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Some Characterizations of Osculating Curves in the Lightlike Cone

Mihriban Külahci and Fatma Almaz

abstract: In this paper, we give the first kind and second kind osculating curves
in the lightlike cone. In addition we characterize osculating curves in terms of their
curvature functions.
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1. Introduction

As is well-known, semi-Riemannian manifold has played a key role in the
development of general relativity. Because the physical events space is
represented by a semi-Riemannian manifold. A semi-Riemannian manifold has
three causal types of submanifolds; spacelike, timelike and lightlike depending on
the character of the induced metric on the tanget space [1]. Due to the
degeneracy of the metric, the study of lightlike submanifold have attracted the
attention of many scientist.

Researchers use lightlike hypersurfaces in order to show a class of lightlike hy-
persurfaces came from the physically significant homegeneous spacetime manifolds
of general relativity [2].

On the other hand in special relativity, a lightlike cone is the surface
describing the temporal evolution of flash of light in Minkowski spacetime. Many
studies have been made on curves in the lightlike cone by many mathmaticians.
For example, in [3], Liu studied curves in the lightlike cone and in [4], Liu and
Mong gave representation formulas of curves in a Two and Three Dimensional
Lightlike Cone. Furthermore, in [5], Külahcı and others (the authors) studied
AW(k)- type curves in the 3-dimensional null cone.

Another research area is the characterizations of osculating curves [6,7]. In this
paper we are concerned with osculating curves in the lightlike cone.
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2. Curves in the lightlike cone Qn+1

In the following, we use the notations and copcepts from [3,4] unless
otherwise stated.

Let Em
q be the m-dimensional pseudo-Euclidean space with the metric

∼

G(x, y) =< X, Y >=

m−q∑
i=1

xiyi −
m∑

j=m−q+1

xjyj

where X = (x1, x2, ..., xm), Y = (y1, y2,..., ym) ∈ Em
q , Em

q is a flat pseudo-
Riemannian manifold of signature (m− q, q).

Let M be a submanifold of Em
q . If the pseudo-Riemannian metric

∼

G of

Em
q induces a pseudo-Riemannian metric

∼

G (respectively, a Riemannian metric, a
degenerate quadratic form) on M , then M is called timelike (respectively, spacelike
, degenerate) submanifold of Em

q .
Let c be a fixed point in Em

q and r > 0 be a constant. The pseudo -Riemannian
sphere is defined by

Sn
q (c, r) = {x ∈ En+1

q :
∼

G(x− c, x− c) = r2};

the pseudo-Riemannian hyperbolic space is defined by

Hn
q (c, r) = {x ∈ En+1

q+1 :
∼

G(x− c, x− c) = −r2};

the pseudo-Riemannian null cone (quadratic cone) is defined by

Qn
q (c, r) = {x ∈ En+1

q :
∼

G(x− c, x− c) = 0}.

It is well known that Sn
q (c, r) is a complete pseudo-Riemannian hypersurface of

signature (n−q, q), q ≥ 1 in En+1
q with constant sectional curvature r−2; Hn

q (c, r) is

a complete pseudo-Riemannian hypersurface of signature (n− q, q), q ≥ 1 in En+1
q+1

with constant sectional curvature −r−2; Qn
q (c) is a degenerate hypersurface in

En+1
q . The spaces En

q , Sn
q (c, r), H

n
q (c, r) and Qn

q (c) are called pseudo-Riemannian
space form. The point c is called the center of Sn

q (c, r), H
n
q (c, r) and Qn

q (c). When
c = 0 and q = 1, we simply denote Qn

1 (0) by Qn and call it the lightlike cone(simply
the light cone).

Let En+2
1 be the (n+ 2)-dimensional Minkowski space and Qn+1 the null cone

in En+2
1 . A vector α 6= 0 in En+2

1 is called spacelike, timelike or null(lightlike), if
〈α, α〉〉0, 〈α, α〉〈0 or 〈α, α〉 = 0, respectively. A frame field {e1, e2, ..., en+1, en+2}
on En+2

1 is called on asypmtotic orthonormal frame field, if
〈en+1, en+1〉 = 〈en+2, en+2〉 = 0, 〈en+1, en+2〉 = 1,
〈en+1, ei〉 = 〈en+2, ei〉 = 0, 〈ei, ej〉 = δij , i, j = 1, 2, ..., n.
We assume that the curve x : I −→ Qn+1 ⊂ En+1

1 , t −→ x(t) ∈ Qn+1, is a
regular curve in Qn+1. In the following, we always assume that the curve is regular

and x′(t) = dx(t)
dt

, for all t ∈ I ⊂ R.
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Definition 2.1. A curve x(t) in En+2
1 is called a Frenet curve, if for all t ∈ I,

the vector fields x(t), x′(t), x′′(t), ..., x(n)(t), x(n+1)(t) are linearly independent and
the vector fields x(t), x′(t), x′′(t), ..., x(n)(t), x(n+1)(t), x(n+2)(t) are linearly inde-
pendent, and the vector fields x(t), x′(t), x′′(t), ..., x(n)(t), x(n+1)(t), x(n+2)(t) are

linearly dependent, where x(n)(t) = dnx(t)
dtn

. Since 〈x, x〉 = 0 and 〈x, dx〉 = 0, dx(t)
is spacelike. Then the induced arc lenght(or simply the arc lenght) s of the curve
x(t) can be defined by

ds2 = 〈dx(t), dx(t)〉

If we take the arc lenght s of the curve x(t) as the parameter and denote
x(t) = x(t(s)), then x′(s) = dx

ds
is a spacelike unit tangent vector field of the curve

x(s). Now we choose the vector y(s), the spacelike normal space V n−1 of the curve
x(s) such that they satisfy the following conditions:

〈x(s), y(s)〉 = 1,
〈x(s), x(s)〉 = 〈y(s), y(s)〉 = 〈x′(s), y(s)〉 = 0,
V n−1 = {spanR{x, y, x

′}}⊥,
SpanR{x, y, x

′, V n−1} = En+2
1 ,

From the above explanations, we have the following remark.

Remark 2.2. From [4], for any asymptotic orthonormal frame {x, α, β, y} of the
curve x : I −→ Q3 ⊂ E4

1 with

〈x, x〉 = 〈y, y〉 = 〈x, α〉 = 〈x, β〉 = 〈y, α〉 = 〈y, β〉 = 〈α, β〉 = 0, (2.1.1)

〈x, y〉 = 〈α, α〉 = 〈β, β〉 = 1

the Frenet formulas read

x′(s) = α(s)

α′(s) = κ(s)x(s) + λ(s)β(s)− y(s) (2.1.2)

β′(s) = τ (s)x(s) − λ(s)a(s)

y′(s) = −κ(s)α(s)− τ(s)β(s).

Recall that orbitrary curve x(s) in Q3 ⊂ E4
1 is called osculating curve of the

first or second kind if its position vector (with respect to some chosen origion)
always lies in the orthogonal complement y⊥ or β⊥, respectively [6], where
y⊥ = span{β, α, y}, and β⊥ = span{y, α, x}.

Consequently the position vector of the osculating curve of the first and second
kind satisfies the equations respectively

x(s) = θ(s)α(s) + µ(s)β(s) + γ(s)y(s) (2.1.3)

x(s) = θ(s)x(s) + µ(s)α(s) + γ(s)y(s) (2.1.4)



42 M. Külahci and F. Almaz

some differantiable functions θ(s), µ(s) and γ(s). Since < x(s), y(s) >= 1, the
equation (2.1.3) easily implies a contradiction. Hence we can say that there isn’t a
osculating curve of the first kind in the lightlike cone Q3 ⊂ E4

1 .

3. Osculating Curves of the Second Kind in the Lightlike Cone Q3

In this section, we characterize osculating curves of the second kind in the
lightlike cone Q3 ⊂ E4

1 by using the components of their position vectors and the
curvature functions.

Theorem 3.1. Let x(s) be a unit speed curve with the non-zero cone curvature
functions κ(s), τ (s), λ(s) and if κ 6= 1

2 (
τ
λ
)2, then x(s) is congruent to an osculating

curve of the second kind if and only if

{A.e

∫
τ(s)
λ(s)

ds

(κ(s)− (
τ (s)

λ(s)
)
′

− (
τ (s)

λ(s)
)2)}′ +A.

τ (s)

λ(s)
.κ(s)e

∫
τ(s)
λ(s)

ds

= 0,

where A ∈ R.

Proof: Assume that x(s) is an osculating curve of the second kind with the cone
curvature functions κ(s), τ(s) and λ(s) in the lightlike cone Q3.

Differentiating (2.1.4) with respect to s and using (2.1.2), we get

α(s) = (θ′(s) + µ(s)κ(s))x + (−µ(s) + γ′(s))y + (θ(s) + µ′(s)− γ(s)κ(s))α

+ (µ(s)λ(s)− τ(s)γ(s))β. (3.1.1)

Exposing the inner product y, x, α, β of the both side of (3.1.1), respectively,
we have

θ′(s) + µ(s)κ(s) = 0

−µ(s) + γ′(s) = 0

θ(s) + µ′(s)− γ(s)κ(s) = 1 (3.1.2)

µ(s)λ(s)− τ(s)γ(s) = 0.

Using (3.1.2) and making necessary calculations, we get, for A ∈ R

γ(s) = A.e

∫
τ(s)
λ(s)

ds

,

µ(s) =
τ (s)

λ(s)
A.e

∫
τ(s)
λ(s)ds

, (3.1.3)

θ(s) = 1 +A.e

∫
τ(s)
λ(s)

ds

(κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2).
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Thus by using (3.1.3), x(s) can be written as osculating curve of the second
kind as follows:

{A.e

∫
τ(s)
λ(s)

ds

(κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2)}′ +A.

τ (s)κ(s)

λ(s)
e

∫
τ(s)
λ(s)

ds

= 0 (3.1.4)

Conserversely, let x(s) be unit speed curve with the cone curvatures κ(s), τ (s),
λ(s) and assume that x(s) holds (3.1.4). From (2.1.4), we can write

Y (s) = x(s)− (1 +A.e

∫
τ(s)
λ(s) .ds

.(κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2)).x

−
τ(s)

λ(s)
.A.e

∫
τ(s)
λ(s)

ds

.α−A.e

∫
τ(s)
λ(s)

.ds

.y,

and using (2.1.2) and (3.1.4), we can find Y ′(s) = 0. Hence Y (s) = constant. Thus
x(s) is congruent to an osculating curve of the second kind .The proof is completed.

✷

In particular, assume that the curvature functions κ(s) and τ (s), λ(s) of rectify-
ing curve x(s) in Q3 are constant and different from zero and let be
κ 6= 1

2 (
τ
λ
)2. Then equation (3.1.4) easily implies a contradiction. Hence we can

say the following theorem.

Theorem 3.2. There is not an osculating curve lying fully in the lightlike cone Q3

if κ 6= 1
2 (

τ
λ
)2,so that the curvature functions are non-zero.

But if any two of the curvature functions are constant, we can think the following
statement:

Theorem 3.3. Let x(s) be unit speed curve in the lightlike cone Q3, with curvatures
κ(s), τ(s) and λ(s). Then x(s) is congruent to an osculating curve if and only if

a) If κ(s) 6=constant, τ , λ =constant, for A ∈ R+
0 ,

κ(s) =
τ2

2λ2 +D.e−
2τ
λ
s, D ∈ R.

b) If τ(s) 6=constant, κ, λ =constant, for A ∈ R+
0 ,

τ ′′(s)

λ
+

3.τ (s)τ ′(s)

λ2 +
1

λ3 .τ
3(s)−

2κ

λ
.τ(s) = 0.

c) If λ(s) 6=constant, κ, τ =constant, for A ∈ R+
0 ,

λ′′(s)λ(s)− 2.(λ′(s))2 + τ.λ′(s) + 2.κ.λ2(s)− τ2 = 0.
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Proof: a) If κ(s) 6=constant, τ , λ =constant, then from (3.1.4), for A ∈ R+
0 , we

can get

τ

λ
.(κ(s)− (

τ

λ
)′ − (

τ

λ
)2) + (κ′(s)− (

τ

λ
)′′ − (

τ 2

λ2 )
′) +

τκ(s)

λ
= 0.

κ′(s) +
2τ

λ
κ(s)−

τ3

λ3 = 0.

By solving this equation, we can have

κ(s) =
τ2

2λ2 +D.e−
2τ
λ
s, D ∈ R.

b) If τ (s) 6=constant, κ, λ =constant, from (3.1.4), for A ∈ R+
0 , we can obtain

τ (s)

λ
(κ− (

τ (s)

λ
)′ − (

τ (s)

λ
)2) + (κ′ − (

τ (s)

λ
)′′ − (

τ2(s)

λ2 )′) +
τ (s)κ

λ
= 0.

τ ′′(s)

λ
+

3τ (s)τ ′(s)

λ2 +
1

λ3 .τ
3(s)−

2τ (s)κ

λ
= 0.

c) If λ(s) 6=constant, κ, τ =constant, then from (3.1.4), for A ∈ R+
0 , we can

get

τ

λ(s)
(κ− (

τ

λ(s)
)′ − (

τ

λ(s)
)2) + (κ′ − (

τ

λ(s)
)′′ − (

τ2

λ2(s)
)′) +

τκ

λ(s)
= 0.

λ′′(s)λ(s)− 2(λ′(s))2 + τλ′(s) + 2κλ2(s)− τ2 = 0.

✷

Theorem 3.4. If x(s) be unit speed osculating curve in the lightlike cone Q3 so
that curvatures κ(s), τ (s), λ(s) are non-zero. The following statements holds:

a) the distance function ρ2(x(s)) = 2A.e

∫
τ(s)
λ(s)

ds

+ d2, A, d ∈ R+
0 .

Only if τ = 0, the distance function ρ is cons tan t and

b) the second binormal component, the pirincipal normal component and the tan-
gential component of the position vector of the curve is as follows
respectively:
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〈x(s), y(s)〉 = θ(s) = 1 +A.e

∫
τ(s)
λ(s)

ds

(κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2),

〈x(s), α(s)〉 = µ(s) =
τ (s)

λ(s)
.A.e

∫
τ(s)
λ(s) ds

,

〈x(s), x(s)〉 = γ(s) = A.e

∫
τ(s)
λ(s)

ds

.

In addition, if τ = 0, tangential component of the position vector of the curve
is constant.

c) the normal component of the position vector of the curve of the second kind
is ||xN (s)|| = µ(s) = 2γ − 2γθ + d2.

d) the curvatures κ(s), τ (s) and λ(s) satisfy the following equality

z(s) = A.e

∫
τ(s)
λ(s)

ds

= F.e

∫
η′(s)

κ(s)+η(s)
ds

= F.e

∫
(́κ(s)−(

τ(s)
λ(s)

)′−(
τ(s)
λ(s)

)2)′

κ(s)+(κ(s)−(
τ(s)
λ(s)

)′−(
τ(s)
λ(s)

)2)
ds

,

where A,F ∈ R, η(s) = {κ(s)− ( τ(s)
λ(s) )

′ − ( τ(s)
λ(s) )

2}.

Proof: (a) Let x(s) be unit speed osculating curve of the second kind with curva-
tures κ(s), τ (s), λ(s). The position vector of x(s) holds (2.1.4). Also the functions
θ(s), µ(s), γ(s) holds (3.1.3).

ρ2(x(s)) = ||x(s)|| = 〈x(s), x(s)〉 = 2γθ + µ2. (3.1.5)

By multiplying µ the both side of third equation in (3.1.2) and making necessary
calculations, we can have

µ2 = 2γ − 2γθ + d2, d ∈ R. (3.1.6)

From (3.1.5),

ρ2(x(s)) = 2γ + d2. (3.1.7)

Therefore, we have

ρ2(x(s)) = 2A.e

∫
τ(s)
λ(s)

ds

+ d2, A, d ∈ R+
0

If τ = 0,we have γ(s) = A. Hence ρ(x(s)) = d = cons tan t.

b) From (2.1.4) and (3.1.3), we can write the following, for A ∈ R,
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〈x(s), y(s)〉 = θ(s) = 1 +A.e

∫
τ(s)
λ(s)

ds

{κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2}

〈x(s), α(s)〉 = µ(s) =
τ (s)

λ(s)
.A.e

∫
τ(s)
λ(s) ds

〈x(s), x(s)〉 = γ(s) = A.e

∫
τ(s)
λ(s)

ds

.

Conversely, if 〈x(s), y(s) = θ(s) holds, let’s differentiate
〈x′(s), y(s)〉+ 〈x(s), y′(s)〉 = θ′(s), we have

〈a(s), y(s)〉 + 〈x(s),−κ(s)α(s)− τ (s)β(s)〉 = θ(s)′.

Furthermore, since 〈x(s), α(s)〉 = µ(s) and θ(s)′ = −κ(s)µ(s), we get

τ (s) < x(s), β(s) >= 0 .

Since τ (s) 6= 0, 〈x(s), β(s)〉 = 0. This indicates that x(s) is an osculating curve
of the second kind.

Conversely, if 〈x(s), α(s)〉 = µ(s) holds, let’s differentiate
〈α(s), α(s)〉 + 〈x(s), α′(s)〉 = 1 + γ(s)κ(s) − θ(s).Furthermore since
〈x(s), α(s)〉 = µ(s), 〈x(s), x(s)〉 = γ(s), 〈x(s), y(s)〉 = θ(s). So we can get

λ(s)〈x(s), β(s)〉 = 0. (3.1.8)

Since λ(s) 6= 0, 〈x(s), β(s)〉 = 0. Thus x(s) is an osculating curve of the second
kind.

Differentiating 〈x(s), x(s)〉 = γ(s) with respect to s, we can have

〈x′(s), x(s)〉 + 〈x(s), x′(s)〉 = γ′(s) =⇒ 2〈x(s), α(s)〉 = γ′(s) = µ(s),

again differentiating with respect to s and making necassary calculations, we can
get

λ(s)〈x(s), β(s)〉 = 0.

Since λ(s) 6= 0, 〈x(s), β(s)〉 = 0. Thus x(s) is an osculating curve of the second
kind. This proves (b).

c) From the equation x(s) = θ(s)x(s) + µ(s)α(s) + γ(s)y(s), we can write

xN (s) = µ(s)α(s) + γ(s)y(s).

Since ||xN (s)||2 = 〈xN (s), xN (s)〉 = µ2(s) and from (3.1.6), we can get
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µ2 = 2γ − 2γθ + d2.

Since θ(s) = 1, we can have µ2 = d2 . Thus ||xN (s)|| = d =constant.

Conversely, let ||xN (s)|| = 2γ − 2γθ + d2. Then we can write

〈xN (s), xN (s)〉 = 〈µ(s)α(s) + γ(s)y(s), µ(s)α(s) + γ(s)y(s)〉 = µ2(s). (3.1.9)

Hence we can get

||xN (s)|| = µ = 〈x(s), α(s)〉. (3.1.10)

Differentiating (3.1.10) with respect to s and since 〈x(s), x(s)〉 = γ(s),
〈x(s), y(s)〉 = θ(s), we can get

〈x(s), α(s)〉′ = µ′

〈α(s), α(s)〉+ 〈x(s), κ(s)x(s) + λ(s)β(s)− y(s)〉 = µ′

1 + κ(s)〈x(s), x(s)〉 − 〈x(s), y(s)〉 + λ(s)〈x(s), β(s)〉 = 1 + γ(s)κ(s)− θ

λ(s)〈x(s), β(s)〉 = 0,

since λ(s) 6= 0, 〈x(s), β(s)〉 = 0.Thus x(s) is an osculating curve of the second
kind.This proves (c).

d) Let x(s) be an osculating curve of the second kind with curvatures κ(s),
τ (s), λ(s) . Since the position vector of x(s) holds (2.1.4), we write for A ∈ R

{A.e

∫
τ(s)
λ(s)

ds

(κ(s)− (
τ (s)

λ(s)
)′ − (

τ (s)

λ(s)
)2)}′ +A.

τ (s)

λ(s)
κ(s)e

∫
τ(s)
λ(s)

ds

= 0.

Let z(s) = A.e

∫
τ(s)
λ(s) ds

. Thus z′(s) = A.
τ(s)
λ(s)e

∫
τ(s)
λ(s) ds

and assume that

η(s) = {κ(s)− ( τ(s)
λ(s) )

′ − ( τ(s)
λ(s) )

2}. So we can write the following equation

(z(s).η(s))′ + z′(s)κ(s) = 0.

By solving this equation, we can get for F ∈ R,

z(s) = F.e

∫
η′(s)

κ(s)+η(s)
ds

.

Thus,
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z(s) = A.e

∫
τ(s)
λ(s)

ds

= F.e

∫
η′(s)

κ(s)+η(s)
ds

= F.e

∫
(́κ(s)−(

τ(s)
λ(s)

)′−(
τ(s)
λ(s)

)2)́

κ(s)+(κ(s)−(
τ(s)
λ(s)

)′−(
τ(s)
λ(s)

)2)
ds

. (3.1.12)

Conversely, if (d) holds, for κ(s), τ(s), λ(s) 6= 0, let x(s) be curve that holds
the equation (3.1.12). Differentiating twice of the equation (3.1.12), we can obtain
(3.1.4). Hence from Theorem 3.1, x(s) is an osculating curve of the second kind.

✷
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