THE GENERALIZED NON-ABSOLUTE TYPE OF SEQUENCE SPACES

N. SUBRAMANIAN³, M.R.BIVIN ¹, AND N. SAIVARAJU ²

ABSTRACT. In this paper we introduce the notion of $\lambda_{mn}-\chi^2$ and Λ^2 sequences. Further, we introduce the spaces $\left[\chi_{f\mu}^{2q\lambda}, \|(d\left(x_1,0\right),d\left(x_2,0\right),\cdots,d\left(x_{n-1},0\right))\|_p\right]^{I(F)}$ and $\left[\Lambda_{f\mu}^{2q\lambda}, \|(d\left(x_1,0\right),d\left(x_2,0\right),\cdots,d\left(x_{n-1},0\right))\|_p\right]^{I(F)}$, which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces χ^2 and Λ^2 , respectively. Moreover, we establish some inclusion relations between these spaces.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on, they were investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy [6], Turkmenoglu [7], and many others.

We procure the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \right\},$$

$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},$$

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},$$

Received:

Revised:

Key words and phrases. analytic sequence, double sequences, χ^2 space, difference sequence space, Musielak - modulus function, p- metric space, Ideal; ideal convergent; fuzzy number; multiplier space; non-absolute type.

²⁰¹⁰ Mathematics Subject Classification. 40A05; 40C05; 46A45; 03E72; 46B20.

$$\mathcal{C}_{bp}\left(t\right):=\mathcal{C}_{p}\left(t\right)\bigcap\mathcal{M}_{u}\left(t\right)$$
 and $\mathcal{C}_{0bp}\left(t\right)=\mathcal{C}_{0p}\left(t\right)\bigcap\mathcal{M}_{u}\left(t\right);$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p-lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn}=1$ for all $m, n \in \mathbb{N}$; $\mathcal{M}_{u}\left(t\right)$, $\mathcal{C}_{p}\left(t\right)$, $\mathcal{C}_{0p}\left(t\right)$, $\mathcal{L}_{u}\left(t\right)$, $\mathcal{C}_{bp}\left(t\right)$ and $\mathcal{C}_{0bp}\left(t\right)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [8,9] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha-,\beta-,\gamma-$ duals of the spaces $\mathcal{M}_{u}\left(t\right)$ and $\mathcal{C}_{bp}\left(t\right)$. Quite recently, in her PhD thesis, Zelter [10] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [11] and Tripathy have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and Basar [12] have defined the spaces \mathcal{BS} , $\mathcal{BS}(t)$, \mathcal{CS}_p , \mathcal{CS}_{bp} , \mathcal{CS}_r and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces \mathcal{M}_{u} , \mathcal{M}_{u} (t), \mathcal{C}_{p} , \mathcal{C}_{bp} , \mathcal{C}_{r} and \mathcal{L}_{u} , respectively, and also examined some properties of those sequence spaces and determined the α -duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and the $\beta(\vartheta)$ – duals of the spaces \mathfrak{CS}_{bp} and \mathfrak{CS}_r of double series. Basar and Sever [13] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_{q} . Quite recently Subramanian and Misra [14] have studied the space $\chi_{M}^{2}\left(p,q,u\right)$ of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [15] as an extension of the definition of strongly Cesàro summable sequences. Connor [16] further extended this definition to a definition of strong A- summability with respect to a modulus where $A=(a_{n,k})$ is a nonnegative regular matrix and established some connections between strong A- summability, strong A- summability with respect to a modulus, and A- statistical convergence. In [17] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [18]-[19], and [20] the four dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} x_{mn}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b \ge 0$ and

0 , we have

$$(1.1) (a+b)^p \le a^p + b^p$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N})$.

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{finite sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only non zero term is a $\frac{1}{(i+j)!}$ in the $(i,j)^{th}$ place for each $i,j \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (\mathfrak{F}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Let M and Φ are mutually complementary modulus functions. Then, we have:

(i) For all $u, y \geq 0$,

(1.2)
$$uy \le M(u) + \Phi(y), (Young's inequality)[See[21]]$$

(ii) For all $u \ge 0$,

(1.3)
$$u\eta\left(u\right) = M\left(u\right) + \Phi\left(\eta\left(u\right)\right).$$

(iii) For all $u \ge 0$, and $0 < \lambda < 1$,

$$(1.4) M(\lambda u) \le \lambda M(u)$$

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, for some \rho > 0 \right\},$$

The space ℓ_M with the norm

$$||x|| = inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\},$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p .

A sequence $f = (f_{mn})$ of modulus function is called a Musielak-modulus function. A sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v|u - (f_{mn})(u) : u \ge 0\}, m, n = 1, 2, \cdots$$

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f, the Musielak-modulus sequence space t_f is defined as follows

$$t_f = \left\{ x \in w^2 : M_f \left(|x_{mn}| \right)^{1/m+n} \to 0 \, as \, m, n \to \infty \right\},\,$$

where M_f is a convex modular defined by

$$M_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} (|x_{mn}|)^{1/m+n}, x = (x_{mn}) \in t_f.$$

We consider t_f equipped with the Luxemburg metric

$$d\left(x,y\right) = \sup_{mn} \left\{ \inf\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(\frac{\left|x_{mn}\right|^{1/m+n}}{mn}\right)\right) \le 1 \right\}$$

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

$$Z\left(\Delta\right) = \left\{x = (x_k) \in w : (\Delta x_k) \in Z\right\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here c, c_0 and ℓ_{∞} denote the classes of convergent, null and bounded sclar valued single sequences respectively. The difference sequence space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \leq p \leq \infty$ by Başar and Altay and in the case $0 by Altay and Başar in [1]. The spaces <math>c(\Delta), c_0(\Delta), \ell_{\infty}(\Delta)$ and bv_p are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$
 and $||x||_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}, (1 \le p < \infty)$.

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\right\}$$

where $Z = \Lambda^2$, χ^2 and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$. The generalized difference double notion has the following representation: $\Delta^m x_{mn} = \Delta^{m-1} x_{mn} - \Delta^{m-1} x_{mn+1} - \Delta^{m-1} x_{m+1n} + \Delta^{m-1} x_{m+1n+1}$, and also this generalized B^{μ} difference operator is equivalent to the following binomial representation: $B^{\mu} x_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{m} (-1)^{i+j} {m \choose i} {m \choose j} x_{m+i,n+j}$.

Let $n \in \mathbb{N}$ and X be a real vector space of dimension w, where $n \leq m$. A real valued function $d_p(x_1, \ldots, x_n) = \|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p$ on X satisfying the following four conditions:

- (i) $||(d_1(x_1,0),\ldots,d_n(x_n,0))||_p = 0$ if and only if $d_1(x_1,0),\ldots,d_n(x_n,0)$ are linearly dependent,
- (ii) $||(d_1(x_1,0),\ldots,d_n(x_n,0))||_p$ is invariant under permutation,
- (iii) $\|(\alpha d_1(x_1, 0), \dots, d_n(x_n, 0))\|_p = |\alpha| \|(d_1(x_1, 0), \dots, d_n(x_n, 0))\|_p, \alpha \in \mathbb{R}$
- (iv) $d_p((x_1, y_1), (x_2, y_2) \cdots (x_n, y_n)) = (d_X(x_1, x_2, \cdots x_n)^p + d_Y(y_1, y_2, \cdots y_n)^p)^{1/p}$ for $1 \le p < \infty$; (or)
- (v) $d((x_1, y_1), (x_2, y_2), \dots (x_n, y_n)) := \sup \{d_X(x_1, x_2, \dots x_n), d_Y(y_1, y_2, \dots y_n)\}$, for $x_1, x_2, \dots x_n \in X, y_1, y_2, \dots y_n \in Y$ is called the p product metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the p norm:

$$\| (d_{1}(x_{1},0), \dots, d_{n}(x_{n},0)) \|_{E} = \sup (|\det(d_{mn}(x_{mn},0))|) =$$

$$\sup \begin{pmatrix} |d_{11}(x_{11},0) & d_{12}(x_{12},0) & \dots & d_{1n}(x_{1n},0) \\ |d_{21}(x_{21},0) & d_{22}(x_{22},0) & \dots & d_{2n}(x_{1n},0) \\ | \vdots & \vdots & \vdots & \vdots \\ |d_{n1}(x_{n1},0) & d_{n2}, 0(x_{n2},0) & \dots & d_{nn}(x_{nn},0) | \end{pmatrix}$$

where $x_i = (x_{i1}, \dots x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots n$.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p- metric. Any complete p- metric space is said to be p- Banach metric space.

2. Notion of λ_{mn} – double chi and double analytic sequences

The generalized de la Vallee-Pussin means is defined by:

have

$$t_{rs}\left(x\right) = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} x_{mn},$$

where $I_{rs} = [rs - \lambda_{rs} + 1, rs]$. For the set of sequences that are strongly summable to zero, strongly summable and strongly bounded by the de la Vallee-Poussin method.

The notion of λ — double gai and double analytic sequences as follows: Let $\lambda = (\lambda_{mn})_{m,n=0}^{\infty}$ be a strictly increasing sequences of positive real numbers tending to infinity, that is

$$0 < \lambda_{00} < \lambda_{11} < \cdots$$
 and $\lambda_{mn} \to \infty$ as $m, n \to \infty$

and said that a sequence $x = (x_{mn}) \in w^2$ is λ - convergent to 0, called a the λ - limit of x, if $B_n^{\mu}(x) \to 0$ as $m, n \to \infty$, where

$$B_{\eta}^{\mu}(x) = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}) ((m+n)! |\Delta^{m} x_{mn}|)^{1/m+n},$$
where $((m+n)! |\Delta^{m} x_{mn}|)^{1/m+n} = (m+n)!^{1/m+n}$

$$\left(\Delta^{m-1}\lambda_{m,n}x_{mn} - \Delta^{m-1}\lambda_{m,n+1}x_{m,n+1} - \Delta^{m-1}\lambda_{m+1,n}x_{m+1,n} + \Delta^{m-1}\lambda_{m+1,n+1}x_{m+1,n+1}\right)^{1/m+n}.$$
 In particular, we say that x is a λ_{mn} – double gai sequence if $B^{\mu}_{\eta}(x) \to 0$ as $m, n \to \infty$.
Further we say that x is λ_{mn} – double analytic sequence if $\sup_{m} \left|B^{\mu}_{\eta}(x)\right| < \infty$. We

$$\lim_{m,n\to\infty} \left| B^{\mu}_{\eta}(x) - a \right| = \lim_{m,n\to\infty} \left| \frac{1}{\varphi_{rs}} \sum_{m\in I_{rs}} \sum_{n\in I_{rs}} \left(\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1} \right) \left((m+n)! \left| \Delta^m x_{mn} \right| \right)^{1/m+n} \right| = 0.$$
 So we can say that $\lim_{m,n\to\infty} \left| B^{\mu}_{\eta}(x) \right| = a$. Hence x is λ_{mn} — convergent to a .

- 2.1. **Lemma.** Every convergent sequence is λ_{mn} convergent to the same ordinary limit.
- 2.2. **Lemma.** If a λ_{mn} Musielak convergent sequence converges in the ordinary sense, then it must Musielak converge to the same λ_{mn} limit.

Proof: Let
$$x = (x_{mn}) \in w^2$$
 and $m, n \geq 1$. We have
$$((m+n)! |\Delta^m x_{mn}|)^{1/m+n} - B^{\mu}_{\eta}(x) = ((m+n)! |\Delta^m x_{mn}|)^{1/m+n} - \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}) ((m+n)! |\Delta^m x_{mn}|)^{1/m+n} \\ = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}) \\ \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} ((m+n)! (\Delta^{m-1} x_{mn} - \Delta^{m-1} x_{m,n+1} - \Delta^{m-1} x_{m+1,n} + \Delta^{m-1} x_{m+1,n+1}))^{1/m+n} \\ = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} ((m+n)! (\Delta^{m-1} x_{mn} - \Delta^{m-1} x_{m,n+1} - \Delta^{m-1} x_{m+1,n} + \Delta^{m-1} x_{m+1,n+1}))^{1/m+n} \\ (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}).$$
Therefore we have for every $x = (x_{mn}) \in w^2$ that $((m+n)! |\Delta^m x_{mn}|)^{1/m+n} - B^{\mu}_{\eta}(x) = 0$

Therefore we have for every $x = (x_{mn}) \in w^2$ that $((m+n)! |\Delta^m x_{mn}|)^{\gamma_m} - B^{\mu}_{\eta}(x) = S_{mn}(x) (n, m \in \mathbb{N})$, where the sequence $S(x) = (S_{mn}(x))_{m,n=0}^{\infty}$ is defined by $S_{00}(x) = S_{mn}(x)$

0 and
$$S_{mn}(x) = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \sum_{n \in I_{rs}} (\Delta^{m-1} x_{mn} - \Delta^{m-1} x_{m,n+1} - \Delta^{m-1} x_{m+1,n} + \Delta^{m-1} x_{m+1,n+1})^{1/m+n} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}), (n, m \ge 1).$$

2.3. **Lemma.** A λ_{mn} – Musielak convergent sequence $x = (x_{mn})$ converges if and only if $S(x) \in \left[\chi_{fB_{\eta}^{\mu}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)}$

Proof: Let $x = (x_{mn})$ be λ_{mn} — Musielak convergent sequence. Then from Lemma 2.2 we have $x = (x_{mn})$ converges to the same λ_{mn} — limit. We obtain $S(x) \in \left[\chi_{fB^{\mu}_{\eta}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)}$. Conversely,

let
$$S(x) \in \left[\chi_{fB_{\eta}^{\mu}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$$
. We have
$$\lim_{m,n\to\infty} ((m+n)! |\Delta^{m}x_{mn}|)^{1/m+n} = \lim_{m,n\to\infty} B_{n}^{\mu}(x).$$

From the above equation, we deduce that λ_{mn} – convergent sequence $x = (x_{mn})$ converges.

- 2.4. **Lemma.** Every double analytic sequence is λ_{mn} double analytic.
- 2.5. **Lemma.** A λ_{mn} Musielak analytic sequence $x=(x_{mn})$ is analytic if and only if $S\left(x\right)\in\left[\Lambda_{fB_{\eta}^{\mu}}^{2},\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots,d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{I\left(F\right)}$

Proof: From Lemma 2.4 and $S_{00}(x) = 0$ and

$$S_{mn}(x) = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} ((m+n)! \left(\Delta^{m-1} x_{mn} - \Delta^{m-1} x_{m,n+1} - \Delta^{m-1} x_{m+1,n} + \Delta^{m-1} x_{m+1,n+1} \right))^{1/m+n} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}), (n, m \ge 1).$$

3. The spaces of $\lambda_{mn}-$ double gai and double analytic sequences

In this section we introduce the sequence space

$$\left[\chi_{f\Delta_{mn}^{\lambda}}^{2}, \left\| \left(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)\right) \right\|_{p}\right]^{I(F)} \text{ and }$$

$$\left[\Lambda_{f\Delta_{mn}^{\lambda}}^{2}, \left\| \left(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right)\right) \right\|_{p}\right]^{I(F)} \text{ as sets of } \lambda_{mn} \text{ double gai and double analytic sequences:}$$

$$\left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} = \lim_{m,n\to\infty} \left[B_{\eta}^{\mu}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} = 0$$

$$\left[\Lambda_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} = \sup_{m,n} \left[B_{\eta}^{\mu}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} < \infty.$$

3.1. **Theorem.** The sequence spaces $\left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ and $\left[\Lambda_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ are isomorphic to the spaces $\left[\chi_{f}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ and $\left[\Lambda_{f}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$

Proof: We only consider the case $\left[\chi_{f\Delta_{mn}^{\lambda}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)} \cong$

$$\left[\chi_f^2, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]^{I(F)} \text{ and }$$

$$\left[\Lambda_{f\Delta_{mn}^{\lambda}}^2, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]^{I(F)} \cong$$

$$\left[\Lambda_f^2, \| (d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0)) \|_p \right]^{I(F)} \text{ can be shown similarly.}$$

Consider the transformation T defined, $Tx = B_{\eta}^{\mu} \in \left[\chi_f^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)}$ for every $x \in \left[\chi_{f\Delta_{mn}}^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)}$. The linearity of T is obvious. It is trivial that x = 0 whenever Tx = 0 and hence T is injective. To show surjective we define the sequence $x = \{x_{mn}(\lambda)\}$ by

 $B_{\eta}^{\mu}(x) = \frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1}) \left((m+n)! \left| \Delta^m x_{mn} \right| \right)^{1/m+n} = y_{mn}$

We can say that $B^{\mu}_{\eta}(x) = y_{mn}$ from (3.1) and $x \in \left[\chi_f^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$, hence $B^{\mu}_{\eta}(x) \in \left[\chi_f^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$. We deduce from that $x \in \left[\chi_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$ and Tx = y. Hence T is surjective. We have for every $x \in \left[\chi_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$ that $d(Tx,0)_{\chi^2} = d(Tx,0)_{\Lambda^2} = d(x,0)_{\left[\chi_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}}$. Hence $\left[\chi_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$ and $\left[\chi_f^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$ are ismorphic. Similarly obtain other sequence spaces.

4. Some Inclusion and Relations

- 4.1. **Theorem.** The inclusion $\left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)} \subset \left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)}$ holds **Proof:** Let $\left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)}$. Then we deduce that $\frac{1}{\varphi_{rs}} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} \lambda_{m,n+1} \lambda_{m+1,n} + \lambda_{m+1,n+1}) \left((m+n)! |\Delta^{m}x_{mn}|\right)^{1/m+n} \leq \frac{1}{\varphi_{rs}} lim_{m,n \to \infty} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} (\lambda_{m,n} \lambda_{m,n+1} \lambda_{m+1,n} + \lambda_{m+1,n+1}) \left((m+n)! |\Delta^{m}x_{mn}|\right)^{1/m+n} = lim_{m,n \to \infty} \left((m+n)! |\Delta^{m}x_{mn}|\right)^{1/m+n} = 0.$ Hence $x \in \left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0),d(x_{2},0),\cdots,d(x_{n-1},0))\|_{p}\right]^{I(F)}.$
- 4.2. **Theorem.** The inclusion $\left[\Lambda_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)} \subset \left[\Lambda_{f\Delta_{mn}}^2, \|(d(x_1,0),d(x_2,0),\cdots,d(x_{n-1},0))\|_p\right]^{I(F)}$ holds. Proof: It is obvious. Therefore omit the proof.
- 4.3. **Theorem.** The inclusion $\left[\chi_{f}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} \subset \left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ hold. Furthermore, the equalities hold if and only if $S(x) \in \left[\chi_{f}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ for every sequence x in the space $\left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$ **Proof:** Consider (4.1) $\left[\chi_{f}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)} \subset \left[\chi_{f\Delta_{mn}}^{2}, \|(d(x_{1},0), d(x_{2},0), \cdots, d(x_{n-1},0))\|_{p}\right]^{I(F)}$

is obvious from Lemma 2.1. Then, we have for every $x \in \left[\chi_{f\Delta_{mn}}^{2}, \|(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right))\|_{p}\right]^{I(F)} \text{ that } \\ x \in \left[\chi_{f}^{2}, \|(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right))\|_{p}\right]^{I(F)} \text{ and hence } \\ S\left(x\right) \in \left[\chi_{f}^{2}, \|(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right))\|_{p}\right]^{I(F)} \text{ by Lemma 2.3. Conversely, } \\ \text{let } x \in \left[\chi_{f\Delta_{mn}}^{2}, \|(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right))\|_{p}\right]^{I(F)} \text{. Then, we have that } S\left(x\right) \in \left[\chi_{f}^{2}, \|(d\left(x_{1},0\right), d\left(x_{2},0\right), \cdots, d\left(x_{n-1},0\right))\|_{p}\right]^{I(F)} \text{. Thus, it follows by Lemma 2.3 and }$

then Lemma 2.2, that
$$x \in \left[\chi_f^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)}$$
. We get (4.2)
$$\left[\chi_{f\Delta_{mn}}^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)} \subset \left[\chi_f^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)}$$
From the equation (4.1) and (4.2) we get
$$\left[\chi_{f\Delta_{mn}}^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)} = \left[\chi_f^2, \|(d(x_1, 0), d(x_2, 0), \cdots, d(x_{n-1}, 0))\|_p\right]^{I(F)}.$$

References

- [1] T.J.I'A.Bromwich, An introduction to the theory of infinite series, Macmillan and Co.Ltd., New York, (1965).
- [2] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [3] F.Moricz, Extentions of the spaces c and c_0 from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129-136.
- [4] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
- [5] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- [6] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
- [7] A.Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
- [8] A.Gökhan and R.Çolak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., 157(2), (2004), 491-501.
- [9] A.Gökhan and R.Çolak, Double sequence spaces ℓ_2^{∞} , ibid., 160(1), (2005), 147-153.
- [10] M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- [11] M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- [12] B.Altay and F.Baaar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
- [13] F.Başar and Y.Sever, The space \mathcal{L}_p of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
- [14] N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
- [15] I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
- [16] J.Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.
- [17] A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.
- [18] H.J.Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.
- [19] ———-, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343-358.

- [20] ———, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293-297.
- [21] P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [22] J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [23] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
- [24] P.Kostyrko, T.Salat and W.Wilczynski, *I* convergence, *Real Anal. Exchange*, **26(2)** (2000-2001), 669-686, MR 2002e:54002.
- [25] V.Kumar and K.Kumar, On the ideal convergence of sequences of fuzzy numbers, *Inform. Sci.*, 178(24) (2008), 4670-4678.
- [26] V.Kumar, On I and I^* convergence of double sequences, Mathematical communications, 12 (2007), 171-181.
- [27] B.Hazarika, On Fuzzy Real Valued I— Convergent Double Sequence Spaces, The Journal of Nonlinear Sciences and its Applications (in press).
- [28] B.Hazarika, On Fuzzy Real Valued I- Convergent Double Sequence Spaces defined by Musielak-Orlicz function, J. Intell. Fuzzy Systems, **25(1)** (2013), 9-15, DOI: 10.3233/IFS-2012-0609.
- [29] B.Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, *J. Intell. Fuzzy Systems*, **25(1)** (2013), 157-166, DOI: 10.3233/IFS-2012-0622.
- [30] B.Hazarika, On σ uniform density and ideal convergent sequences of fuzzy real numbers, J. Intell. Fuzzy Systems, DOI: 10.3233/IFS-130769.
- [31] B.Hazarika, Fuzzy real valued lacunary I- convergent sequences, Applied Math. Letters, **25(3)** (2012), 466-470.
- [32] B.Hazarika, Lacunary I— convergent sequence of fuzzy real numbers, The Pacific J. Sci. Techno., 10(2) (2009), 203-206.
- [33] B.Hazarika, On generalized difference ideal convergence in random 2-normed spaces, *Filomat*, **26(6)** (2012), 1265-1274.
- [34] B.Hazarika, Some classes of ideal convergent difference sequence spaces of fuzzy numbers defined by Orlicz function, *Fasciculi Mathematici*, **52** (2014)(Accepted).
- [35] B.Hazarika, I- convergence and Summability in Topological Group, J. Informa. Math. Sci., 4(3) (2012), 269-283.
- [36] B.Hazarika, Classes of generalized difference ideal convergent sequence of fuzzy numbers, *Annals of Fuzzy Math. and Inform.*, (in press).
- [37] B.Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, *Afrika Matematika*, DOI: 10.1007/s13370-013-0168-0.
- [38] B.Hazarika and E.Savas, Some I- convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, *Math. Comp. Modell.*, **54(11-12)** (2011), 2986-2998.
- [39] B.Hazarika, K.Tamang and B.K.Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, *The J. Math. and Computer Sci.*, (Accepted).
- [40] B.Hazarika and V.Kumar, Fuzzy real valued I- convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Systems, (accepted).
- [41] B.C.Tripathy and B.Hazarika, I- convergent sequence spaces associated with multiplier sequences, $Math.\ Ineq.\ Appl.,\ 11(3)\ (2008),\ 543-548.$
- [42] B.C.Tripathy and B.Hazarika, Paranorm I- convergent sequence spaces, Math. Slovaca, 59(4) (2009), 485-494.
- [43] B.C.Tripathy and B.Hazarika, Some I- convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sinica, 27(1) (2011), 149-154.

[44] B.Hazarika and A.Esi, On ideal convergent sequence spaces of fuzzy real numbers associated with multiplier sequences defined by sequence of Orlicz functions, *Annals of Fuzzy Mathematics and Informatics*, (in press).

³DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR-613 401, INDIA E-mail address: nsmaths@yahoo.com

¹ DEPARTMENT OF MATHEMATICS, CARE GROUP OF INSTITUTIONS, TRICHIRAPPALLI-620 009, INDIA E-mail address: mrbivin@gmail.com

² DEPARTMENT OF MATHEMATICS, SRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY, TRICHIRAPPALLI-621 105, INDIA E-mail address: saivaraju@yahoo.com