weakly

in Wol’p(ﬂ) and v, — v strongly in LP(Q2). Following the same steps of the proof of
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Lemma 4.3, we show that v is a positive solution of problem (Pj ,,,). This entails
v is a positive eigenfunction corresponding to Aq(p,mp). Thus the simplicity of
A1(p, myp) implies that v = ¢, (p, mp). The facts that I, (u,) < 0 for all n > ng and
u, is a critical point of I,, result in

vy = (5 5) (19l [ mozae)
0> =—=|—-—- Vop |l =X | mguidx | .
Fung = \g ~p) \IVeeli =2 Jma

Passing to the limit, we obtain [, [V, (p,myp)|9dz — X [, mg|¢y (p, my)|%dz < 0
which contradicts second point of assertion (i). Thus u, is a bounded Palais-Smale
sequence of Iy ., m,. Since X # A1(p,mp), Ix,m,.m, satisfies Pais-Smale condition
(see Lemma 4.3). Tt follows that u,, has a subsequence converging to some critical
point ug of I m,, m,-

We note that ug # 0 because Iy, m, (1) = lirrln In(un) < Ing(uo) < 0. Therefore

up is a positive solution of problem (Py 1) (see Remark 4.2).
Proof of case (ii): As in the proof of case (i), we can choose ng € N such that
(mg — 1/ng) # 0. For n > ng, we define the functional J,, on W, *(2) by

A
Jn(u) = Ixmypmg (u) + %HWHZ = I/\,mp,mq—l/n(u)-

Using the strict monotonicity of the first eigenvalue of problem (P ;,, ), we obtain
Ai(g,mg —1/n) > Ai(g,mq) = A, for any n > ng. Thus we may apply Theorem
3.5 obtaining a positive solution u,, of the problem

e e e R

u = 0 on 0f2.
Following the pattern of the proof of case (i), this time proceeding as in case (b)
in the proof of Theorem 3.5, we deduce that .J,(u,) > 0 for all n > ng. For
the boundedness of u,, in W, (), proceeding as in the proof of case (i) and the
contradiction follows from the condition A = A1 (g, mq) > A1 (p, m,). The bounded
sequence uy, is a Palais-Smale sequence for the functional Iy i,,,m, as can be seen
from the estimate

& —_
ng\,mp,mq (un)H(Wol’p(Q))* = ng\,mp,mq (un) — J;L(UH)H(WUIW(Q))* < EHUan Y

where ¢ is a positive constant independent of n. It follows that u,, has a subsequence
converging to some critical point ug of I m, m,. In order to complete the proof,
due to the Harnack inequality, it suffices to justify that ug # 0. We assume, by

contradiction, that u, — 0 strongly in Wol’p(Q). Set v, = Hv“u—"”. Then, for a
nllp

subsequence, v, — v weakly in Wy ? (), weakly in W, %(Q) and strongly in LP(Q).
It is easy to see that v > 0 in 2. Using ”v”"*” r as test function, we obtain

un |l

Up — U

0= (1t o

Up |21

> = / |V, |92V, V (v, — v)dz + o(1).
Q
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By (S) property for —A, on Wy'%(2), we have v,, — v strongly in Wy¢(€2). We
claim that v # 0 in €. Using u,, as test function, we may write

0= <J1Iz(un)vun>
1
= ||[Vun b - )\/Qmpuﬁd:c + [V, ||§ - )\/Q(mq - E)u%dz (4.22)
> Va3 [ mpuda,
Q

because A = A;(g,m,) and by the definition of A;(g,m,), we have [[Vu,|g —
A Jomguddz > 0. Thus according (H1), (H2), (H3) or (H4), we have ||[Vu|[} <
A[mpd7 |[all = o]lul[f ", where 7, a and b as in Lemma 4.5. Whence u,, € X (d)
with d = A||m,07||q. Therefore, Lemma 4.5 guarantees the existence of a constant
a(d) > 0 such that

IVully < a(@)lully < a(d)Ailg, D]V Vully, for all n > no.

Consequently, recalling that v, — v strongly in WO1 1(Q), we have

HVUan > 1
[Vunllp, ~ a(d)[Ai(g, 1)]71/1

IVllq = lim ||V, |, = lim >0,

thus proving our claim.

For any ¢ € W1P(Q), by using ﬁwnq—*l as test function we show, as in proof of
nllp

case (i), that v is a nonnegative nontrivial solution of (P ,,,). The simplicity of
(g, my) guarantees that v = ¢,(q, mq) is a positive eigenfunction corresponding
to A1(g,mg).

Using that J,(u,) > 0 for all n > ng in conjunction with (4.22), we have

In (U, 1 1
0 < Inlu )p _ <_ - _> <|wn|gx/ mpvgdz>.
[Vunp p q Q
Since g < p, it follows that
Vo |l — /\/ mypvhdr < 0.
Q
By passing to the limit inferior we obtain

V@1 (g,mq)ll5 = /\/Qmp[¢1(q7mq>]pd$ <0.

By this contradiction the proof of Theorem 4.8 is achieved.
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