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Greatest Common Divisors of Shifted Balancing Numbers

Prasanta Kumar Ray and Sushree Sangeeta Pradhan

abstract: It is well known that the successive balancing numbers are relatively
prime. Let for all integers a, sn(a) denote the greatest common divisor of the shifted
balancing numbers of the form sn(a) = gcd(Bn − a, Bn+1 − 6a). In this study, we
show that {sn(±1)} is unbounded, whereas {sn(a)} is bounded for a 6= ±1.
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1. Introduction

As usual, the nth balancing number is denoted by Bn and the balancing numbers
satisfy the binary recurrence Bn+1 = 6Bn−Bn−1 with B0 = 0 and B1 = 1 [1]. The
sequence of numbers closely associated with the balancing numbers is the Lucas-
balancing numbers {Cn} whose recurrence relation is given by Cn+1 = 6Cn−Cn−1

with C0 = 1 and C1 = 3 [15,16]. Balancing and Lucas-balancing numbers can
be extended negatively, in particular B−n = −Bn and C−n = Cn [22]. Panda,
in [17], explored many fascinating properties of balancing numbers, some of them
are similar to the corresponding results on Fibonacci numbers, while some others
are more interesting. Many exciting properties of balancing numbers and their
related sequences are available in the literature. Interested readers can go through
[2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27].

In [19] Panda et.al. studied a class of binary recurrences defined by xn+1 =
Axn − Bxn−1. with x0 = 0 and x1 = 1 where A and B are any natural num-
bers.They have shown that for B = 1 and A not in {1, 2}, the sequences obtained
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from these recurrences have many important and interesting properties identical to
those of balancing numbers. They named these class of sequences as balancing-like
sequences. We begin with defining the sequence of generalized balancing-like se-
quences GB

n with initials GB
1 = α and GB

2 = β where α and β are natural numbers,
as

GB

n = AGB

n−1 −BGB

n−2 for n ≥ 3,

where A and B are natural numbers. In particular, for A = 6 and B = 1, we obtain

GB

n = 6GB

n−1 −GB

n−2 for n ≥ 3,

and for GB
1 = α and GB

2 = β we have

GB

n = βBn−1 − αBn−2,

which are nothing but the balancing-like sequences introduced by Panda et.al. in
[19]. It is observed that, for α = 1 and β = 6, the sequence of balancing-like
numbers is nothing but the sequence of balancing numbers {Bn}. In a similar way,
we introduce Lucas-balancing-like numbers,

GC

n = 2βGC

n−1 − αGC

n−2,

and observe that for α = 1 and β = 3, the sequence of Lucas-balancing numbers
{Cn} is obtained.
In [5], Chen studied about greatest common divisors of shifted Fibonacci numbers.
Motivated by this, we consider a slightly different sequence of numbers which we
call it as shifted balancing numbers (Bn+ a) by a for all integers a and let sn(a) =
gcd(Bn − a, Bn+1 − 6a). In this study, the successive members of this sequence
for different values of a are considered. Further, we will show that {sn(±1)} is
unbounded whereas {sn(a)} is bounded for a 6= ±1.

2. Preliminary results

In this section, some preliminary results concerning the greatest common divi-
sors of balancing-like sequences are established.

Lemma 2.1. For integers n, k and a, gcd(GB
n +aBk, G

B
n−1+aBk+1) = gcd(GB

n−2+
aBk+2, GB

n−3 + aBk+3).

Proof: For any integers a, b, and c, as gcd(a, b) = gcd(a + bc, b) and gcd(a, b) =
gcd(−a, b) = gcd(a,−b) = gcd(−a,−b), we have

gcd(GB

n + aBk, GB

n−1 + aBk+1) = gcd(−GB

n − aBk, GB

n−1 + aBk+1)

= gcd(GB

n−2 + aBk+2, GB

n−1 + aBk+1)

= gcd(GB

n−2 + aBk+2, −GB

n−3 − aBk+3)

= gcd(GB

n−2 + aBk+2, GB

n−3 + aBk+3).

which completes the proof. ✷
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Lemma 2.2. For integers m, k and a,

gcd(GB

m − a, GB

m+1 − 6a) = gcd(GB

m−2k + aB2k−1, GB

m−(2k+1) + aB2k). (2.1)

Proof: Simplification of the left side expression gives

gcd(GB

m − a, GB

m+1 − 6a) = gcd(GB

m − a, −GB

m−1)

= gcd(GB

m − a, GB

m−1)

= gcd(GB

m + aB−1, GB

m−1 + aB0).

Because B−1 = −1 and B0 = 0 and applying Lemma 2.1 k times, the result follows.
✷

Lemma 2.3. Let m, k and a are integers, then

gcd(GB

m + a, GB

m+1 + 3a) = gcd(GB

m−2k + aC2k, GB

m−(2k+1) + aC2k+1). (2.2)

Proof: For integers m, k and a,

gcd(GB

m + a, GB

m+1 + 3a) = gcd(GB

m + a, −GB

m−1 − 3a)

= gcd(GB

m + a, GB

m−1 + 3a)

= gcd(GB

m + aC0, GB

m−1 + aC1)

as C0 = 1 and C1 = 3 and applying Lemma 2.1 k times, the result follows. ✷

3. Greatest common divisors of the successive members of the
sequence {sn(a)} for different values of a

In this section, we consider the sequence {sn(a)} = gcd(Bn − a, Bn+1− 6a) for
different values of a and obtain some important identities.

3.1. The sequence {sn(1)}

Theorem 3.1. For any integer n, we have

gcd(B4n−1 − 1, B4n − 6) = 2B2n−1 (3.1)

gcd(B4n − 1, B4n+1 − 6) = B2n +B2n−1 (3.2)

gcd(B4n+1 − 1, B4n+2 − 6) = 2B2n (3.3)

gcd(B4n+2 − 1, B4n+3 − 6) = B2n+1 +B2n. (3.4)

Proof: For m = 4n− 1, k = n, and a = 1 in (2.1), we obtain

gcd(B4n−1 − 1, B4n − 6) = gcd(B2n−1 +B2n−1, B2n−2 +B2n)

= gcd(2B2n−1, 6B2n−1)

= 2B2n−1.
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This completes the proof of (3.1). Putting m = 4n, k = n, and a = 1 in (2.1), we
have

gcd(B4n − 1, B4n+1 − 6) = gcd(B2n +B2n−1, B2n−1 +B2n)

= B2n +B2n−1,

which gives (3.2). Again for m = 4n+ 1, k = n, and a = 1 in (2.1), we have

gcd(B4n+1 − 1, B4n+2 − 6) = gcd(B2n+1 +B2n−1, B2n +B2n)

= gcd(6B2n, 2B2n)

= 2B2n,

gives (3.3). Finally, setting m = 4n+ 2, k = n, and a = 1 in (2.1), we have

gcd(B4n+2 − 1, B4n+3 − 6) = gcd(B2n+2 +B2n−1, B2n+1 +B2n)

= gcd(6B2n+1 + 6B2n, B2n+1 +B2n)

= B2n+1 +B2n,

which gives (3.4). ✷

3.2. The sequence {sn(2)}

Theorem 3.2. For any integer n, we have

gcd(B4n−1 − 2, B4n − 12) = 3 (3.5)

gcd(B4n − 2, B4n+1 − 12) = 1 (3.6)

gcd(B4n+1 − 2, B4n+2 − 12) = 1 (3.7)

gcd(B4n+2 − 2, B4n+3 − 12) = 1. (3.8)

Proof: For m = 4n− 1, k = n, and a = 2 in (2.1), we obtain

gcd(B4n−1 − 2, B4n − 12) = gcd(B2n−1 + 2B2n−1, B2n−2 + 2B2n)

= gcd(3B2n−1, 6B2n−1 +B2n)

= gcd(3B2n−1, B2n).

Since gcd(a, bc) = gcd(a, gcd(a, b)c), we have

gcd(B4n−1 − 2, B4n − 12) = gcd(3 gcd(B2n−1, B2n), B2n)

= gcd(3, B2n)

= 3,
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which is (3.5). Let m = 4n, k = n, and a = 2 in (2.1), then we have

gcd(B4n − 2, B4n+1 − 12) = gcd(B2n + 2B2n−1, B2n−1 + 2B2n)

= gcd(−3B2n, B2n−1 + 2B2n)

= gcd(3B2n, B2n−1 + 2B2n)

= gcd(B2n−1, B2n−1 + 2B2n)

= gcd(B2n−1, 2B2n)

= gcd(B2n−1, 2 gcd(B2n−1, B2n))

= gcd(B2n−1, 2)

= 1,

gives (3.6). Again putting m = 4n+ 1, k = n, and a = 2 in (2.1), we get

gcd(B4n+1 − 2, B4n+2 − 12) = gcd(B2n+1 + 2B2n−1, B2n + 2B2n)

= gcd(6B2n +B2n−1, 3B2n)

= gcd(B2n−1, 3B2n)

= gcd(B2n−1, 3 gcd(B2n−1, B2n))

= gcd(B2n−1, 3)

= 1,

gives (3.7). Finally setting m = 4n+ 2, k = n, and a = 2 in (2.1), we obtain

gcd(B4n+2−2, B4n+3−12) = gcd(B2n+2 + 2B2n−1, B2n+1 + 2B2n)

= gcd(B2n+2+2B2n+2B2n−1+B2n+1, B2n+1+2B2n)

= gcd(6B2n+1+6B2n+B2n+B2n−1, B2n+1+2B2n)

= gcd(−6B2n +B2n +B2n−1, B2n+1 + 2B2n)

= gcd(−5B2n +B2n−1, B2n+1 + 2B2n)

= gcd(3B2n, B2n+1 + 2B2n)

= gcd(3 gcd(B2n, B2n+1 + 2B2n), B2n+1 + 2B2n)

= gcd(3 gcd(B2n, B2n+1), B2n+1 + 2B2n)

= gcd(3, B2n+1 + 2B2n)

= 1,

gives (3.8). ✷

3.3. The sequence {sn(−1)}

Theorem 3.3. For any integer n, we have

gcd(B4n−1 + 1, B4n + 6) = B2n −B2n−2 (3.9)

gcd(B4n + 1, B4n+1 + 6) = B2n −B2n−1 (3.10)

gcd(B4n+1 + 1, B4n+2 + 6) = B2n+1 −B2n−1 (3.11)

gcd(B4n+2 + 1, B4n+3 + 6) = B2n+1 −B2n. (3.12)
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Proof: For m = 4n− 1, k = n, and a = −1 in (2.1), we obtain

gcd(B4n−1 + 1, B4n + 6) = gcd(B2n−1 −B2n−1, B2n−2 −B2n)

= B2n −B2n−2,

gives (3.9). Let m = 4n, k = n, and a = −1 in (2.1), we get

gcd(B4n + 1, B4n+1 + 6) = gcd(B2n −B2n−1, B2n−1 −B2n) = B2n −B2n−1,

which is (3.10). Putting m = 4n+ 1, k = n, and a = −1 in (2.1), we get

gcd(B4n+1 + 1, B4n+2 + 6) = gcd(B2n+1 −B2n−1, B2n −B2n)

= B2n+1 −B2n−1,

giving (3.11). Further, setting m = 4n+ 2, k = n, and a = −1 in (2.1), we obtain

gcd(B4n+2 + 1, B4n+3 + 6) = gcd(B2n+2 −B2n−1, B2n+1 −B2n)

= gcd(6B2n+1 − 6B2n, B2n+1 −B2n)

= B2n+1 −B2n

which is (3.12). ✷

3.4. The sequence {sn(−2)}

Theorem 3.4. For any integer n, we have

gcd(B4n−1 + 2, B4n + 12) = 1 (3.13)

gcd(B4n + 2, B4n+1 + 12) = 1 (3.14)

gcd(B4n+1 + 2, B4n+2 + 12) = 3 (3.15)

gcd(B4n+2 + 2, B4n+3 + 12) = 1. (3.16)

Proof: Setting m = 4n− 1, k = n, and a = −2 in (2.1),

gcd(B4n−1 + 2, B4n + 12) = gcd(B2n−1 − 2B2n−1, B2n−2 − 2B2n)

= gcd(−B2n−1, B2n−2 −B2n)

= gcd(B2n−1, B2n−2 − 2B2n − 6B2n−1)

= gcd(B2n−1, 3B2n)

= gcd(B2n−1, 3 gcd(B2n−1, B2n))

= gcd(B2n−1, 3)

= 1,
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giving (3.13). Let m = 4n, k = n, and a = −2 in (2.1). Then

gcd(B4n + 2, B4n+1 + 12) = gcd(B2n − 2B2n−1, B2n−1 − 2B2n)

= gcd(−3B2n, B2n−1 − 2B2n)

= gcd(3 gcd(B2n, B2n−1 − 2B2n), B2n−1 − 2B2n)

= gcd(3 gcd(B2n, B2n−1), B2n−1 − 2B2n)

= gcd(3, B2n−1 − 2B2n)

= 1,

gives (3.14). For m = 4n+ 1, k = n, and a = −2 in (2.1), we have

gcd(B4n+1 + 2, B4n+2 + 12) = gcd(B2n+1 − 2B2n−1, B2n − 2B2n)

= gcd(B2n+1 − 2B2n−1, B2n)

= gcd(6B2n − 3B2n−1, B2n)

= gcd(−3B2n−1, B2n)

= gcd(3 gcd(B2n−1, B2n), B2n)

= gcd(3, B2n)

= 3,

which is (3.15). Again setting m = 4n+ 2, k = n, and a = −2 in (2.1)

gcd(B4n+2+2, B4n+3+12) = gcd(B2n+2 − 2B2n−1, B2n+1 − 2B2n)

= gcd(B2n+2+2B2n−2B2n−1−B2n+1, B2n+1−2B2n)

= gcd(6B2n+1+B2n−B2n−1−6B2n, B2n+1−2B2n)

= gcd(6B2n+1 −B2n−1 − 5B2n, B2n+1 − 2B2n)

= gcd(7B2n+1−5B2n−B2n+1−B2n−1, B2n+1−2B2n)

= gcd(7B2n+1 − 11B2n, B2n+1 − 2B2n)

= gcd(B2n+1 +B2n, B2n+1 − 2B2n)

= gcd(B2n+1 +B2n, 3B2n+1)

= gcd(B2n+1 +B2n, 3 gcd(B2n+1 +B2n, B2n+1))

= gcd(B2n+1 +B2n, 3)

= 1,

gives (3.16). ✷

Theorem 3.5. For any integer n, we have

gcd(C4n−1 + 1, C4n + 3) = C2n + C2n−1 (3.17)

gcd(C4n + 1, C4n+1 + 3) = 2C2n (3.18)

gcd(C4n+1 + 1, C4n+2 + 3) = C2n+1 + C2n (3.19)

gcd(C4n+2 + 1, C4n+3 + 3) = 2C2n+1. (3.20)
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Proof: Putting m = 4n− 1, k = n, and a = 1 in (2.2), we get

gcd(C4n−1 + 1, C4n + 3) = gcd(C2n−1 + C2n, C2n−2 + C2n+1)

= gcd(C2n−1 + C2n, 6C2n−1 + 6C2n)

= C2n−1 + C2n,

which is (3.17). Let m = 4n, k = n, and a = 1 in (2.2) to obtain

gcd(C4n + 1, C4n+1 + 3) = gcd(C2n + C2n, C2n−1 + C2n+1)

= gcd(2C2n, 6C2n)

= 2C2n,

which follows (3.18). For m = 4n+ 1, k = n, and a = 1 in (2.2), we get

gcd(C4n+1 + 1, C4n+2 + 3) = gcd(C2n+1 + C2n, C2n + C2n+1)

= C2n + C2n+1,

which gives (3.19). Setting m = 4n+ 2, k = n, and a = 1 in (2.2), we obtain

gcd(C4n+2 + 1, C4n+3 + 3) = gcd(C2n+2 + C2n, C2n+1 + C2n+1)

= gcd(6C2n+1, 2C2n+1)

= 2C2n+1,

gives (3.20). ✷

From the above results so far we have obtained, it is evident that {sn(a)} is
unbounded for a = ±1. The next is to show {sn(a)} is bounded for a 6= ±1. For
this, we prove the following two results.

Theorem 3.6. For any integers α, β, n and a with α2 + β2 − 6αβ − a2 6= 0, we

have

gcd(GB

4n−1 − a, GB

4n − 6a) ≤ |α2 + β2 − 6αβ − a2|.

Proof: For m = 4n− 1 and k = n in (2.1), we obtain

gcd(GB

4n−1 − a, GB

4n − 6a)

= gcd(GB

2n−1 + aB2n−1, GB

2n−2 + aB2n)

= gcd(βB2n−2 − αB2n−3 + aB2n−1, βB2n−3 − αB2n−4 + aB2n).

Using the recursion relation for Bn, let

fn = βB2n−2 − αB2n−3 + aB2n−1 = (β + 6a)B2n−2 − (α + a)B2n−3

and

gn = βB2n−3 − αB2n−4 + aB2n = (α+ 35a)B2n−2 + (β − 6α− 6a)B2n−3.
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Since gcd(fn, gn) divides yfn + zgn for any integers y and z, and

(α+ a)gn − (6α+ 6a− β)fn = (α2 + β2 − 6αβ − a2)B2n−2

and
(β + 6a)gn − (α+ 35a)fn = (α2 + β2 − 6αβ − a2)B2n−3,

we see that if α2+β2− 6αβ− a2 6= 0, then the greatest common divisor of the two
numbers is |α2+β2− 6αβ− a2|. Therefore gcd(fn, gn) divides α2+β2− 6αβ− a2.

That is to say,

gcd(GB

4n−1 − a, GB

4n − 6a) ≤ |α2 + β2 − 6αβ − a2|.

If m = 4n+ 1 and k = n in (2.1), we have, similarly

gcd(GB

4n+1 − a, GB

4n+2 − 6a) ≤ |α2 + β2 − 6αβ − a2|.

This ends the proof. ✷

Theorem 3.7. For any integers α, β, n and a with α2 + β2 − 6αβ − a2 6= 0, we

have

gcd(GB

4n − a, GB

4n+1 − 6a) ≤ |α2 + β2 − 6αβ − a2|.

Proof: Again setting m = 4n and k = n in (2.1), we get

gcd(GB

4n−a, G
B

4n+1−6a) = gcd(GB

2n + aB2n−1, G
B

2n−1 + aB2n)

= gcd(βB2n−1−αB2n−2+aB2n−1, βB2n−2−αB2n−3+aB2n).

Using the recursion relation for Bn, let

fn = βB2n−1 − αB2n−2 + aB2n−1 = (β + a)B2n−1 − αB2n−2

and

gn = βB2n−2 − αB2n−3 + aB2n = (α+ 6a)B2n−1 + (β − 6α− a)B2n−2.

Since gcd(fn, gn) divides yfn + zgn for any integers y and z, and

αgn + (β − 6α− a)fn = (α2 + β2 − 6αβ − a2)B2n−1

and
(β + a)gn − (α+ 6a)fn = (α2 + β2 − 6αβ − a2)B2n−2,

we see that if α2+β2− 6αβ− a2 6= 0, then the greatest common divisor of the two
numbers is |α2 + β2 − 6αβ − a2|. Therefore gcd(fn, gn) divides α2 + β2 − 6αβ − a2

. That is to say,

gcd(GB

4n − a, GB

4n+1 − 6a) ≤ |α2 + β2 − 6αβ − a2|.

If m = 4n+ 2 and k = n in (3), we have, similarly

gcd(GB

4n+2 − a, GB

4n+3 − 6a) ≤ |α2 + β2 − 6αβ − a2|,

which completes the proof. ✷
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