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Existence of solutions for a fourth order eigenvalue problem with
variable exponent under Neumann boundary conditions

K. Ben Haddouch, Z. El Allali, N. Tsouli, S. El Habib and F. Kissi

abstract: In this work we will study the eigenvalues for a fourth order ellip-
tic equation with p(x)-growth conditions ∆2

p(x)
u = λ|u|p(x)−2u, under Neumann

boundary conditions, where p(x) is a continuous function defined on the bounded do-
main with p(x) > 1. Through the Ljusternik-Schnireleman theory on C1-manifold,
we prove the existence of infinitely many eigenvalue sequences and supΛ = +∞,
where Λ is the set of all eigenvalues.
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1. Introduction

We are concerned here with the eigenvalue problem:

{
∆2

p(x)u = λ|u|p(x)−2u in Ω,
∂u
∂ν

= ∂
∂ν

(|∆u|p(x)−2∆u) = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 1, ∆2

p(x)u =

∆(|∆u|p(x)−2∆u), is the p(x)-biharmonic operator, λ ∈ IR, p is a continuous func-
tion on Ω with infx∈Ω(p(x)) > 1.
In recent years, the study of differential equations and variational problems with
p(x)-growth conditions is an interesting topic, which arises from nonlinear elec-
trorheological fluids and other phenomena related to image processing, elasticity
and the flow in porous media. In this context we refer to ( [8], [9], [10], [13], [11],
[12]).
This work is motivated by recent results in mathematical modeling of non Newto-
nian fluids and elastic mechanics, in particular, the electrorheological fluids (Smart
fluids). This important class of fluids is characterized by change of viscosity, which
is not easy to manipulate and depends on the electric field. These fluids, which are
known under the name ER fluids, have many applications in electric mechanics,
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fluid dynamics etc...
In the case where p(x) ≡ p (a constant), many authors have been interested in
spectral problems including the p-Biharmonic operator (See [2], [3], [4], [5], [6],
[7]), and in ( [1]), the authors have studied the problem (1.1), they have showed
the existence of solution for the equation ∆2

pu = λm(x)|u|p−2u under Neumann
boundary conditions.
In the variable exponent case, the authors in ( [13]) investigated the eigenvalues of
the p(x)-biharmonic with Navier boundary conditions . In ( [14]), they considered
the problem {

∆2
p(x)u = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.2)

where p, q are continuous functions on Ω. Using the mountain pass lemma and
Ekeland variational principle, they prove the existence of a continuous family of
eigenvalues.
The main goal of this paper is to show the existence of solutions for the problem
(1.1). We first prove the existence of positive eigenvalues of the following perturbed
problem {

∆2
p(x)u+ ǫ|u|p(x)−2u = λ|u|p(x)−2u in Ω,

∂u
∂ν

= ∂
∂ν

(|∆u|p(x)−2∆u) = 0 on ∂Ω,
(1.3)

where ǫ is enough small (0 < ǫ < 1).
Through the Ljusternik-Schnireleman theory and by considering for each t > 0 the
manifold

Mt = {u ∈ X : G(u) = t},

where G(u) =
∫
Ω

1
p(x) |u|

p(x)dx, we prove that for each t > 0 the problem (1.3) has

a infinitely many eigenvalue sequences. And by tending ǫ −→ 0, we deduce that
the problem (1.1) has infinitely many eigenvalue sequences.
Our main results are stated in the following theorems:

Theorem 1.1. For each t > 0 the problem (1.1) has infinitely many eigenpair
sequences {(∓un,t,∓λn,t)} such that λn,t −→ ∞ as n −→ ∞.

Define λ∗ = inf(Λ), where Λ = {λ : λ is an eigenvalue of (1.1)}.

Theorem 1.2. If there exist an open subset U ⊂ Ω and a point x0 ∈ U such that
p(x0) < (or >)p(x) for all x ∈ ∂U , then λ∗ = 0

2. Preliminaries

In order to deal with p(x)−biharmonic operator problems, we need some re-
sults on spaces Lp(x)(Ω) and W k,p(x)(Ω) and some properties of p(x)−biharmonic
operator, which we will use later.
Define the generalized Lebesgue space by:

Lp(x)(Ω) =

{
u : Ω −→ IR, measurable and

∫

Ω

|u(x)|p(x)dx < ∞

}
,
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where p ∈ C+(Ω) and

C+(Ω) =
{
h ∈ C(Ω) : h(x) > 1, ∀x ∈ Ω

}
.

Denote
p+ = max

x∈Ω
p(x), p− = min

x∈Ω
p(x),

and for all x ∈ Ω and k ≥ 1

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

and

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

One introduces in Lp(x)(Ω) the following norm

|u|p(x) = inf

{
µ > 0;

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1

}
,

and the space (Lp(x)(Ω), |.|p(x)) is a Banach.

Proposition 2.1. [15] The space (Lp(x)(Ω), |.|p(x)) is separable, uniformly convex

and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of p(x) i.e

1

p(x)
+

1

q(x)
= 1, ∀x ∈ Ω.

For all u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) the Hölder’s type inequality
∣∣∣∣
∫

Ω

uvdx

∣∣∣∣ ≤
(

1

p−
+

1

q−

)
|u|p(x)|v|q(x)

holds true.
The Sobolev space with variable exponent W k,p(x)(Ω) is defined by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 ...∂xαN

N

,

is the derivation in distribution sense, with α = (α1, α2, ..., αN ) is a multi-index

and |α| =
i=N∑

i=1

αi.

The space W k,p(x)(Ω), equipped with the norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x),
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also becomes a Banach, separable and reflexive space. For more details, we refer
to ( [16], [15], [11], [17]).
For all ǫ > 0, we consider in W 2,p(x)(Ω) the norm

‖u‖ǫ = inf

{
λ > 0 :

∫

Ω

(∣∣∣∣
∆u(x)

λ

∣∣∣∣
p(x)

+ ǫ

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)
)
dx ≤ 1

}

Remark 2.2. The norm ‖.‖ǫ is equivalent to the norm

|∆u|Lp(x)(Ω) + |u|Lp(x)(Ω),

and (W 2,p(x)(Ω); ‖.‖ǫ) is a Banach, separable and reflexive space.

Proposition 2.3. [15]. For all p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω,
there is a continuous and compact embedding

W k,p(x)(Ω) →֒ Lr(x)(Ω).

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the modular of the Lp(x)(Ω) space, which is the mapping

ρ : Lp(x)(Ω) −→ IR,

defined by

ρ(x) =

∫

Ω

|u|p(x)dx

Proposition 2.4. If un, u ∈ Lp(x)(Ω) then the following relations hold true

(i) |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x)

(ii) |u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x)

(iii) |un − u|p(x) → 0 ⇔ ρ(un − u) → 0.

Through this paper, we will consider the following space

X = {u ∈ W 2,p(x)(Ω) :
∂u

∂ν
= 0}.

which is considered by F.Moradi and all in ( [20]). They have proved that X is
a nonempty, well defined and closed subspace of W 2,p(x)(Ω). Firstly they have
showed the following boundary trace embedding theorem for variable exponent
Sobolev spaces.

Theorem 2.5. [20] Let Ω be a bounded domain in IRN with C2 boundary. If
2p(x) ≥ N ≥ 2 for all x ∈ Ω, then for all q ∈ C+(Ω) there is a continuous
boundary trace embedding

W 2,p(x)(Ω) →֒ Lq(x)(∂Ω), (2.1)

and
W 2,p(x)(Ω) →֒ W 1,p(x)(∂Ω), (2.2)
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Proof

(2.1) We choose p, q ∈ C+(Ω) such that for all x ∈ Ω, 2p(x) ≥ N .
There exists the following continuous embedding

W 2,p(x)(Ω) →֒ W 2,p−

(Ω), (2.3)

and
Lq+(∂Ω) →֒ Lq(x)(∂Ω). (2.4)

By using the classical boundary trace embedding theorem, since 2p− ≥ N
and q+ ≥ 1, there exists the continuous embedding

W 2,p−

(Ω) →֒ Lq+(∂Ω). (2.5)

And by combining (2.3), (2.4), (2.5) we deduce that W 2,p(x)(Ω) is continu-
ously embedded into Lq(x)(∂Ω).

(2.2) Since 2p− > N and p+ > 1, we have the continuous embedding (see [22])

W 2,p−

(Ω) →֒ W 1,p+

(∂Ω). (2.6)

Moreover
W 1,p+

(∂Ω) →֒ W 1,p(x)(Ω). (2.7)

Then from (2.3), (2.6) and (2.7) we deduct the result.

Proposition 2.6. [20] If 2p(x) ≥ N for all x ∈ Ω, then the set

X = {u ∈ W 2,p(x)(Ω)
∂u

∂ν
|∂Ω = 0}

is a closed subspace of W 2,p(x)(Ω)

Proof
Consider the operator

D : W 2,p(x)(Ω) −→ Lp(x)(∂Ω)

u 7−→
∂u

∂ν
|∂Ω.

We prove that D is continuous from (W 2,p(x)(Ω), ‖.‖ǫ) to
(Lp(x)(∂Ω), |.|Lp(x)(∂Ω)).
For this, we prove the continuity of the operator

∇ : W 2,p(x)(Ω) −→ (Lp(x)(∂Ω))N

u 7−→ (∇u)|∂Ω,
from (W 2,p(x)(Ω), ‖.‖ǫ) to ((Lp(x)(∂Ω))N , ‖.‖p(x),N), with
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‖−→n ‖p(x),N =

i=N∑

i=1

|ni|p(x).

Let (un)n ⊂ W 2,p(x)(Ω) be a sequence such that un −→ u in W 2,p(x)(Ω).
Using the second assertion of theorem 2.5 , we have un −→ u in W 1,p(x)(∂Ω),
which implies that ∇un −→ ∇u in (Lp(x)(∂Ω))N , and then ∇ is continuous.
Moreover, D = T ◦ ∇ with T is the linear function defined as

T : (Lp(x)(∂Ω))N −→ Lp(x)(∂Ω)

−→n (n1, n2, ..., nN) 7−→ −→n .−→v ,

where −→v (x) = (α1(x), α2(x), ..., αN (x)) is the outer unit normal vector and
i=N∑

i=1

|αi(x)|
2 = 1 for all x ∈ ∂Ω.

The operator T is continuous, indeed, for −→n ∈ (Lp(x)(∂Ω))N , we have

|−→n .−→v |p(x) = |
i=N∑

i=1

niαi| ≤
i=N∑

i=1

|niαi|p(x).

On the other hand, we have

i=N∑

i=1

|αi(x)|
2 = 1, then |αi(x)| ≤ 1 for all x ∈ ∂Ω,

i ∈ {1, 2, ..., N}.
Consequently, we deduct that

|−→n .−→v |Lp(x)(∂Ω) ≤
i=N∑

i=1

|ni|p(x) = ‖−→n ‖p(x),N ,

which assert that T is continuous and then D is also continuous. Finally,
since X = D−1({0}), it result that X is closed in W 2,p(x)(Ω). Hence, the
proof of the proposition is completed.

A pair (u, λ) ∈ X × IR is a weak solution of (1.1) provided that
∫

Ω

|∆u|p(x)−2∆u∆vdx = λ

∫

Ω

|u|p(x)−2uvdx, ∀v ∈ X.

In the case where u is nontrivial, such a pair (u, λ) is called an eigenpair, λ is an
eigenvalue and u is called an associated eigenfunction.

Proposition 2.7. If u ∈ X is a weak solution of (1.1) and u ∈ C4(Ω) then u is a
classical solution of (1.1).

Proof
Let u ∈ C4(Ω) be a weak solution of problem (1.1) then for every ϕ ∈ X , we have

∫

Ω

|∆u|p(x)−2∆u∆ϕdx = λ

∫

Ω

|u|p(x)−2uϕdx. (2.8)
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By applying Green formula, we obtain:

∫

Ω

∆(|∆u|p(x)−2∆u)ϕdx = −

∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫

∂Ω

ϕ
∂

∂ν
(|∆u|p(x)−2∆u)dx, (2.9)

and ∫

Ω

|∆u|p(x)−2∆u∆ϕdx = −

∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫

∂Ω

|∆u|p(x)−2∆u
∂

∂ν
(ϕ)dx, (2.10)

then we have
∫

Ω

∆(|∆u|p(x)−2∆u)ϕdx = λ

∫

Ω

|u|p(x)−2uϕdx+

∫

∂Ω

ϕ
∂

∂ν
(|∆u|p(x)−2∆u)dx

−

∫

∂Ω

|∆u|p(x)−2∆u
∂

∂ν
(ϕ)dx.

As ϕ ∈ X , then
∂

∂ν
(ϕ) = 0. And for all ϕ ∈ D(Ω), we obtain

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u a.e x ∈ Ω.

We deduce that for each ϕ ∈ X

∫

∂Ω

∂

∂ν
(|∆u|p(x)−2∆u)ϕdx = 0,

then for all ϕ ∈ D(Ω), we have

∫

∂Ω

∂

∂ν
(|∆u|p(x)−2∆u)ϕdx = 0,

which implies that
∂

∂ν
(|∆u|p(x)−2∆u) = 0 a.e x ∈ Ω

the result follows.

Definition 2.1. Let E be a real Banach space and A be a symmetric subset of
E \ {0} witch is closed in E. We define the genus of A the number:

γ(A) = inf{m; ∃ f ∈ C0(A, IRm \ {0}); f(−u) = f(u)}

and γ(A) = ∞ if does not exist such a map f .
γ(∅) = 0 by definition.
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Lemma 2.8. [18] Suppose that M is a closed symmetric C1-manifold of a real
Banach space E and 0 /∈ M . Suppose also that f ∈ C1(M, IR) is even and bounded
bellow.
Define

cj = inf
K∈Γj

sup
x∈K

f(x),

where Γj = {K ⊂ M : K is symmetric, compact and γ(K) ≥ j}. If Γk 6= ∅ for
some k ≥ 1 and if f satisfies (PS)c for all c = cj, j = 1, ..., k, then f has at least
k distinct pairs of critical points.

3. Proof of main results

Let us consider a perturbation of problem (1.1) as follows

{
∆2

p(x)u+ ǫ|u|p(x)−2u = λ|u|p(x)−2u in Ω,
∂u
∂ν

= ∂
∂ν

(|∆u|p(x)−2∆u) = 0 on ∂Ω,
(3.1)

where ǫ is enough small (0 < ǫ < 1).
Consider the functional

J(u) =

∫

Ω

(
|∆u|p(x) + ǫ|u|p(x)

)
dx, ∀u ∈ X.

Then ‖u‖ǫ = inf{µ > 0 : J

(
u

µ

)
≤ 1}.

According to the proposition 2.4 we have

Proposition 3.1. For all u ∈ X, we have

(i) ‖u‖ǫ < 1 (= 1;> 1) ⇐⇒ J(u) < 1 (= 1;> 1),

(ii) ‖u‖ǫ ≤ 1 =⇒ ‖u‖p
+

ǫ ≤ J(u) ≤ ‖u‖p
−

ǫ ,

(iii) ‖u‖ǫ ≥ 1 =⇒ ‖u‖p
−

ǫ ≤ J(u) ≤ ‖u‖p
+

ǫ ,
for all un ∈ X, we have

(iv) ‖un‖ǫ −→ 0 ⇐⇒ J(un) −→ 0,

(v) ‖un‖ǫ −→ ∞ ⇐⇒ J(un) −→ ∞

Proof
Similar to those of theorem 1.3 in ( [15]).

Theorem 3.2. For each t > 0, the problem (3.1) has infinitely many eigenpair
sequences {(∓un,t,ǫ, λn,t,ǫ)} such that λn,t,ǫ −→ ∞ as n −→ ∞

Proof
Let us consider the functionals Fǫ, G : X −→ IR defined by

Fǫ(u) =

∫

Ω

1

p(x)

[
|∆u|p(x) + ǫ|u|p(x)

]
dx,
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and

G(u) =

∫

Ω

1

p(x)
|u|p(x)dx.

It is well known that Fǫ, G ∈ C1(X, IR) and for all u, v ∈ X

〈F ′
ǫ(u); v〉 =

∫

Ω

(
|∆u|p(x)−2∆u∆v + ǫ|u|p(x)−2uv

)
dx,

and

〈G′(u); v〉 =

∫

Ω

|u|p(x)−2uvdx

It is clear that (u, λ) is a weak solution of (3.1) if and only if

F ′
ǫ(u) = λG′(u) in X ′. (3.2)

We need the following result

Proposition 3.3. (1) F ′
ǫ : X −→ X ′ is continuous, bounded and strictly mono-

tone.

(2) F ′
ǫ is of type (S+).

(3) F ′
ǫ is homeomorphism.

Proof

(1) Since F ′
ǫ is the Fréchet derivative of Fǫ, it follows that Fǫ is continuous and

bounded.
Let’s define the sets

Up = {x ∈ Ω : p(x) ≥ 2} and Vp = {x ∈ Ω : 1 < p(x) < 2} .

Using the following inequalities

{
|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y)(x− y) if γ ≥ 2,
|x− y|2 ≤ 1

(γ−1) (|x|+ |y|)2−γ(|x|γ−2x− |y|γ−2y)(x− y) if 1 < γ < 2,

(3.3)
for all (x, y) ∈ (IRN )2, where x.y denotes the usual inner product in IRN , we
obtain for all u, v ∈ X such that u 6= v

〈F ′
ǫ(u)− F ′

ǫ(v), u − v〉 > 0,

which implies that F ′
ǫ is strictly monotone.

(2) We consider (un)n a sequence of X such that

un ⇀ u in X and lim sup
n→+∞

〈F ′
ǫ(un), un − u〉 ≤ 0.
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From the proposition 3.1, it suffices to show that

∫

Ω

(
|∆un −∆u|p(x) + ǫ|un − u|p(x)

)
dx −→ 0. (3.4)

by the monotonicity of F ′
ǫ , we have

〈F ′
ǫ(un)− F ′

ǫ(u), un − u〉 ≥ 0,

and since un ⇀ u in X , we deduce that

lim sup
n→+∞

〈F ′
ǫ(un)− F ′

ǫ(u), un − u〉 = 0.

We consider

ϕn(x) =
(
|∆un|

p(x)−2∆un − |∆u|p(x)−2∆u
)
(∆un −∆u) ,

ξn(x) =
(
|un|

p(x)−2un − |u|p(x)−2u
)
(un − u) .

By the compact embedding of X into Lp(x)(Ω), it follows that

un −→ u in Lp(x)(Ω)

and
|un|

p(x)−2un −→ |u|p(x)−2u in Lq(x)(Ω),

where
1

q(x)
+

1

p(x)
= 1, for all x ∈ Ω. It results that

∫

Ω

ξn(x)dx −→ 0

and

lim sup
n−→+∞

∫

Ω

ϕn(x)dx = 0. (3.5)

Thus, from (3.3) we have

∫

Up

|∆un −∆u|p(x)dx ≤ 2p
+

∫

Up

ϕn(x)dx,

and ∫

Up

|un − u|p(x)dx ≤ 2p
+

∫

Up

ξn(x)dx.

Then
∫

Up

(
|∆un −∆u|p(x) + ǫ|un − u|p(x)

)
dx −→ 0 as n −→ +∞. (3.6)
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On the other hand, in Vp, setting δn = |∆un|+ |∆u|, we have

∫

Vp

|∆un −∆u|p(x)dx ≤
1

p− − 1

∫

Vp

(ϕn)
p(x)
2 (δn)

p(x)
2 (2−p(x))dx,

and the Young’s inequality yields that

d

∫

Vp

|∆un −∆u|p(x)dx ≤
1

p− − 1

∫

Vp

[
d(ϕn)

p(x)
2

]
(δn)

p(x)
2 (2−p(x))dx

≤
1

p− − 1

(∫

Vp

ϕn(d)
2

p(x) dx+

∫

Vp

(δn)
p(x)dx

)
.

(3.7)

From (3.5) and since ϕn ≥ 0, we can consider that 0 ≤

∫

Vp

ϕndx < 1.

If

∫

Vp

ϕndx = 0 then

∫

Vp

|∆un −∆u|p(x) = 0.

If not, we take d =

(∫

Vp

ϕn(x)dx

)−1
2

> 1, and the fact that 2
p(x) < 2, the

inequality (3.7) becomes

(p− − 1)

∫

Vp

|∆un −∆u|p(x) ≤
1

d

(∫

Vp

ϕnd
2dx+

∫

Ω

δp(x)n dx

)

≤

(∫

Vp

ϕndx

) 1
2 (

1 +

∫

Ω

δp(x)n dx

)
.

Note that,

∫

Ω

δp(x)n dx is bounded, which implies that

∫

Vp

|∆un −∆u|p(x)dx −→ 0 as n −→ +∞.

Similarly, we have

∫

Vp

|un − u|p(x)dx −→ 0 as n −→ +∞.

We conclude that
∫

Vp

(
|∆un −∆u|p(x) + ǫ|un − u|p(x)

)
dx −→ 0 as n −→ +∞. (3.8)

Finally, (3.4) is given by combining (3.6) and (3.8).



264 K. Ben Haddouch, Z. El Allali, N. Tsouli, S. El Habib and F. Kissi

(3) We prove now that F ′
ǫ is an homeomorphism.

First, by the strict monotonicity, F ′
ǫ is an injection.

Furthermore, for any u ∈ X with ‖u‖ > 1, we have

〈F ′
ǫ(u), u〉

‖u‖
=

J(u)

‖u‖
≥ ‖u‖p

−−1 −→ ∞ as ‖u‖ −→ ∞,

i.e. F ′
ǫ is coercive. Thus, F ′

ǫ is a surjection in view of Minty-Browder theorem
(see theorem 26.A(d) in [19]).
Hence, F ′

ǫ has an inverse mapping (F ′
ǫ)

−1 : X ′ −→ X.
Therefore, the continuity of (F ′

ǫ)
−1 is sufficient to ensure F ′

ǫ to be an home-
omorphism.
Let (fn)n be a sequence of X ′ such that fn −→ f in X ′.
Let un and u in X such that

(F ′
ǫ)

−1(fn) = un and (F ′
ǫ)

−1(f) = u,

by coercivity of F ′
ǫ , one deducts that the sequence (un) is bounded in the

reflexive space X . For a subsequence (un), we have un ⇀ û in X , which
implies that

lim
n−→+∞

〈F ′
ǫ(un)− F ′

ǫ(u), un − û〉 = lim
n−→+∞

〈fn − f, un − û〉 = 0.

It follows by the second assertion and the continuity of F ′
ǫ that un −→

û in X and F ′
ǫ(un) −→ F ′

ǫ(û) = F ′
ǫ(u) in X ′.

Moreover since F ′
ǫ is an injection, we conclude that u = û

Proposition 3.4. G′ : X −→ X ′ is sequentially weakly-strongly continuous,
namely,

un −→ u in X implies G′(un) −→ G′(u) in X ′.

Proof
Let un ⇀ u in X . For any v ∈ X , by Hölder’s inequality in X and continuous
embedding of X in to Lp(x)(Ω), it’s follows that

|〈G′(un)−G′(u), v〉| =

∣∣∣∣
∫

Ω

(|un|
p(x)−2un − |u|p(x)−2u)vdx

∣∣∣∣

≤ C
∥∥∥|un|

p(x)−2un − |u|p(x)−2u
∥∥∥
q(x)

‖v‖p(x)

≤ C′
∥∥∥|un|

p(x)−2un − |u|p(x)−2u
∥∥∥
q(x)

‖v‖.

By using the compact embedding of X in to Lp(x)(Ω), we have un ⇀ u in Lp(x)(Ω),
thus

|un|
p(x)−2un −→ |u|p(x)−2u in Lq(x)(Ω) �
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To solve the eigenvalue problem (3.2), we will use the Ljusternik-schnirelmann
theory on C1-manifolds (see [18] corollary 4.1).
For any t > 0, denote by

Mt = {u ∈ X : G(u) = t}.

We know that for all x ∈ Ω, we have p− ≤ p(x) ≤ p+, then for all u ∈ Mt

〈G′(u), u〉 =

∫

Ω

|u|p(x)dx ≥ tp− > 0

Hence, Mt is a C1-manifold of X with codimension one.
Denote by Tu(Mt) the tangent space at u ∈ Mt, i.e. Tu(Mt) = KerG′(u), F̃ǫ :

Mt −→ IR the restriction of Fǫ on Mt and dF̃ǫ(u) the derivative of F̃ǫ at u ∈ Mt,
i.e. the restriction of F ′

ǫ(u) on Tu(Mt).

Proposition 3.5. F̃ǫ satisfies the (PS) condition, namely, any sequence (un) ⊂

Mt, such that F̃ǫ(un) −→ c and dF̃ǫ(un) −→ 0, contains a converging subsequence.

Proof
Let u ∈ Mt, then G′(u) 6= 0 and v = (F ′

ǫ)
−1(G′(u)) 6= 0, thus

〈G′(u), F ′−1
ǫ (G′(u))〉 = 〈F ′

ǫ(v), v〉

=

∫

Ω

(
|∆v|p(x) + ǫ|v|p(x)

)
dx > 0.

Hence, v /∈ Tu(Mt); therefore

X = Tu(Mt)⊕ {βv, β ∈ IR}.

We consider P : X −→ Tu(Mt) the natural projection. Then, for every w ∈ X ,
there exists a unique β ∈ IR such that w = Pw + βv.
We have 〈G′(u), Pw〉 = 0, then

β =
〈G′(u), w〉

〈G′(u), v〉
.

Consequently
〈dF̃ǫ(u), w〉 = 〈F ′

ǫ(u), Pw〉

= 〈F ′
ǫ(u), w〉 −

〈
F ′
ǫ(u),

〈G′(u), w〉

〈G′(u), v〉
v

〉

=

〈
F ′
ǫ(u)−

〈F ′
ǫ(u), v〉

〈G′(u), v〉
G′(u), w

〉
,

then

dF̃ǫ(u) = F ′
ǫ(u)−

〈F ′
ǫ(u), v〉

〈G′(u), v〉
G′(u) = F ′

ǫ(u)− λ(u)G′(u),
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where

λ(u) =
〈F ′

ǫ(u), v〉

〈G′(u), v〉
.

Let (un) ⊂ Mt be such that F̃ǫ(un) −→ c and dF̃ǫ(un) −→ 0. As Fǫ is coercive,
(‖un‖) is bounded in X . By reflexivity of X , there exist u0 ∈ X and a subsequence
of (un) such that un ⇀ u0 in X . Consequently, un −→ u0 in Lp(x)(Ω), G(un) −→
G(u0) and G′(un) −→ G′(u0).
Hence u0 ∈ Mt.
Putting vn = (F ′

ǫ)
−1)(G′(un)), then vn −→ v0 6= 0 in X , because G′(un) −→

G′(u0) 6= 0 in X ′.
Moreover,

〈
G′(un), (F

′
ǫ)

−1 (G′(un))
〉
= 〈F ′

ǫ(vn), vn〉 −→

∫

Ω

(
|∆v0|

p(x) +
ǫ

k
|v0|

p(x)
)
dx > 0,

and we have

∣∣〈F ′
ǫ(un), (F

′
ǫ)

−1 (G′(un))
〉∣∣ = |〈G′(un), vn〉| ≤ k1‖un‖‖vn‖ < k2.

According to λ(u) =
〈F ′

ǫ(u),v〉
〈G′(u),v〉 , we deduce that (λ(un)) is bounded. Taking a sub-

sequence, if necessary, we may assume that λ(un) −→ λ0.

Then, un −→ (F ′
ǫ)

−1(λ0G
′(u0)), because dF̃ǫ −→ 0. �

Set Σn,t = {K ⊂ Mt : compact, symetric and γ(K) ≥ n}.
Define

cn,t,ǫ = inf
K∈Σn,t

sup
u∈K

F̃ǫ(u), n = 1, 2, ...,

by the Ljusternik-Schnirlemann theory on C1 − manifolds, we know that each
cn,t,ǫ is a critical value of F̃ǫ and cn,t,ǫ ≤ cn+1,t,ǫ (n = 1, 2, ...).

Lemma 3.6.

Σn,t 6= ∅, ∀n.

Proof
For given n ∈ IN . Let x1 ∈ Ω and r1 > 0 be small enough such that

B(x1, r1) ⊂ Ω and meas(B(x1, r1)) <
meas(Ω)

2
.

First take u1 ∈ C∞
0 (Ω) with supp(u1) = B(x1, r1).

Put B1 = Ω \B(x1, r1), then meas(B1) >
meas(B1)

2 .

Next, let u2 ∈ C∞
0 (Ω), with supp(u2) = B(x2, r2). After a finite number of steps,

we get u1, u2, ..., un ∈ C∞
0 (Ω) such that supp(ui) ∩ supp(uj) = ∅ if i 6= j and

meas(supp(ui)) > 0, for i, j ∈ {1, 2, ..., n}.
Let En = span{u1, u2, ..., un} be the vector subspace of C∞

0 (Ω) spanned by {u1, u2,
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..., un}. Then, dim(En) = n.
Note that the map

w −→ |w| =

{
β > 0 :

∫

Ω

∣∣∣∣
w(x)

β

∣∣∣∣
p(x)

dx ≤ 1

}

define a norm in En.
Putting Sn = {v ∈ En : |v| = 1} the unit sphere of En.
Let us introduce the functional f : IR+ × En −→ IR by f(s, u) = G(su).
It is clear that f(0, u) = 0 and f(s, u) is nondecreasing with respect to s. More,
for s > 1 we have

f(s, u) ≥ sp
−

G(u),

and so lims−→+∞ f(s, u) = +∞. Therefore, for every u ∈ Sn fixed, there is a
unique value s = s(u) > 0 such that f(s(u), u) = 1.
On the other hand, since

∂f

∂s
(s(u), u) =

∫

Ω

(s(u))
p(x)−1 |u(x)|p(x)dx ≥

p−

s(u)
f (s(u), u) =

p−

s(u)
> 0.

The implicit theorem implies that the map u −→ s(u) is continuous and even by
uniqueness.
Now we take the compact Kn = Mt ∩ En. Since the map h : Sn −→ Kn defined
by h(u) = s(u).u is continuous and odd, it follows by the property of genus that
γ(Kn) ≥ n. This completes the proof. �

Lemma 3.7.
lim

n−→+∞
cn,t,ǫ = +∞.

Proof
X is a reflexive and separable space, there are {ei} ⊂ X and {fi} ⊂ X ′ such that
〈fi, ei〉 = δi,j (Kronecker symbol).

We have X = span{ei : i ∈ IN∗} and X ′ = spanw∗

{fi : i ∈ IN∗}.
For n = 1, 2, ..., denote by

Xn = span{en}, Yn =
n⊕

i=1

Xi and Zn =
∞⊕

i=n

Xi,

Using the following

Proposition 3.8. [21] Assume that ϕ : X −→ IR is weakly-strongly continuous
and ϕ(0) = 0, r > 0 is a given positive number. Then

lim
n−→+∞

sup
u∈Zn,‖u‖≤r

|ϕ(u)| = 0,

we deduce that
lim

n−→+∞
inf

u∈Mt∩Zn

‖u‖ = +∞. (3.9)
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Indeed, by contradiction, assume that there exist c0 > 0 and {un} ⊂ Mt ∩ Zn

such that ‖un‖ ≤ c0 for all n ∈ IN. Therefore,

lim
n−→+∞

sup
u∈Zn,‖u‖≤c0

|G(u)| ≥ lim
n−→+∞

|G(un)| = 1.

That is a contradiction with the proposition 3.8.
From (3.9), for each c > 1; there exists n0 ∈ IN such that for all n > n0 and
u ∈ Mt ∩ Zn, ‖u‖ > c.
On the other hand, for any K ⊂ Mt, compact and symmetric, we have γ(K ∩
Yn−1) ≤ n− 1.
As cod(Zn) ≤ n−1 and by the property of genus, for K ⊂ Σn,t, we have K∩Zn 6= ∅.
Then,

cn,t,ǫ ≥ inf
K∈Σn,t

sup
u∈K∩Zn

F̃ǫ(u) ≥ inf
K∈Σn,t

sup
u∈K∩Zn

‖u‖p
−

p+
≥

cp
−

p+
.

This achieves the proof. �

Applying proposition 3.5, lemma 3.6 and Ljusternik-schnireleman theory to the
problem 3.1, we have for each n ∈ IN, cn,t,ǫ is a critical value of F̃ǫ on submanifold
Mt, such that

0 < cn,t,ǫ ≤ cn+1,t,ǫ, cn,t,ǫ −→ +∞ as n −→ +∞.

Moreover, the problem (3.1) has many eigenpair sequences {(un,t,ǫ, λn,t,ǫ)} such
that

G(±un,t,ǫ) = t, Fǫ(±un,t,ǫ) = cn,t,ǫ and λn,t,ǫ =
〈F ′

ǫ(±un,t,ǫ),±un,t,ǫ〉

〈G′(±un,t,ǫ),±un,t,ǫ〉
.

Note that

p+

tp−
cn,t,ǫ ≥ λn,t,ǫ ≥

p−

tp+
cn,t,ǫ −→ +∞ as n −→ +∞. (3.10)

Furthermore, according to (3.10), we conclude that λn,t,ǫ −→ +∞ as n −→ +∞.
We consider the functional F : X −→ IR defined by

F (u) =

∫

Ω

1

p(x)
|∆u|p(x)dx.

We denote by F̃ the restriction of F on Mt, and define

cn,t = inf
K∈Σn,t

sup
u∈K

F̃ (u).

Proposition 3.9.

cn,t,ǫ −→ cn,t, as ǫ −→ 0.
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Proof
Set ǫ = 1

k
, k ∈ IN∗ and let α > 0 such that cn,t < α. From the definition of cn,t,

there exists K = K(α) ∈ Σn,t such that cn,t ≤ sup
u∈K

F̃ (u) < α.

On the other hand,

cn,t ≤ cn,t,ǫ ≤ sup
u∈K

F̃ǫ(u) ≤ sup
u∈K

F̃ (u) + ǫ
p+

p−
t.

Let ǫ −→ 0, then there exists Nα > 0 such that for all k ≥ Nα

sup
u∈K

F̃ (u) + ǫ
p+

p−
t < α.

Thus for all α > 0, there exists Nα > 0 such that for all k ≥ Nα : cn,t ≤ cn,t,ǫ < α.
Hence the proof is complete.
Proof of theorem (1.1)
We prove now that λn,t,ǫ −→ λn,t, where λn,t is an eigenvalue associated with an
eigenfunction un,t of the problem (1.1).
Set ǫ = 1

k
, k ∈ IN∗ and we suppose that, there exits a sequence (un,t,k)k∈IN∗ of

solutions associated with (λn,t,k)k∈IN∗ such that ‖un,t,k‖ǫ = 1.
We have (un,t,k)k∈IN is bounded. For a subsequence, still denoted (un,t,k)k∈IN, we
have un,t,k ⇀ un,t in X and un,t,k −→ un,t in Lp(x)(Ω).
As the operator Aǫ : X −→ X ′;

〈Aǫ(u), v〉 = 〈F ′
ǫ(u), v〉,

is an homeomorphism of (S+) type and the operator B : X −→ X ′;

〈B(u), v〉 = 〈G′(u), v〉,

is completely continuous, then we have un,t,k −→ un,t in X .
If we set

λn,t =
〈F ′(un,t), un,t〉

〈G′(un,t), un,t〉
,

we have λn,t,k −→ λn,t and λn,t is an eigenvalue of (1.1) associated with un,t.
As G(un,t,ǫ) = t, then we have G(un,t) = t and F (un,t) = cn,t.
The assertion λn,t −→ +∞ can be proved in the same way as for λn,t,ǫ.�
For all u ∈ X \ {0}, we consider the following Rayleigh quotients

γ1(u) =

∫
Ω
|∆u(x)|p(x)dx∫

Ω
|u(x)|p(x)dx

,

and

γ2(u) =

∫
Ω

1
p(x) |∆u(x)|p(x)dx

∫
Ω

1
p(x) |u(x)|

p(x)dx
.
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Lemma 3.10. The following assertions are mutually equivalent

(1) λ∗ = 0

(2) inf{γ1(u) : u ∈ X \ {0}} = 0

(3) inf{γ2(u) : u ∈ X \ {0}} = 0

(4) inf{λ1,t : t > 0} = 0

Proof
We have for all x ∈ Ω

1

p+
≤

1

p(x)
≤

1

p−
,

then for all u ∈ X \ {0}

p−

p+
γ1(u) ≤ γ2(u) ≤

p+

p−
γ1(u). (3.11)

The assertions (2) and (3) are equivalent, and (4) =⇒ (1).
Let λ∗ = 0, then there exist (λn) ⊂ Λ such that λn > 0 and λn −→ 0 as n −→ +∞.
If un be the eigenfunction associated with λn, then γ1(un) −→ 0 as n −→ +∞ and
(2) is hold, which implies that (1) =⇒ (2).
Let now (3) hold, then there exists (vn) ⊂ X such that γ2(vn) −→ 0 as n −→ +∞.
If we consider tn = G(vn) and c1,tn = F (u1,tn), we have

λ1,tn =
〈F ′(u1,tn), u1,tn〉

〈G′(u1,tn), u1,tn〉
.

Thus

0 ≤
F (u1,tn)

G(u1,tn)
=

c1,tn
tn

= inf
v∈Mtn

F (v)

G(v)
= inf

v∈Mtn

γ2(v) ≤ γ2(vn).

Hence, when n −→ +∞

c1,tn
tn

−→ 0 and γ2(u1,tn) −→ 0.

We conclude by (3.11) that γ1(u1,tn) = λ1,tn −→ 0 as n −→ +∞.
Then (3) =⇒ (4). �

Proof of theorem 1.2
We prove that, if there exists an open set U ⊂ Ω and a point x0 ∈ U such that
p(x0) < p(x), for all x ∈ ∂U then, λ∗ = 0.
Denote for A ⊂ Ω and δ > 0.

B(A, δ) = {x ∈ IRN : dist(x,A) < δ}.

Assume that U ⊂ Ω. Then we have

∃ǫ0 > 0 : p(x0) < p(x) − 4ǫ0, ∀x ∈ ∂U,
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∃ǫ1 > 0 : p(x0) < p(x)− 2ǫ0, ∀x ∈ B(∂U, ǫ1), (3.12)

∃ǫ2 > 0 : B(x0, ǫ2) ⊂ U \B(∂U, ǫ1),

and
|p(x0)− p(x)| < ǫ0, ∀x ∈ B(x0, ǫ2). (3.13)

Take u0 ∈ C∞
0 (Ω) such that 0 ≤ u0 ≤ 1 and

u0(x) =

{
1 if x ∈ U \B(∂U, ǫ1),
0 if x /∈ U ∪B(∂U, ǫ1),

(3.14)

Then for sufficiently small t > 0, we have

γ1(tu0) =

∫
Ω |∆(tu0(x))|p(x)dx∫

Ω
|tu0(x)|p(x)dx

≤

∫
B(∂U,ǫ1)

|∆(tu0(x))|p(x)dx∫
B(x0,ǫ2)

|tu0(x)|p(x)dx
≤

C1

C2
tp(x1)−p(x2),

where C1 =
∫
B(∂U,ǫ1)

|∆(u0(x))|p(x)dx and C2 =
∫
B(x0,ǫ2)

|u0(x)|p(x)dx are positive

constants independent of t, x1 ∈ B(∂U, ǫ1) and x2 ∈ B(x0, ǫ2).
By using (3.12) and (3.13), we have p(x1)− p(x2) > ǫ0.
So γ1(tu0) ≤

C1

C2
tǫ0 , for all t ∈]0, 1[.

When t → 0, we obtain inf{γ1(u) : u ∈ X \ {0}} = 0. This achieves the proof.
The proof of the case p(x0) > p(x) is similar.
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