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On Zweier Sequence Spaces and de la Vallée-Poussin mean of order «
and some geometric properties
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ABSTRACT: The main purpose of this paper is to study some geometrical properties

such as order continuous, the Fatou property and the Banach-Saks property of the

new space [2%]oo(p).
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1. Introduction

We denote w,l,c and cy, the spaces of all, bounded, convergent, null se-
quences, respectively. Also, by ¢; and ¢,, we denote the spaces of all absolutely
summable and p-absolutely summable series, respectively. Recall that a sequence
(z(7));2, in a Banach space X is called Schauder (or basis) of X if for each z € X
there exists a unique sequence (a(i));-, of scalars such that z = >_°° a(i)z(i), i.e.
limy, 00 D1y a(i)z(i) = z. A sequence space X with a linear topology is called a
K-space if each of the projection maps P; : X — C defined by P;(z) = z(i) for
z = (2(i));, € X is continuous for each natural i. A Fréchet space is a complete
metric linear space and the metric is generated by a F-norm and a Fréchet space
which is a K-space is called an FK-space i.e. a K-space X is called an FK-space if
X is a complete linear metric space. In other words, X is an FK-space if X is a
Fréchet space with continuous coordinatewise projections. All the sequence spaces
mentioned above are FK-space except the space cog which is the space of real se-
quences which have only a finite number of non-zero coordinates. An FK-space X
which contains the space cgg is said to have the property AK if for every sequence
(i), € X,z = 322, z(i)e(i) where e(i) = (0,0,...17"Place 0,0, ...).

A Banach space X is said to be a Kithe sequence space if X is a subspace of w
such that

(a) if x € w,y € X and |x(i)| < |y(¢)| for all i € N, then z € X and ||z|| < ||y||
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(b) there exists an element x € X such that (i) > 0 for all i € N.

We say that z € X is order continuous if for any sequence (z,) € X such that
2 (i) < |z(i)| for all i € N and z,,(i) — 0 as n — oo we have ||x,|| — 0 holds.

A Kothe sequence space X is said to be order continuous if all sequences in X
are order continuous. It is easy to see that x € X order continuous if and only if
[1(0,0,...,0,z(n+ 1), 2(n +2),...)|| = 0 as n — oo.

A Kothe sequence space X is said to be the Fatou property if for any real se-
quence z and (x,) in X such that z,, T  coordinatewisely and sup,, ||z, || < oo, we
have that = € X and ||z,|| — ||z||-

A Banach space X is said to have the Banach-Saks property if every bounded
sequence (x,) in X admits a subsequence (z,) such that the sequence (¢5(z)) is
convergent in X with respect to the norm, where

21+ 29 + ...+ 2k

te(z) = 3 for all k € N.

Some of works on geometric properties of sequence space can be found in
[4,5,9,10,16,20].

Sengoniil [22] defined the sequence y = (yx) which is frequently used as the
Z'-transformation of the sequence z = (zy) i.e.

Yp = 1Tk + (1 — i)xk_l

where z_; =0,k # 0,1 < k < oo and Z* denotes the matrix Z* = (z,;) defined by

i, if n =k;
Znk = 1—4, ifn—1=k;
0, otherwise.

Sengoniil [22] introduced the Zweier sequence spaces Z and Z as follows
2Z={r=(vx) Ew: Z'z €c}
and _
Zo =4z = (z) ew: Z'z € ¢}.

For details on Zweier sequence spaces we refer to [6,12,13,15,17,18].

Let A = (\,) be an increasing sequence of positive real numbers tending to co
such that A\, < A\.+1,A\; = 1. The generalized de la Vallée-Poussin mean is defined
by t.(z) = )\% > ker, Tk where I = [r — A, + 1,7] for » = 1,2,3,.... A sequence
x = (z1) is said to be (V,A)-summable to a number L if ¢,.(x) — L as r — oo
(see [19]). If A\, = r, then (V, \)-summability is reduced to Cesaro summability.
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We denote A the set of all increasing sequences of positive real numbers tending
to oo such that A, < A\, + 1, A\ = 1. For details on (V, \)-summability we refer to
[1,2,3,7,8,11,14,21].

2. New set of sequences of order «

In this section let @ € (0, 1] be any real number, let A = (A,) be an increasing
sequence of positive real numbers tending to co such that A, < A+ 1,A\; =1, and
p be a positive real number such that 1 < p < co. Now we define the following
sequence space.

2] o0 (p) = {x cw: sgp/\—la Z | (Zigg)k P < oo} )
" kel
Special cases:
(a) For p =1 we have [29](p) = [25]co-
(b) For a =1 and p =1 we have [2%](p) = [Za)oo-

Theorem 2.1. Let o € (0, 1] and p be a positive real number such that 1 < p < co.

[e3

Then the sequence space [Z$]oo(p) is a BK-space normed by

1
1 . ?
el = (12, )

kel,.

Proof: The proof of the result is straightforward, so omitted. O

Theorem 2.2. Let o € (0, 1] and p be a positive real number such that 1 < p < co.
Then [28]oc C [Z8]o0 (p)-

Proof: The proof of the result is straightforward, so omitted. O

Theorem 2.3. Let a and B be fized real numbers such that 0 < o < <1 and p
be a positive real number such that 1 < p < co. Then [Z$]ec(p) C [Zf]oo(p)

Proof: The proof of the result is straightforward, so omitted. |

Theorem 2.4. Let o and 3 be fized real numbers such that 0 < a < 8 < 1 and
p be a positive real number such that 1 < p < co. For any two sequences A\ = (\,)

and pu = (p,.) for all v, then [Z$]oo(p) C (2] (p) if and only if sup,. (2—%) < 0.
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Proof: Let z = (z) € [2]s(p) and sup,. (:‘L—’Z) < 00. Then
Sup v Z | (Z'z) k [P < o0
r A kel

and there exists a positive number K such that A* < Ky and so that -

T

for all r. Therefore, we have

= Y 1(Z0), 1 < 55 S 1(2)
T kel ’” kel,
Now taking supremum over r, we get
sup BZ|Z1 |p<sup Z|ZZ k|p

T er, Ar kel,

and hence z € [Z[]]o (p).

Next suppose that [29]o0 (p) C [20]o0(p) and sup, (Aa = 0o. Then there exists

an incresing sequence (r;) of natural numbers such that lim; ( ) = 00. Let L be

a

Al
a positive real number, then there exists 79 € N such that —= > L for all r; > 1.

i

Then AY > Lu? and so = > /\a_ .
Z|Zz |P>—Z|ZZ . [P for all 7; > ig.
e, kel, Ari et

Now taking supremum over r; > o then we get

sup — Z |[(Z'z), |V > SUD o Z | (Z'z), |P. (2.1)

i >10 /Lh kEI r1>10 7“1 kEI

Since the relation (2.1) holds for all L € RT (we may take the number L sufficienlty

large), we have
7
sup — Y | (Z'2), [P =
riio jir, kel,,

but = (z1) € [2]sc(p) with
S (Aa> <
up 00.
{0

Therefore x ¢ [Z]]oo(p) which contradicts that [29]ee(p) C [20]oo(p). Hence

Sup;>1 (f\w) < 0. 0
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Corollary 2.5. Let o and 8 be fized real numbers such that 0 < a < 8 <1 and
p be a positive real number such that 1 < p < co. For any two sequences A\ = (Ay)
and p = (p,) in A for all r > 1, then

(a) [23]oc(p) = [Zﬁ]oo(p) if and only if 0 < inf, (%;L) < sup, (2—?) < 0.

(b) 25 (p) = [Zg]oo(p) if and only if 0 < inf, (%) < sup, (%) < Q.

(c) [ZS]eo(p) = [Zf]oo(p) if and only if 0 < inf, (%) < sup,. (%) < o0.
Theorem 2.6. ¢, C [Z$]oc(p) C loo.
Proof: The proof of the result is straightforward, so omit it. a
Theorem 2.7. If 0 < p < g, then [Z]oc(p) C [2%]50(q)-
Proof: The proof of the result is straightforward, so omit it. a

3. Some geometric properties of the new space

In this section we study some of the geometric properties like order continuous,
the Fatou property and the Banach-Saks property in this new sequence space.

Theorem 3.1. The space [Z$]o0(p) is order continuous.

Proof: We have to show that the space [2§]o(p) is an AK-space. It is easy to see
that [2§]eo(p) contains coo which is the space of real sequences which have only a
finite number of non-zero coordinates. By using the definition of AK-properties,
we have that = (2()) € [2{]s(p) has a unique representation = Y2, z(i)e(i)
ie. ||z — 2|, = ](0,0,.,2(j),2(j +1),..)||a — 0 as j — oo, which means that
[Z8]00 (p) has AK. Therefore BK-space [Z$](p) containing coo has AK-property,
hence the space [Z{]o(p) is order continuous. O

Theorem 3.2. The space [Z$]oo(p) has the Fatou property.

Proof: Let x be a real sequence and (z;) be any nondecreasing sequence of non-
negative elements form [29](p) such that z;(i) — z() as j — oo coordinatewisely
and sup; [|z;|o < o0.

Let us denote T' = sup; ||z;||o. Since the supremum is homogeneous, then we
have

T (Z [(Z1,(0), |P)

kel
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1 Ziz; (i), |
5 ( )

< sup —5
v AY kel, l|znla
1
= —|lz =1.
oalla 7l

Also by the assumptions that (z;) is non-dreceasing and convergent to = coordi-
natewisely and by the Beppo-Levi theorem, we have

=

1 1 .
— i J— Lo (g p
7 m sup v I;el | (Z'2;(@),, |

==

Zi . P
= Slip % Z % S 1,
kel,.
whence

[z]la <T = sup|lzjlla = lim [|z;][o < oo.
7 J—0o0

Therefore € [2¢](p). On the other hand, since 0 < z for any natural number
j and the sequence (z;) is non-decreasing, we obtain that the sequence (||z;||a) is
bounded form above by ||z||o. Therefore lim; o0 ||7;]|la < ||Z||o Which contadicts
the above inequality proved already, yields that ||z||o = lim; 00 ||Z}]|a- O

Theorem 3.3. The space [2](p) has the Banach-Saks property.

Proof: The proof of the result follows from the standard technique. a
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