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The 2D Zakharov-Kuznetsov-Burgers equation on a strip

Nikolai A. Larkin

ABSTRACT: An initial-boundary value problem for the 2D Zakharov-Kuznetsov-
Burgers equation posed on a channel-type strip was considered. The existence and
uniqueness results for regular and weak solutions in weighted spaces as well as
exponential decay of small solutions without restrictions on the width of a strip
were proven both for regular solutions in an elevated norm and for weak solutions
in the L2-norm.
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1. Introduction

We are concerned with an initial-boundary value problem (IBVP) for the two-
dimensional Zakharov-Kuznetsov-Burgers (ZKB) equation

Ut + Uy — Ugy + Uy + Uggy + Ugyy =0 (1.1)

posed on a strip modeling an infinite channel {(z,y) € R : x € R, y € (0, B), B >
0}. This equation is a two-dimensional analog of the well-known Korteweg-de Vries-
Burgers (KdV) equation

Up + Uy — Ugy + Uy + Upze = 0 (1.2)

which includes dissipation and dispersion and has been studied by various re-
searchers due to its applications in Mechanics and Physics [1,2,3]. One can find
extensive bibliography and sharp results on decay rates of solutions to the Cauchy
problem (IVP) for (1.2) in [1]. Exponential decay of solutions to the initial problem
for (1.2) with additional damping has been established in [3]. Equations (1.1) and
(1.2) are typical examples of so-called dispersive equations which attract consider-
able attention of both pure and applied mathematicians in the past decades.
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Quite recently, the interest on dispersive equations became to be extended
to multi-dimensional models such as Kadomtsev-Petviashvili (KP) and Zakharov-
Kuznetsov (ZK) equations [24]. As far as the ZK equation and its generalizations
are concerned, the results on IVPs can be found in [5,10,17,18,19,20,23] and IB-
VPs were studied in [4,6,9,15,16,23]. In [15,16] was shown that IBVP for the ZK
equation posed on a half-strip unbounded in = direction with the Dirichlet condi-
tions on the boundaries possesses regular solutions which decay exponentially as
t — oo provided initial data are sufficiently small and the width of a half-strip is
not too large. This means that the ZK equation may create an internal dissipative
mechanism for some types of IBVPs.

The goal of our note is to prove that the ZKB equation on a strip also may
create a dissipative effect without adding any artificial damping. We must mention
that IBVP for the ZK equation on a strip (z € (0,1), y € R) has been studied in
[4,22] and IBVPs on a strip (y € (0, L), = € R) for the ZK equation were considered
in [8] and for the ZK equation with some internal damping in [7]. In the domain
(y € (0,B), z € R, t > 0), the term wu, in (1.1) can be scaled out by a simple
change of variables. Nevertheless, it can not be safely ignored for problems posed
both on finite and semi-infinite intervals as well as on infinite in y direction bands
without changes in the original domain [4,21].

The main results of our paper are the existence and uniqueness of regular and
weak global-in-time solutions for (1.1) posed on a strip with the Dirichlet boundary
conditions and the exponential decay rate of these solutions as well as continuous
dependence on initial data.

The paper has the following structure. Section 1 is Introduction. Section 2
contains formulation of the problem. In Section 3, we prove global existence and
uniqueness theorems for regular solutions in some weighted spaces and continuous
dependence on initial data. In Section 4, we prove exponential decay of small
regular solutions in an elevated norm corresponding to the H'(8)-norm. In Section
5, we prove the existence, uniqueness and continuous dependence on initial data
for weak solutions as well as the exponential decay rate of the L?(8)-norm for small
solutions without limitations on the width of the strip.

2. Problem and preliminaries

Let B,T,r be finite positive numbers. Define § = {(z,y) € R? : z € R, y €
(0.B)}: 8 = {(r,4) €B?: z € (1, +00), y € (0, B)} and S = 8 x (0,T).

Hereafter subscripts u,, sy, etc. denote the partial derivatives, as well as 0,
or 92, when it is convenient. Operators V and A are the gradient and Laplacian
acting over 8. By (-, ) and || - || we denote the inner product and the norm in L?(8),
and | - || g+ stands for norms in the L2-based Sobolev spaces. We will use also the
spaces H® N L2, where L? = L?(e?**dx), see [11].
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Consider the following IBVP:
Lu = Uy — Ugy + Ul + Ugzg + Ugyy =0, in S7; (2.1)
u(z,y,0) = uo(x,y), (x,y)€S.
3. Existence of regular solutions

Approximate solutions. We will construct solutions to (2.1)-(2.3) by the
Faedo-Galerkin method: let w;(y) be orthonormal in L?(8) eigenfunctions of the
following Dirichlet problem:

wjyy + Ajw; =0,y € (0, B); (3.1)
Define approximate solutions of (2.1)-(2.3) as follows:

N

u (2, y,t) = > wi(y)g; (@, 1), (3.3)

j=1

where g;(z,t) are solutions to the following Cauchy problem for the system of N
generalized Korteweg-de Vries equations:

0 93 9? 0
&gj(wi + @gj(xvt) - @gj(xvt) - Aj%%(z, t)
B
b [ ol (e s () dy = 0 (3.4)
0

B

g;(z,0) :/ w;(Y)uo(z,y)dy, j=1,...,N. (3.5)
0

The principal part of the system (3.4) is splitted with respect to index j while
the semilinear part has a quadratic growth |u™Nul|. This allows us to prove the
existence of local in ¢ regular solutions to (3.4)-(3.5) in the same manner as for the
unique equation, [1,11,13]. The local existence of (3.4)-(3.5) may be proved also as
a special case of the abstract Cauchy problem which includes the Cauchy problem
for the KdV equation, [12].

It means that for g;(x,0) € H® s > 3, and for some T, > 0 the Cauchy
problem (3.4)-(3.5) has a unique regular solution g; € L>(0, To; H*(8) N LE(8)) N
L?(0,To; HST1(8) N L}(8)) at least for small Tp, [1,11,13]. To prove the existence
of global solutions for (2.1)-(2.3), we need uniform in N global in ¢ estimates of
approximate solutions u™ (z,y, t).

Estimate I. Multiply the j-th equation of (3.4) by g¢;, sum up over j = 1,...,N
and integrate the result with respect to  over R to obtain

d
e I@) + 2]u () = 0
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which implies
t
lu™1%(t) + 2/ lug 12(s) ds = [lug'l|* ¥t € (0,T). (3.6)
0
It follows from here that for N sufficiently large and V¢ > 0

lu™]12(2) + 2/0 lug 1% (s) ds = [|u™|[*(0) < 2||uo|l*. (3.7)

In our calculations we will drop the index N where it is not ambiguous.

Estimate II. For some positive b, multiply the j-th equation of (3.4) by e***g; ,
sum up over 5 = 1, ..., N and integrate the result with respect to x over R. Dropping
the index N, we get

L (1) + (24 BD)( u2) (1) + 26(? ) (1)
- %(e%z, W) (E) — (26 + 85°)(e2t7, u2) () = 0. (3.8)

In our calculations, we will frequently use the following multiplicative inequal-
ities [14]:

Proposition 3.1. i) For all u € H'(R?)
2
[l ey < 20l 2 @2) IVl L2 g2y (3.9)
ii) For all uw € H*(D)

2
H“HL4(D) < CDHUHL?(D)HUHHl(D)’ (3.10)

where the constant Cp depends on a way of continuation of u € H' (D) as a(R?)
such that a(D) = u(D).

Extending v’ (x,y,t) for a fixed t into exterior of § by 0 and exploiting the
Gagliardo-Nirenberg inequality (3.9), we find

4b
3

() (1) < B, ) (1) + 20, 02)() + 208 + = 2 02 ).

Substituting this into (3.8), we come to the inequality

%(62“7 u®)() + (2 + 4b) (", uZ) (1) + b(e™™, uy) (1)
< CO)(1+ [uol*) (€, u?) (D). (3.11)

By the Gronwall lemma,

(€7, u?)(t) < C(b, T, Juoll)(€**, u).
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Returning to (3.11) gives

(€ 1™ P)(t) + / (€2 [V ) (r)dr
<O, T, |luol) (e®*,ud) vt € (0,T). (3.12)

It follows from this estimate and (3.6) that uniformly in N and for any r > 0 and

€(0,7)
[lu™ |12 (t / / / |VulN|? da dy ds

< C(r, b, T, |luol) (€2, ud), (3.13)

where C does not depend on N.

Estimates (3.12), (3.13) make it possible to prove the existence of a weak solu-
tion to (2.1)-(2.3) passing to the limit in (3.4) as N — oco. For details of passing
to the limit in the nonlinear term see [11].

Estimate ITI. Multiplying the j-th equation of (3.4) by —(e?**g;,),, and drop-
ping the index N, we come to the equality

%(e%maui)(t) + (24 6b) (e, uZ, ) (1) + 2b(e™, uZ ) (1)
— (4b% + 8b) (e u2)(t) + (2% ud)(t) — 2b(e* u, u2)(t) = 0. (3.14)

x

Making use of Proposition 3.1, we estimate

Iy = (€2, u3)() < uall(t) €™ us]* () 1acs)
< 2fue | ()l ual|(B) V(€™ )| (2)

2bx 2 2 2 HUIH2(t) 2bz 2
< 8™, 2uzy + gy ) (1) + 2[00° + =0 == (7, ug) (8).

Similarly,
= 2b(e®", wu)(t) < 8(e*”, 2u3, + u3,)(t)

+ [20%0 + THUoHQ(t)} (€, uz)(t).

Substituting I, I into (3.14) and taking 26 = b, we obtain for V¢t € (0,7T) :

t
(€2 [ul 2)(t) + / (€2 [Tl [2)(s) ds
0
< C(b, T, [|uoll)(€*™, ug,). (3.15)

Estimate I'V. Multiplying the j-th equation of (3.4) by —2(e%**\g;), and drop-
ping the index N, we come to the equality
d X T I
E(e% Jus) () + (24 6b) (€, ul, ) () + 26(e**, ug, ) (1)

— (4b% 4 8b%) (e, ur)(t) +2(1 — b) (e u u?)(t) = 0. (3.16)

Y
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Making use of Proposition 3.1, we estimate

I =2(1-0b)(e*", uzul)(t) < 2Cp(1
+)|ug | (2)[|e” uyll( M (€uy) | sy (2)
< 5( T 202, (t [26(1 +b°)

Taking 0 = b, we transform (3.16) into the inequality

%(emmi)(t) + (24 4b) (€7, ud ) (1) + b(e uy,, ) (1)
< COL+ lluall ()], u3)(1).

Making use of (3.7) and the Gronwall lemma, we get V¢ € (0,7) :
2b "oobe | N2 2% 2
(€%, Juy'| )(t)+/0 (€77, [uyy[*)(s) ds < OO, T, [[uol) (€™ ugy ).

This and (3.15) imply that for all finite » > 0 and all ¢t € (0,7
[u™ sy < O T, fluol) (€2, [Vuo ). (3.17)
Estimate V. Multiplying the j-th equation of (3.4) by (€2* ¢4 )z, and drop-
ping the index N, we come to the equality

%(e”’l, ) (1) + (24 6b) (€77, uZ ) (1) + 26(e™, iy, ) (1)
— (407 + 86%) (7 ui, ) () — 2b(e*” uniz, ) (1)

+ 5(e®u,, u2)(t) = 0. (3.18)

Using (3.9), we find
~20(e*", 2I)(t) + 5™ ug, uj,) (1)

25
4b2 -
+ Il (O] (e, uZ,) (@),
Taking 26 = b and substituting I into (3.18), we obtain

(€T uT) (1) + (24 4b) (€77, ug ) (1) + b€, uZ,, ) (1)

< CO) A+ |lug|®(#) + [[ull (6)*1(*, uZ,) (2)-
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Taking into account (3.7), we find

t
(€2 Ju,[2)(t) + / (€27 [Tl [2)(s) ds
0
<C(b, T, ||luo||) (2, ud,,) Vte (0,T). (3.19)

Estimate VI. Differentiate (3.4) by ¢ and multiply the result by e*?g;; to
obtain

%(62“7 ug)(t) + (2 + 6b) (™, uZ,) () + 2b(e”™, ui, ) (1)

— (4b% + 8b%) (e®® u2)(t) + (2 — 2b) (e®®uy, u?)(t) = 0. (3.20)
Making use of (3.9), we estimate
I'=(2=20)(e*uq, uf)(t) < 2(2 + 20) sl (t)lle" el (1) V (" )| (2)

2 + 2b)2||uy || (£)?
< (e 202, + ufy)(t) + [20%6 + ( )5HU 1) }(e%z,uf)(t).

Taking 6 = b and substituting I into (3.20), we obtain

L)1)+ (2 4+ D) 02 (1) + b, ) (1)
< OO+ |02, ) 1)

This implies vVt € 0,7T):

O+ [ ) ds
< OO, T, Juol (€ 42)(0) < O, T, ol ), (3.21)
where
Jo = lluoll® + (€%, ud + [Vuo|® + |Vuoe|* + ufud, + |Augg|?).

Estimate VII. Multiplying the j-th equation of (3.4) by —e*?g;,, we come,
dropping the index N, to the equality

(€, [uZy +uza])(t) = +(e*[ur — (1 + 20)uss], us)(1)
+ (€2 uu2)(t). (3.22)
Making use of (3.9), we estimate

2
I =(e® uu?)(t) < 5(e®, 2u%, + uiy)(t) + [2b25 + @} (e u2)(t).
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Taking 46 = 1, using (3.15)-(3.21) and substituting I into (3.22), we get

(€2 ul? +ul ) () < Cb, T, [luol)Jo V€ (0,T).

Estimate VIII. We will need the following lemma :

Lemma 3.2. Let u(x,y) : 8 — R be such that
/ e2be [u?(2,y) + |Vu(z,y)|* + uiy(:n, y)] dedy < oo
8
and for all x € R there is some yo € [0, B] such that u(x,yo) = 0. Then

sup e u(@, y, £)|* < 8(1 +26%) (e, uy) (1) + 20(e™, u, ) (1)
8

1.1

20
_1(e2bac, ui)(t) + 5 [5—1 + 251b2} (e%z, UQ)(t),

T

where 0,01 are arbitrary positive numbers.

Proof. Denote v = ¢*u. Then simple calculations give

sgpvz(w,y,t) < O[lloy 17 () + llvaylI*(0)] + %[IlvaIQ(t) +[lvl*(®)]-

Returning to the function u(x,y,t), we prove Lemma 3.2.

(3.23)

(3.24)

d

Multiplying the j-th equation of (3.4) by €2*g;,., we come, dropping the index

N, to the equality

(€2b17 uizy + uizw)(t) = (e%z (Ut — Uzz], Ugaa) ()

- (eQquum, Ugza ) (L) + 2b2(62bx, uiy)(t)

Using Lemma 3.2 and (3.7), we estimate
I= (e2bmuux,uxxx)(t) < luf[(t) sup |ebzur(xvyat)|||€bxurrr||(t)
8

< elluoll (2 0, ) 1) + - [0+ 262) (2 ) (1)
€
2

+ (U, ) (8) + 6(1 4 26%) (€7, uz, ) (1) + 20(e*, ugy, ) ()]

(3.25)

(3.26)

Taking e and 0 sufficiently small, positive and substituting I into (3.25), we find

(€, [Vugy|?)(t) < CO, T, [luol)Jo ¥t € (0,T).
Consequently, it follows from the equality

— (€ Tuy — uly + uly, +ul,, +uNul] ul ) (t) =0

(3.27)
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and from

(€ [y — b, + udy, +ub,, +u™Nul ] ul, V() =0
that
(€7, July, [* + [ul,, ) (t) < CO0, T, |luoll)Jo  Vt € (0,T). (3.28)

Jointly, estimates (3.15),(3.17), (3.19), (3.23),(3.27), (3.28) read
(€ ™2+ [Vu [P 4 [V |+ [V 2+ [Vugy ) (2)
<O, T, Juol) o Vi€ (0,7). (3.29)

In other words,
ePrulN et e 1°°(0, T H%(8)) (3.30)

)

and these inclusions are uniform in N.
Estimate IX. Differentiating the j-th equation of (3.4) with respect to z and

multiplying the result by ema;lgj, we come, dropping the index N, to the equality

(621)17 uixmy + uixmx)(t) - +2b2 (esz, uizy)(t) - (621)1 [umt - agu]v uIIII)t)

— (2 + vt ] O) ) (3.31)
Making use of Lemma 3.2 and (3.29), we estimate

I’ x

I = (e*uZ, 0zu)(t) < [luall(t)]le™ Oul|(t) Sgplebzuz(x,y,t)l

| /\

S0P + 5 sl [+ 22 02) (1)
27 2, )(0) + (14 260,02, ) (1) + 2™ 1, (1)
3l

1
(e, |0zul)(t) + 3¢, €0 T fluoll) Jo,

I/\+

Iy = (€*"u, ugeOpu)(t) < ||€’””54U||( £)lul(2) Sup|€bzum($,y,t|

< S luol ()€, 02uf)6) + 5 (200677, 1) 1)
504 2 0, ) (1) + §<e2bw, 2.)(0)
(L2, 02,) (). (3.32)

Applying the Young inequality, taking e, d sufficiently small positive, sub-
stituting I, I into (3.31) and integrating the result, we come to the following
inequality:

t
/ (€ Jul gy |2 + [ulg 1) () ds < C(b, T, ||uol)) Jo Vt € (0, T). (3-33)
0
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Estimate X. Multiplying the j-th equation of (3.4) by —e**\%g;,, we come,
dropping the index N, to the equality

(621)1’ izyy + uzyyy)(t) = _(€2bl’ Uty uiyyy)( ) (b + 2b2)( 2 uiyy)(t)

- (€2bxuyula Ugyyy) (t) + (€2bxuuwya Ugyyy) (). (3.34)

We estimate

€ 1

L = —(eQbI, Uty Uzyyy) (1) < §(e2bwvuiyyy)(t) + 2_6(‘5%17“30@),

Iy = (€ iz, Ugyyy ) () < [tz || (8) €%ty () sup "y (,y, 1
€

< _( sz’uiyyy)(t) + ||u12||€(t) [(1 +2b2)(€2bm,u§)(t)

+2( 2bz iy)(t)+(1+2b2)(62bm’ @2/74)( )+2( 2171 iyy)(t)]

I3 = (e%muuwyauwyyy)(t) < ful|(t )||€ “Uyyy )| () Sl;.p|€ Uy (T, Y, 1]

[\]

u||%e " 1 "

< Ll (2, )0+ o 2567, 0 (0
2

2 02,,)(0) 4 (1 28 2, )0
1

+ 5 (1+26%)(e™", ug, ) ()]

Choosing e, €, 0 sufficiently small, positive, after integration, we transform (3.34)
into the form

T
/0 (€, a2 + [, P (E) dt < Cb, T, Juoll) o. (3.35)

Acting similarly, we get from the scalar product

(e%z [uiv — ui\g + ui\gm +u Iyy + uNuN} ué\;yy)(t) =0
the estimate .
/0 (e 2bx |uyyy| )(t)dt < C(b, T, ||uoll)Jo- (3.36)

Estimates (3.29), (3.30), (3.33), (3.35), (3.36) guarantee that
erulN et € 1°°(0,T; H*(8) N L2(0,T; H(8)) (3.37)

and these inclusions do not depend on N. Independence of Estimates (3.7),(3.37)
of N allow us to pass to the limit in (3.4) and to prove the following result:

Theorem 3.3. Let ug(x,y) : R? — R be such that ug(x,0) = ug(x, B) = 0 and for
some b >0
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Jo = /{ug + e%z[ug + | Vuo|? + |[Vuge|* + ugugm + | Auge|?]} dedy < oo.
8

Then there exists a regular solution to (2.1)-(2.3) u(z,y,t) :

we L0, T; L%(8)), wu. € L*(0,T;L*8))
e, e, € L°(0,T; H*(8)) N L0, T; H3(8))
euy € L°(0,T; L*(8)) N L*(0,T; H(8))

which for a.e. t € (0,T) satisfies the identity
(€7 [ — Uaw + Unas + Ully + Usyy| d(2,Y))(t) =0, (3.38)

where ¢(x,y) is an arbitrary function from L*(8).

Proof. Rewrite (3.4) in the form

bx [, N N N, N N N
(6 [ut — Uyy +u Uy + Ugpx + uwyy

], N ()W (2))(t) =0, (3.39)

where ®V(y) is an arbitrary function from the set of linear combinations
Zi]\il a;w;(y) and ¥(x) is an arbitrary function from H*(R). Taking into account
estimates (3.7), (3.37) and fixing ®V, we can easily pass to the limit as N — oo
in linear terms of (3.39). To pass to the limit in the nonlinear term, we must use

(3.17) and repeat arguments of [11]. Since linear combinations [vazl a;w; (1) (z)
are dense in L?(8), we come to (3.38). This proves the existence of regular solutions
0 (2.1)-(2.3). O

Remark 3.4. Estimates (3.7),(3.37) are valid also for the limit function u(zx,y,t)
and (3.7) obtains its sharp form:

lull () + 2/0 luall(s)* ds = [luol® ¥t € (0,T). (3.40)

Uniqueness of a regular solution.
Theorem 3.5. A reqular solution from Theorem 3.3 is uniquely defined.

Proof. Let u1, ug be two distinct regular solutions of (2.1)-(2.3), then z = u; — us
satisfies the following initial-boundary value problem:

1
2t — Zzg + Zzza + Zoyy T i(u? —u3), =0in 87, (3.41)

z2(x,0,t) = z(x,B,t) =0, ze€R, ¢>0, (3.42)
z(x,y,0) =0. (x,y)€S. (3.43)
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Multiplying (3.41) by 2e"z, we get

D6, 22)(8) + (24 6D)(2, 22)(1) — (887 + 4%) (e, 2%) (1)

dt
+2b(e®, 25) () + (" [urz + uaal, 2%)(2)
— b(e® (uy + ug), 2%)(t) = 0. (3.44)

We estimate

Iy = (€2 (w1g + uze), 2)(1) < [lure +uaal|(0)]| €2 (1) (s
< 2fure + una || () [l 21| ()1 V (e 2) ] (2)

2
< (™7, 22,7 + 2 ")) (1) + [26°0 + S([luaal|* (1)

(t)
+ [luza |2 ()] (2, 2%) (1),
Iy = b(e* (w1 + uz), 2%)(t) < bllur + uz | (8) [l 2| Fa(s)
< 2bflus + ua|(t)l|e" 2| (1) V (" 2) I(2)

202
< 8(e®, 223 + 2)(t) + [20°0 + T(I|U1||2(t) + [lua|2()](e*, 2) (1)
Substituting I, I into (3.44) and taking 6 > 0 sufficiently small, we find

%(62”, 2)(1) + (2 +20) (€7, 2) (1) + b(e*®, z)(t) < C(b) [1 + [Jua | (8)?

+ | ()% + [lunal|(6) + fluze | (£)] (€27, 2%)(2).- (3.45)

Since

u; € L(0,T; L*(8)), wiz € L*(0,T;L*(8)) i=1,2,
then by the Gronwall lemma,
(e® 22 (t)=0 Vte(0,T).
Hence, u; = us a.e. in 8p. O
Remark 3.6. Changing initial condition (3.43) for z(x,y,0) = zo(x,y) # 0, and
repeating the proof of Theorem 3.4, we obtain from (3.45) that
(€2, 22)(8) < C(b, T, |luol) (2%, 22) Wt € (0,T).

This means continuous dependence of regular solutions on initial data.
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4. Decay of regular solutions

In this section we will prove exponential decay of regular solutions in an elevated
weighted norm corresponding to the H'(8) norm. We start with Theorem 4.1 which
is crucial for the main result.

Theorem 4.1. Let b € (0,3[—1 4 /1 + 512D, ol < 3% and u(z,y,t) be a
regular solution of (2.1)-(2.3). Then for all finite B > 0 the following inequality is
true:

let=ull2(2) < e ebu|[2(0), (4.1)

where X = 55[-14 /1 + %]g—i.

Proof. Multiplying (2.1) by 2e2*%u, we get the equality

%(62“, u?)(t) + (2 4 6b)(€*™, u2) (1) 4 2b(e*™*, ul)(t)
- %b(e?bf, u®)(t) — (4b% + 8b%) (%%, u?)(t) = 0. (4.2)

Taking into account (3.1), we estimate

4b
1= g(e%x, u®)(t) < b(e??, uf} + 2uZ + 2b%u?)(t)

16b ’
+ =5l (e, u2) 1)

The following proposition is principal for our proof.

Proposition 4.2.

B B2 B
// ey (x,y,t) dy do < —2// eQqui(z,y,t) dy dzx. (4.3)
R JO ™ JrJo

Proof. Since u(z,0,t) = u(x, B,t) = 0, fixing (z,t), we can use with respect to y
the following Steklov inequality: if f(y) € H}(0,7) then

s T
| P [ 15wk
0 0
After a corresponding process of scaling we prove Proposition 4.2. O

Making use of (4.3) and substituting I into (4.2), we come to the following
inequality
d
= (€27, ) (1) + (2 + 4b) (€27, ud) (1)

b2 16b
+ [— —4p% —10b% — T||u0||2](e2b””,u2)(t) <0
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which can be rewritten as

d
E(em,ﬁ)(t) +x(e*,u?)(t) <0, (4.4)
where
2 2
™ 2 16]jucll
X = b[ﬁ —4b—10b° — T}
Since we need y > 0, define
2 2 2
2 T 16[uoll® _ N2 T
4b+ 106" = T 9 =(1-9) 5 (4.5)

2

where v € (0,1). It implies x = bA(y) %z with A(y) = (1 — 7).
It is easy to see that

1 1
sup A(y) = A(3) = 1.
76(011) 2 4
Solving (4.5), we find
1 572 3T 2
b==[-1 1+ — < =b—
5[ + + 432]5 HU‘OH —_ 8B7 4327

and from (4.4) we get
(esz,UQ)(t) < e—xt(e%z’ |U0|2)-

The last inequality implies (4.1). The proof of Theorem 4.1 is complete. O

Observe that differently from [15,16], we do not have any restrictions on the
width of a strip B.
The main result of this section is the following assertion.

Theorem 4.3. Let all the conditions of Theorem 4.1 be fulfilled. Then reqular
solutions of (2.1)-(2.3) satisfy the following inequality:

(€, u? + [Vul?)(t) < C(b,x: |luol) (1 + £)e™" (e, [u
+ uol® + [Vuol?]) (4.6)

or
1P a2 ) (8) < OB, s luoll) (1 4+ D)e (€2, 13 + o> + Vo 2).

Proof. We start with the following lemma.
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Lemma 4.4. Regular solutions of (2.1)- (2.3) satisfy the following equality:

e"t(em’”,lwf)(?ﬁ)+2/0 {1+ 3b)(€*%, uz,)(s) + (1 +4b) (€, 3, )(s)

b

+b( 2bm iy)(s) + Z(62bac,u4>(5)}ds = e—Xt(ebe,u3>(t>

3
t t

+/ﬁa%x+%?+%%@%awm%@wﬁ+2/e“«1+%x2m,@x@

0 0

402 + 8b3
+ 4b(€2bz, uui)(s) — (% — X)(e%z, u3)(s)} ds
U3

+ (2% |[Vug|* — ?O) (4.7)

Proof. First we transform the scalar product

- (ebx [ut — Ugg + Uggx + Ugyy + uux]v

[Q(ebzuz)m + 2"y, + ebqu] )(t) =0 (4.8)
into the following equality:

3
L, Tul = (1) + 21+ 3,02, (1)

+2b(e™, uy, ) (1) + 2(1 + 4b) (€27, 012, ) (¢) + 2 (e, (1)

2
= 4b2(1 4 2b)(2**, |Vul?)(t) — w(e%w,us)(t)

+4b(e® uu)(t) 4 2(1 + 4b) (>, uul)(t). (4.9)
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To prove (4.9), we estimate separate terms in (4.8) as follows:

I = —2(e™ (Ut = Uz + Ugga + Usyy + ULy, (" uy ). ) (t)
= 2(6%1 [Ut — Upg + Ugzy + Upyy + uum}z, Uy ) (L)
d T I CE
= E(e% Juz)(8) + 2(1 + 3b)(€*7, ul, ) (t) + 20(e**, w2, ) (t)
—4b%(1 4 2b) (27, u2) (1) + (e27u?, Upes ) (1)

_ 2bx 2 8b3 2bx 3
8b(e™*, uuz ) () + —- (€™, u”)(2),
b.

I, = —2(@1”E [ut — Ugy + Ugze + Ugyy + uum] L e uy,)(t)

= 2(€bl [Ut — Ugx + Uz + Uzyy + uum]y; ebwuy)(t)

_d
Cdt

— 4b%(1 + 2b) (%7, ui)(t) 4 (€270, Uy ) (1) — 4b(eP uui)(t),

’ 11} vy

—— (€%, uz) () + 2(1 4 3b) (e, u?, ) (t) + 2b(e***, uZ, ) (t)
(
Is = —(ebl [ut — Ugy + Upgy + Ugyy + Uy ,eblu2
d ud 4% o 3 b
—)(t) + — (2, uP) (¢
L)) + T () + 5
—2(e®*, uud) (t) — (€7, Ugaa + Uayy) (1)

(esz ( 2bz, u4)(t)

Summing I; + I + I3, we obtain (4.9). In turn, multiplying it by eX! and
integrating the result over (0,¢), we come to (4.7). The proof of Lemma 4.4 is
complete. O

Making use of (3.9), we estimate

Iy = %(em,ﬁ)(t) <2 DIV ull(t)
< %{(e%m, [Vul?)(t) + [% + @](emnﬁ)(t)}-

Substituting Iy into (4.7), we get
X! (e, |Vul*)(t) +4/t X {(1+3b) (€™, uz, ) (s) + (1 + 4b)(e*, ) (s)
L b(e™ u2,)(s)} ds < 2/; X (x + @)(e%z,ug)(s) ds
+2/Ot eX*{2(1 + 4b)(e**"u, ul)(s) + 4b(e**", uul)(s)} ds

t
+ 2/ X (x + 4b% + 85°) (€, [Vu|?)(s) ds
0

2 8”“0”2 xt( 2bx 2 2bx 2 |“0|3
[0+ =] @) + 2™ Vol + ). (4.10)
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In order to estimate the right-hand side of (4.10), we will need the following

Proposition 4.5. Let Theorem 4.1 be true. Then

t
e”@%%u%@>+/“aﬁéwﬁvm%@ww
0

< Cb, X, [luol) (1 + 1)(€***, ug). (4.11)

Proof. Consider the equality

t
/ 2€XS(€2bm [Us — Uzg + Ugza + Uzyy + UUg), u)(s)ds =0
0
which we rewrite as
t
X (e u)(t) + 2/0 e { (14 3b) (e, u2)(s) + b(e*,uz)(s)}, ds

t 4b t
= / exsg(e%r’ u?)(s)ds + / X (x + 4b? + 8b%) (2", u?)(s) ds
0 0
+ (€2 u2). (4.12)

By Proposition 3.1, we estimate

b, o, 8b N N

1= D )0 < Dl ull 1V E )
1 2

< b 202 +u)(0) + (267 + A e 2y

By Theorem 4.1,
(esz, u2)(t) < e—xt(e%z’ ug)

Using this estimate, we substitute I into (4.12) and come to the following inequal-
ity:
t

ext(e%z, u?)(t) + / e {(1+ 2b)(62bm, u?)(s) + b(eQbI, ui)(s)}, ds
0

< 06 b, luol) (1 + )(€**, ug).

Since b > 0, the proof of Proposition 4.5 is complete. O

Returning to (4.10) and using Proposition 4.5, we estimate

2 1 3
I )s) <

2(e*, |Vul?)(s) + C(x, b, [[uol ) (e***, u®)(s).

L=(x+
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Similarly,
I, =4(1+ 4b)(62bm, uui)(s) < 5(6%1, 2u?m + uiy)(s)

16(1 + 4b)? 2
+ [2()25—1— 6( + (;)) HUOH ](eQbm’ui)(s).

With the help of (3.10), we find

I3 = 8b(e™™ uuy)(s) < 8bCp|luo| [l uy || (5)lle" uy || 1 s) ()

y
16b2 20z
< 5(e?, 2u§y + uiy)(s) + [(26° + 1)0 + %} (e?b®

Taking 6 = 2b and using Proposition 4.5, we obtain from (4.10)

2

Y

)(s)-

X! (e, [Vul?)(t) < O (b x; [luoll) (1 + £)(€*, uf + |uol® + |Vuol*).

Adding (4.1), we complete the proof of Theorem 4.3.

5. Weak solutions

Here we will prove the existence, uniqueness and continuous dependence on
initial data as well as exponential decay results for weak solutions of (2.1)-(2.3)

when the initial function ug € L*(8).

Theorem 5.1. Let ug € L*(8) N LZ(8). Then for all finite positive T and B there

erists at least one function
u(z,y,t) € L>=(0,T; L3(8)), u, € L*(0,T; L2(8))

such that
ePu € L°°(0,T; L*(8)) N L*(0,T; H(8))
. Moreover,
u™ —~  u  x —weakly in L°°(0,T; L(8)),

u™ —u  weakly in L*(0,T; H'(8)),

where u™ are regular solutions to (2.1)-(2.3) provided by Theorem 3.3

and the following integral identity takes a place:

(e"®u,v) / {=(€"u, v)(t) + (" ug, [Vzz + (1 + 2b)v,

+ (b +6%))(t) - 2( e u?, bu + vg) (1)
+(ebmuy7bvy+v1y)( )}dt (6 Uop, v (x,y,O)),

where

ey € C(0,T; L*(8)) N L*(0,T; H*(8)) e*™v; € L?(0,T; L*(8))

is an arbitrary function.
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Proof. In order to justify our calculations, we must operate with sufficiently
smooth solutions u™ (x,y,t). With this purpose, we consider first initial functions
uom (z,y), which satisfy conditions of Theorem 3.3, and obtain estimates (3.7),
(3.17) for functions u™(z,y,t). This allows us to pass to the limit as m — oo in
the following identity:

@)+ [ )0+ T+ (4 20,
0+ B (0) — (™ b+ ) (1)
+ (ebz " by 4 Uy ) (8) Y dt = (e ugm, v(z,y, 0)) (5.2)
and come to (5.2). O
Remark 5.2. Obviously, regular solutions from Theorem 3.3, u™ satisfy also (5.1)
sa well as (2.1)-(2.3).
Uniqueness of a weak solution.
Theorem 5.3. A weak solution of Theorem 5.1 is uniquely defined.

Proof. Actually, this proof is provided by Theorem 3.5. It is sufficient to approxi-
mate the initial function ug € L?(8) by regular functions gy, in the form:

lim ||wom — uol| =0,
m—00
where wu,,, satisfies the conditions of Theorem 3.3. This guarantees the existence of
the unique regular solution to (2.1)-(2.3) and allows us to repeat all the calculations

which have been done during the proof of Theorem 3.5 and to come to the following
inequality:

%(62”,231)() + (24 20)(e™, 27,) () + b(e*7, 20, (1)

< CO)1+ urml|(9)* + luzml|(6) + lureml|(8) + lluzem | (£)] (€27, 22,) (D).

By the generalized Gronwall‘s lemma,

(€, 27,)(t) < ewp{/o CO) 1+ lurmll(5)* + l[uzml(s)* + urzml|(s)?
+ lluzem| ()%] ds} (€, 26,0) (1)-

Functions w1, and us,, for m sufficiently large satisfy the estimate

t
lwimll()* + 2/ [wimall(s)? ds = [[uom||* < 2||uoll?), i=1,2.
0



170 N. A. LARKIN

Hence,

can( [ €O+ (692 + a6 + rr ] 67
T a2l (9] ds} < CG T, o). (53)
Since e**z(z,y,t) is a weak limit of regular solutions {€**z,,(z,y,t)}, then
(€27, 2)(t) < (€27, 27,)(t) = 0.

This implies u1 = us a.e. in 87. The proof of Theorem 5.3 is complete. O

Remark 5.4. Changing initial condition z(x,y,0) = 0 for z(x,y,0) = z0(x,y) # 0,
and repeating the proof of Theorem 5.3, we obtain that

(e 22)(t) < C(b, T, ||uol|)(€***,23) Vt € (0,T).
This means continuous dependence of weak solutions on initial data.

Decay of weak solutions.

Theorem 5.5. Let b € (0, £[—144/1+ 3521, Jluoll < 3% and u(z, y,t) be a weak
solution of (2.1)-(2.3). Then for all finite B > 0 the following inequality is true:

le*=ull?(t) < e[| uo]|*(0), (5:4)

where x = 25%[—1+ 1+ i’gz]

Proof. Similarly to the proof of the uniqueness result for a weak solution, we ap-
proximate ug € L?(8) by sufficiently smooth functions w,y,, in order to work with
regular solutions. Acting in the same manner as by the proof of Theorem 4.1, we
come to the following inequality :

P um ||*(£) < e [e"uo||*(0), (5.5)
where
2 572
= — [—1 1+ —.
2032[ + + 4B2]

Since u(z,y,t) is weak limit of regular solutions {u,,(x,y,t)} then
(e, u?)(t) < (€27, up,) (1) < e (e, up).

The proof of Theorem 5.5 is complete. O

We have in this Theorem a more strict condition |Ju|| < 3% instead of [|uo|| <
3m

i55 in the case of decay for regular solution because for weak solutions we do not

have the sharp estimate (3.40), but only (3.7).
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