

(-1,1) Metabelian rings*

K. Jayalakshmi and K. Hari Babu

ABSTRACT: The structure of the set of all non-nilpotent (-1,1) metabelian ring is studied. An additive basis of a free (-1,1) metabelian rings is constructed. It is proved that any identity in a non-nilpotent 2, 3-torsion free (-1,1) metabelian ring of degree greater than or equal to 6 is consequence of four defining identity of \mathcal{M} where \mathcal{M} is the metabelian (-1,1) ring.

Key Words: Non-nilpotent, variety of (-1,1) rings, free metabelian rings, (-1,1) rings.

Contents

1	Introduction	115
2	Consequences of the defining relations	116
3	Processing of operator words of length 3	117
4	Processing of operator words of length 4	120
5	Auxiliary Identities	121
6	A basis of a free metabelian (-1, 1) ring	123

1. Introduction

The first example of solvable but not nilpotent alternative and (-1, 1) rings were constructed by Dorofeev [4], [5]. He also gave an example of a finite dimensional right alternative right nilpotent algebra which is not nilpotent.

Varieties of two-step solvable nearly associative algebras were studied by many authors [2,6,7,8,9]. Thus Medvedev [9] proved that the varieties of metabelian alternative, Jordan Mal'tsev and type (-1, 1) algebras are specht. Pchelintsev [6] obtained a series results on the structure of lattices of varieties of nearly associative metabelian algebras.

In this paper, we study (-1, 1) metabelian rings. They are contained in the class of algebras of type (γ, δ) . In this class of ring the square of an ideal is also an ideal and hence called 2- variety. A 2, 3- torsion free ring of type (γ, δ) if satisfies the identities

$$(x, x, x) = 0,$$

* The project is partially supported by University Grants Commission Grants No. 42-17/2013(SR)

2000 *Mathematics Subject Classification:* 17A30

$$(x, y, z) + \gamma(y, z, x) + \delta(z, y, x) = 0,$$

$$(x, y, z) - \gamma(x, z, y) + (1 - \delta)(y, z, x) = 0,$$

where $\gamma^2 - \delta^2 + \delta - 1 = 0$, and $(x, y, z) = (xy)z - x(yz)$ is the associator of elements x, y and z .

This paper includes the five sections. In sec 2 we prove that the simplest consequences of the defining relations. In sec 3 and 4, operator of the length 3 and 4 are processed. In sec 5 the function $\{x, y, z\} = (yx)z + (zx)y$ is introduced, its properties are studied, and auxiliary identities necessary for constructing additive bases in free rings are proved. In sec 6, a basis of a free $(-1, 1)$ metabelian rings is constructed and the following main results is proved.

Theorem 1.1. *Any identity of degree ≥ 6 in a non-nilpotent sub variety of the variety \mathcal{M} of metabelian $(-1, 1)$ ring which is 2 and 3- torsion free is a consequence of the defining identities of \mathcal{M} .*

Using the terminology of [7], we obtain the following corollary.

Corollary 1.2. *The topological rank of the variety of metabelian rings of type $(-1, 1)$ is equal to 2.*

2. Consequences of the defining relations

An algebra is said to be metabelian if the identity $(xy)(zt) = 0$ holds in this algebra. follows, by a ring we always mean a metabelian ring of type $(-1, 1)$ and use the identity $(xy)(zt) = 0$.

A ring R is said to be a $(-1, 1)$ ring if it satisfies the following identities

$$(x, y, z) + (y, z, x) + (z, x, y) = 0, \quad (1)$$

and

$$(x, y, z) + (x, z, y) = 0. \quad (2)$$

for all $x, y, z \in R$.

In a nonassociative ring R we define a commutator $[x, y] = xy - yx$, and the anticommutator is defined as $x \circ y = xy + yx$ for all $x, y \in R$. The Jordan identity is defined as the product is commutative, that is $xy = yx$ and the lie identity is defined as the the product is anti commutative that is $xy = -yx$. Throughout this paper we use Lie and Jordan identities toget the results. Now applying (2) in (1) setting $z = ab$ and using metabelian condition we obtain

$$0 = -x(y(ab)) + y(x(ab)) + ((ab)x)y.$$

$$\text{Hence } R_x R_y = L_y L_x + L_x L_y.$$

Thus

$$R_x R_y = L_x \circ L_y. \quad (3)$$

Again setting $x = ab$ in (2) and using the metabelian condition, anti-commutativity and Jordan identity we obtain

$$0 = ((ab)y)z - (ab)(yz) + ((ab)z)y - (ab)(zy)$$

Thus

$$(xy)z = (xz)y. \quad (4)$$

The above relation in operator form is

$$R_y R_z - R_z R_y = 0 \text{ implies } [R_y, R_z] = 0. \quad (5)$$

Similarly setting $y = ab$ in (2) we obtain

$(xy)z = x(yz)x(zy)$. This relation in operator form is $L_x R_z = R_z L_x - L_z L_x$
Thus

$$L_x R_z = (R_z - L_z)L_x. \quad (6)$$

Lemma 2.1. *Any operator word in a metabelian ring (-1, 1) can be represented as a linear combination of words of the form $T_a L_b \dots L_c$ having the same composition.*

Proof: The Lemma is proved by applying the identities from (3) to (6) by an obvious induction on the length of an operator word. \square

3. Processing of operator words of length 3

Lemma 3.1. *$R_x(L_y \circ L_z) = (L_x \circ L_y)R_z = R_x R_y R_z$, and all these functions are symmetric with respect to the variables x , y , and z .*

Proof: From the relation (3) the Lemma is proved. \square

Lemma 3.2. *The following relation holds: $(L_x L_z L_y + L_y L_x L_z) + L_z (L_x \circ L_y) = 0$.*

Proof: We calculate the product $R_x R_y R_z$ by using Lemma 2.1:

$$\begin{aligned} R_x R_y R_z &= (L_x \circ L_y)R_z = L_x L_y R_z + L_y L_x R_z \\ &= L_x((R_z - L_z)L_y) + L_y((R_z - L_z)L_x) \text{ (by (6))} \\ &= ((R_z - L_z)L_x)L_y + ((R_z - L_z)L_y)L_x - (L_x L_z L_y + L_y L_z L_x) \text{ (by (6))} \\ &= R_z(L_x \circ L_y) - L_z(L_x \circ L_y) - (L_x L_z L_y + L_y L_z L_x) \\ R_x R_y R_z &= R_z R_x R_y - L_z(L_x \circ L_y) - (L_x L_z L_y + L_y L_z L_x) \text{ (by (3))} \\ \text{Thus } L_z(L_x \circ L_y) + (L_x L_z L_y + L_y L_z L_x) &= 0. \end{aligned}$$

\square

Lemma 3.3. *$\sum L_{x\sigma} L_{y\sigma} L_{z\sigma} = 0$, where σ ranges over the symmetric group S_3 .*

Proof: $L_z L_x L_y + L_z L_y L_x + L_x L_z L_y + L_y L_z L_x = 0$. Setting $x = y = z$ in the Lemma 3.2, we obtain

$$\begin{aligned} 4L_x^3 &= 0. \text{ (as the ring is 2-torsion free)} \\ L_x^3 &= 0. \end{aligned}$$

\square

The linearization of this identity proves Lemma 3.2.

Lemma 3.4. *The following relation holds $(L_x \circ L_y)L_z = R_x R_y L_z = 0$.*

Proof: Lemma 3.2 implies $(L_x L_z L_y + L_y L_z L_x) + L_z (L_x \circ L_y) = 0$.

This together with Lemma 3.3 gives

$$\begin{aligned} 0 &= L_x L_y L_z + L_y L_x L_z \\ &= (L_x L_y + L_y L_x) L_z \\ &= (L_x \circ L_y) L_z. \end{aligned}$$

Now this equality and relation (3) gives $R_x R_y L_z = 0$. \square

Lemma 3.5. *The following relation holds:*

$$(R_a L_y L_b + R_b L_y L_a) + R_y (L_a \circ L_b) - L_y (L_a \circ L_b) = 0.$$

Proof: The following identity which holds in any arbitrary ring is obtain by multiplying out associators and performing cancellations generally known as Tiechmuller identity.

$$(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z.$$

Taking the defining identities in to account, we obtain

$$\begin{aligned} x(x, y, x) + (x, x, y)x - (x^2, y, x) + (x, xy, x) - (x, x, yx) \\ &= x((yx)x) + (x, y, x^2) + (x^2, y, x) - (x(xy))x - ((xy)x)x - (x(x(yx))) - (x^2, x, y) + \\ &\quad x(x^2y) \\ &= x((xy)x - x(yx)) + (x^2y)x - (x(xy))x - (x^2y)x + x^2(yx) + (x(xy))x - ((xy)x) - \\ &\quad x^2(yx)) + x(x(yx)) \\ &= x((yx)x) + (x, y, x^2) - (x(xy))x - x(x(yx)) - x(x(yx)) + x(x^2y) - ((xy)x)x \\ &= x((yx)x) - x(x^2y)x + x^3y - (x(xy))x - ((xy)x)x - x(x(yx)) + x(x^2y) \\ &= x((yx)x) + x^3y - (x(xy))x - ((xy)x)x - x(x(yx)) \end{aligned}$$

Thus we have the identity

$$x((yx)x) + x^3y - (x(xy))x - ((xy)x)x - x(x(yx)) = 0 \quad (7)$$

Let us linearize this identity with respect to x and assuming that $a, b \in R$ and $c \in R^2$ we obtain

$$a((yc)b) + b((yc)a) + ((ca)b + (cb)a + (ac)b + (bc)a)y - (a(cy))b - (b((cy))a) - ((cy)a)b - ((cy)b)a - a(b(yc)) - b(a(yc)) = 0.$$

The operator form of this identity is

$$\begin{aligned} 0 &= L_y(R_a L_b + R_b L_a) + (R_a R_b + R_b L_a)R_y + (L_a R_b + L_b R_a)R_y - R_y(L_b R_b + L_b R_a) - \\ &\quad R_y(R_a R_b + R_b R_a) - L_y(L_a L_b + L_b L_a). \\ &= L_y(R_a L_b + R_b L_a) + (R_a \circ R_b)R_y + (L_a R_b + L_b R_a)R_y - R_y(L_a R_b + L_b R_a) - \\ &\quad R_y(R_a \circ R_b) - L_y(L_a \circ L_b). \end{aligned}$$

Applying equation (5) we reduce this equality to the form

$$0 = L_y(R_a L_b + R_b L_a) + (L_a R_b + L_b R_a)R_y - R_y(L_a R_b + L_b R_a) - L_y(L_a \circ L_b).$$

Let us transform its right-hand side by using (6) and (3)

$$0 = ((R_a - L_a)L_y)L_b + ((R_b - L_b)L_y)L_a + L_a(L_b \circ L_y) + L_b(L_a \circ L_y) - R_y(R_b - L_b)L_a - R_y(R_a - L_a)L_b - L_y(L_a \circ L_b).$$

Removing parentheses and performing cancellations, we obtain

$$0 = R_a L_y L_b - L_a L_y L_b + R_b L_y L_a - L_b L_y L_a + L_a L_b L_y + L_a L_y L_b + L_b L_a L_y + L_b L_y L_a -$$

$$\begin{aligned}
& R_y R_b L_a + R_y L_b L_a - R_y R_a L_b + R_y L_a L_b - L_y L_a L_b - L_y L_b L_a. \\
& = R_a L_y L_b + R_b L_y L_a + ((L_a \circ L_b) L_y - R_y R_b L_a - R_y R_a L_b) + R_y L_a L_b + R_y L_b L_a + \\
& R_y L_a L_b - L_y L_a L_b - L_y L_b L_a.
\end{aligned}$$

This relation together with Lemma 3.4 gives the required result. \square

Lemma 3.6. *The relation $R_y(L_x \circ L_y) = 0$ holds.*

Proof: By Lemma 3.5 we have

$$0 = (R_a L_b L_y + R_b L_y L_a) + R_y(L_a \circ L_b) - L_y(L_a \circ L_b). \quad (8)$$

Permuting each of the symbols (by) and (ay) in this equality, we obtain

$$0 = (R_a L_y L_b + R_y L_b L_a) + R_b(L_a \circ L_y) - L_b(L_a \circ L_y). \quad (9)$$

and

$$0 = (R_y L_b L_a + R_b L_a L_y) + R_a(L_y \circ L_b) - L_a(L_b \circ L_y). \quad (10)$$

Adding of the inequalities (8), (9) and (10) we obtain

$$0 = 2(R_y(L_a \circ L_b) + R_b(L_a \circ L_y) + R_a(L_b \circ L_y)) - (L_y(L_a \circ L_b) + L_b(L_a \circ L_y) + L_a(L_y \circ L_b)).$$

This equality and Lemmas 3.1 and 3.3 imply

$$\begin{aligned}
0 &= 2(3R_a(L_b \circ L_y)) \\
&= 6R_a(L_b \circ L_y), \text{ whence}
\end{aligned}$$

$R_a(L_b \circ L_y) = 0$ because of 2, 3 -torsion free. \square

Lemma 3.7. *The following relation holds: $R_a L_x L_b + R_b L_x L_a = L_x(L_a \circ L_b)$.*

Proof: The relation is obtained from Lemma 3.5 and Lemma 3.6:

$$0 = (R_x L_b L_a + R_a L_b L_x) - L_b(L_x \circ L_a). \quad (11)$$

Cyclically permuting the symbols x, b and a , we obtain

That is

$$0 = (R_b L_a L_x + R_x L_a L_b) - L_a(L_b \circ L_x) \quad (12)$$

\square

Lemma 3.8. $(R_a L_b + R_b L_a) L_x = L_a L_x L_b + L_b L_x L_a$.

Proof:

In Lemma 3.7

The sum of (11) and (12) equalities gives

$$\begin{aligned}
0 &= (R_x L_b L_a + R_a L_b L_x) - L_b(L_x \circ L_a). \\
&= (R_b L_a L_x + R_x L_a L_b) - L_a(L_b \circ L_x).
\end{aligned}$$

Thus $R_x(L_b L_a + R_a L_b) + (R_a L_b + R_b L_a) L_x = L_a(L_b \circ L_x) + L_b(L_x \circ L_a)$.

That is $R_x(L_a \circ L_b) + (R_a L_b + R_b L_a)L_x = L_a(L_b \circ L_x) + L_b(L_x \circ L_a)$.

From Lemmas (3.4) and (3.6) we get $(R_a L_b + R_b L_a)L_x = L_a L_b L_x + L_a L_x L_b + L_b L_x L_a + L_b L_a L_x$
 $= L_a L_x L_b + L_b L_x L_a$. \square

Lemma 3.9. *The relation $R_x R_y T_z = 0$ holds.*

Proof: This Lemma follows from equation (5) and Lemma (3.4) and (3.6). \square

Lemma 3.10. *In any metabelian (-1, 1) ring the following relations are valid:*

- (a) $R_x(L_y \circ L_z) = (L_x \circ L_y)L_z = R_x R_y T_z$;
- (b) $(R_a L_b + R_b L_a)L_x = L_a L_x L_b + L_b L_x L_a$;
- (c) $R_a L_x L_b + R_b L_x L_a = L_x(L_a \circ L_b)$.

Corollary 3.11. *The function $T_a L_x L_y \dots L_z L_b$ is skew-symmetric with respect to x, y, z*

4. Processing of operator words of length 4

Lemma 4.1. *The relation $(R_a L_b + R_b L_a)L_x L_y = 0$ holds.*

Proof: Applying Lemmas (3.8) and (3.4) ,we have

$(R_a L_b + R_b L_a)L_x L_y = L_a L_x L_b + L_b L_x L_a$.
That is $((R_a L_b + R_b L_a)L_x)L_y = (L_a L_x L_b + L_b L_x L_a)L_y$
 $= L_a L_x L_b L_y + L_b L_x L_a L_y$. \square

Lemma 4.2. *The relation $L_a L_b(L_x \circ L_y) = 0$ holds.*

Proof: From Lemmas (3.8) and (3.4) , we have

$$\begin{aligned}
0 &= R_x L_y L_b + R_y L_x L_b - L_x L_b L_y - L_y L_b L_x = R_x L_y L_b + R_y L_x L_b + L_b(L_x \circ L_y) \\
&\text{Multiplying this equality by } L_a \text{ on the left and transforming the result by using} \\
&\text{identity (6) and Lemmas (3.4) and (3.7), we obtain} \\
&-L_a L_b(L_x \circ L_y) = L_a R_x L_y L_b + L_a R_y L_x L_b \\
&= (R_x - L_x)L_a L_y L_b + (R_y - L_y)L_a L_x L_b \\
&= R_x L_a L_y L_b - L_x L_a L_y L_b + R_y L_a L_x L_b - L_y L_a L_x L_b \\
&= (R_x L_a L_y + R_y L_a L_x)L_b - L_x L_a L_y L_b - L_y L_a L_x L_b && \text{(by Lemma 3.7)} \\
&= L_a L_x L_y L_b + L_a L_y L_x L_b - L_x L_a L_y L_b - L_y L_a L_x L_b && \text{(by Lemma 3.4)} \\
&= L_a L_x L_y L_b + L_a L_y L_x L_b + L_a L_x L_y L_b + L_a L_y L_x L_b \\
&= L_a(L_x \circ L_y)L_b + L_a(L_x \circ L_y)L_b \\
&= 2L_a(L_x \circ L_y)L_b = 0. && \text{(by Lemma 3.4)}
\end{aligned}$$

5. Auxiliary Identities

Suppose that \mathcal{M} is an arbitrary variety of metabelian algebras of type (-1, 1), R is a free ring in the variety \mathcal{M} and $X = \{x_1, x_2, \dots\}$ is a set of free generators of R . For elements $x, y \in R^2$, we write
 $x \approx y$ if $x = y$ and $x \equiv y$ if, for any $a_1, a_2, \dots, a_n \in R$,
 $(x - y)L(a_1)L(a_2)\dots L(a_n) = 0$ and
 $(x - y)T(a_1)T(a_2)\dots T(a_n) = 0$, respectively. \square

Lemma 5.1. $[[x, y], z] \equiv 0(2)$.

Proof: Identity (1) implies

$$\begin{aligned} 0 &= (zx)y - z(xy) - (xz)y + x(zy) + (yz)x - y(zx). \\ \text{That is } z(xy) &= (zx)y - (xz)y + x(zy) + (yz)x - y(zx). \\ &= (zx)y + y(xz) - x(yz) + (yz)x - y(zx). \\ &= (zx)y + (xz)y - x(zy) + (yz)x - y(zx). \end{aligned}$$

Multiplying both sides of the last equality by $R_t L_u$, we obtain

$$\begin{aligned} (xy)L_z R_t L_u &= ((zx)y + y(xz) - x(zy) + (yz)x - y(zx))R_t L_u \\ &= (zx)R_y R_t L_u + (xz)R_y R_t L_u - (zy)L_x R_t L_u + (yz)R_x R_t L_u - (zx)L_y R_t L_u \\ &= -(zy)L_x R_t L_u - (zx)L_y R_t L_u \text{ (by Lemma 3.9)} \end{aligned}$$

Thus $(xy)L_z R_t L_u = -(zy)L_x R_t L_u - (zx)L_y R_t L_u$. Since the right hand side of this equality is symmetric with respect to x and y we have

$$(xy)L_z R_t L_u = (yx)L_z R_t L_u, \text{ or}$$

$$[x, y]L_z R_t L_u = 0. \quad (13)$$

Thus

$$[x, y](R_t - L_t)L_z L_u, \text{ by identity (2.6)} \quad (14)$$

$$[[x, y], t]L_z L_u = 0. \quad (15)$$

Lemma (3.9) gives $[x, y]R_z R_t L_u = 0$

Subtracting (11) from this equality, we obtain

$$[x, y](R_z - L_z)R_t L_u = 0 \text{ and}$$

$$[[x, y], z]R_t L_u = 0.$$

This relation, equality (11), and Lemma (3.1) imply the required assertion. \square

Let us introduce the auxiliary function $\{x, y, z\} = (yx)z + (zx)y$ obviously, it is symmetric with respect to y and z i.e., $\{x, y, z\} = \{x, z, y\}$.

Lemma 5.2. *The following assertions are valid*

- (a) $\{a, b, x\}L_y + \{a, b, y\}L_x + \{a, x, y\}L_b \approx 0$ (2);
- (b) $\{a, b, x\} \approx \{b, a, x\}L_y$ (2);
- (c) $\{a, b, x\} \approx 0$ (2).

Proof: In the proof of this lemma, $u \approx v$ means $u \approx v$ (2).

(a) Note that Lemma 4.2 can be written in the form $R_a L_b + R_b L_a \approx 0$. Therefore

$$\begin{aligned}
& \{a, b, x\}L_y + \{a, b, y\}L_x = (ba)R_xL_y + (xa)R_bL_y + (ba)R_yL_x + (ya)R_bL_x \\
& \approx (xa)R_bL_y + (ya)R_bL_x \approx -(xa)R_bR_y - (ya)R_bL_x \\
& \approx -\{a, x, y\}L_b.
\end{aligned}$$

(b) Taking into account identities (1) and (2), and applying the Jordan product we obtain

$$\begin{aligned}
& (ba)x + (xa)b = (ba)x - b(ax) + b(ax) + (xa)b - x(ab) + x(ab) \\
& = (b, a, x) + (x, a, b) + b(ax) + x(ab) \\
& = -(a, x, b) + b(ax) + x(ab) \\
& = -(ax)b + a(xb) + b(ax) + x(ab).
\end{aligned}$$

Hence $(ba)x + (xa)b = -[b, ax] - a(xb) - x(ab) = 0$.

The application of the operator $L_uR_yL_v$ to this relation yields

$$\begin{aligned}
0 & = ((ba)R_x + (xa)R_b - [b, ax] - (xb)L_a - (ab)L_x)L_uR_yL_v \\
& = ((ba)R_x + (xa)R_b - (xb)L_a - (ab)L_x)L_uR_yL_v \text{ (by (11))} \\
& = ((ba)R_x + (xa)R_b - (xb)L_a - (ab)L_x)(R_y - L_y)L_uL_v \text{ (by (6))} \\
& = (-(xb)(R_y - L_y)L_a - (ab)(R_y - L_y)L_x - (ba)R_xL_y + (xb)L_aL_y + (ab)L_xL_y)L_uL_v \\
& = (-(xb)R_yL_a + (xb)L_yL_a - (ab)R_yL_x + (ab)L_yL_x - (ba)R_xL_y - (xa)R_bL_y + \\
& \quad (xb)L_aL_y + (ab)L_xL_y)L_uL_y \\
& = (-(ba)R_xL_y - (xa)R_bL_y - (xb)R_yL_a - (ab)R_yL_x)(L_yL_a + L_aL_y) + (ab)(L_yL_x + \\
& \quad L_xL_y)L_uL_y \\
& = (-(ba)R_xL_y - (xa)R_bL_y - (xb)R_yL_a - (ab)R_yL_x + (xb)R_yR_a + (ab)R_yR_x)L_uL_x \\
& \text{by Lemma (3.4)} \\
& = -(ba)R_xL_y - (xa)R_bL_y - (xb)R_yL_a - (ab)R_yL_x \approx 0 \\
& = (ba)R_xL_y + (xa)R_bL_y \approx (xb)R_yL_a - (ab)R_yL_x \\
& = \{a, b, x\}L_y \approx \{b, a, x\}L_y \text{ (by Lemma (4.1))}
\end{aligned}$$

(c) Assertions (a) and (b) imply $(\{b, a, x\}L_y + \{b, a, y\}L_x) + \{a, x, y\}L_b \approx 0$. Applying (8) to the expression in parentheses, we obtain

$$-\{b, a, x\}L_y + \{a, x, y\}L_b \approx 0,$$

that is $\{a, x, y\}L_b \approx \{b, x, y\}L_a$.

Therefore, the function $\{a, b, x\}L_yL_uL_v$ is symmetric with respect to the variables a, b, x , and y . By virtue of (a), we have $3\{a, b, x\}L_y \approx 0$, and the assumption on the Torsion free gives the required relation (c). \square

Lemma 5.3. *If a ring R satisfies the relation $R[R^2, R] \equiv 0(n)$ for some $n \geq 2$ then R is nilpotent.*

Proof: First $[R^2, R]R \subseteq R[R^2, R] + [[R^2, R], R] \equiv 0(n)$, which means that $[R^2, R] \equiv 0(n+1)$ as is known, the identity

$[xy, z] = x[y, z] + [x, z]y + (x, y, z) + (z, x, y) - (x, z, y)$ holds in an arbitrary ring.

By virtue of identity (2), the expression in parenthesis vanishes,

$$-(z, x, y) = x[y, z] + [x, z]y - [xy, z] + (x, y, z) - (x, z, y)$$

$$(z, x, y) = x[y, z] + [x, z]y - [xy, z].$$

Setting $y = w \in R^2$ in the last equality, we obtain $(z, x, w) = [xw, z] - x[w, z] \equiv 0(n+1)$ whence $wL_xL_z \equiv 0(n+1)$. In particular, $wR_cL_xL_z \equiv 0(n+1)$. Finally, Lemma 2.1 implies $R^2 \equiv 0(n+4)$. \square

Corollary 5.4. suppose that, in ring R

$[a, b] L(x_1)L(x_2)\dots L(x_n) = 0$ or $[a, b] R(x_1)L(x_2)\dots L(x_n) = 0$
for any elements $a, b, x_1\dots x_n$ ($n \geq 3$). Then the ring R is nilpotent.

Proof: Let $[a, b] L(x_1)L(x_2)\dots L(x_n) = 0$. By virtue of (11) we have
 $[a, b] L(x_1)R(x_2)L(x_3)\dots L(x_n) = 0$.

These two equalities and Lemma 2.1 imply $[a, b] L(x_1) \equiv 0(n-1)$, i.e., $R[R, R] \equiv 0(n)$ by Lemma 5.3 the ring R is nilpotent. \square

Lemma 5.5. If in a ring R , $0 = (R_a - L_a)L_b\dots L_c$ for any element $a, b\dots c$, then R is nilpotent.

Proof: Relation (6) (that is, $L_x R_z - R_z L_x + L_z L_x = 0$) and the assumptions of the Lemma imply

$0 = (L_x R_z - R_z L_x + L_z L_x)L_b\dots L_c = (L_x L_z - L_z L_x + L_z L_x)L_b\dots L_c = L_x L_z L_b\dots L_c$.
Moreover, $R_x L_z L_b\dots L_c = 0$; thus the ring R is nilpotent by Lemma(2.1). \square

6. A basis of a free metabelain $(-1, 1)$ ring

Definition 6.1. The regular words in a ring R on the alphabet $X_n := \{x_1, x_2, \dots, x_n\}$ ($n \geq 6$) are the polylinear monomials

- (a) $(x_1 x_j)R(k_1)L(k_2)\dots L(k_{n-2})$,
- (b) $(x_j x_1)L(k_1)L(k_2)\dots L(k_{n-2})$,
- (c) $(x_2 x_1)R(3)L(4)\dots L(n)$,

where $T(k) := T(x_k)$ and $k_1 < k_2 < \dots < k_{n-2}$.

Lemma 6.2. The space $P_n(R)$ of polylinear monomials in variables from X_n ($n \geq 6$) is linearly generated by the regular words in the ring R .

Proof: By Lemma 2.1, the space $P_n(R)$ is linearly generated by words of the form $(x_i x_j)T_a L_b\dots L_c$. Next, according to the corollary to Lemmas 3.10 and Lemma 4.2 words having the form $(x_i x_j)L(k_1 \sigma)L(k_2 \sigma)\dots L(k_{n-2} \sigma)$ where $\sigma \in S_{n-2}$, $k_1 < k_2 < \dots < k_{n-2}$, are linearly expressed in terms of words having the form $(x_i x_j)L(k_1)L(k_2)\dots L(k_{n-2})$ where $k_1 < k_2 < \dots < k_{n-2}$. By Lemmas 3.1 and 4.1 words of the form $(x_i x_j)R(k_1 \sigma)L(k_2 \sigma)\dots L(k_{n-2} \sigma)$ where $\sigma \in S_{n-2}$, $k_1 < k_2 < \dots < k_{n-2}$ are linearly expressed in terms of words of the form $(x_i x_j)R(k_1)L(k_2)\dots L(k_{n-2})$, where $k_1 < k_2 < \dots < k_{n-2}$. Identity (1) implies $0 = (x_1 x_i)x_j - x_1(x_i x_j) - (x_i x_1)x_j + x_i(x_1 x_j) + (x_j x_i)x_1 + x_j(x_i x_1)$ where

$$x_1(x_i x_j) = (x_1 x_i)x_j + (x_i x_1)x_j - x_i(x_1 x_j) + (x_j x_i)x_1 - x_j(x_i x_1), \quad (16)$$

$$(x_i x_j)x_1 = x_i(x_j x_1) + (x_i x_1)x_j - x_i(x_1 x_j). \quad (17)$$

By virtue of (2), we have $(x_i x_j)x_1 - x_i(x_j x_1) - (x_i x_1)x_j + x_i(x_1 x_j) = 0$. According to the relation (16) and (17), monomials of the form

$(x_i x_j)T(k_1)L(k_2)\dots L(k_{n-2})$, where $k_1 < k_2 < \dots < k_{n-2}$,
are linearly expressed in terms of words of the form

$$(x_1x_j)R(k_1)L(k_2)\dots L(k_{n-2}), (x_jx_1)R(k_1)L(k_2)\dots L(k_{n-2}), \\ (x_1x_j)L(k_1)L(k_2)\dots L(k_{n-2}), (x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2}).$$

By (9), $[x, y]R_z L_t L_u = [x, y]L_z L_t L_u$ Therefore,

$$[x_1x_j]R(k_1)L(k_2)\dots L(k_{n-2}) = [x_1x_j]L(k_1)L(k_2)\dots L(k_{n-2}),$$

which gives

$$(x_1x_j)R(k_1)L(k_2)\dots L(k_{n-2}) - (x_jx_1)R(k_1)L(k_2)\dots L(k_{n-2}) \\ = (x_1x_j)L(k_1)L(k_2)\dots L(k_{n-2}) - (x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2}).$$

whence

$$(x_1x_j)L(k_1)L(k_2)\dots L(k_{n-2}) = (x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2}) \\ - (x_1x_j)R(k_1)L(k_2)\dots L(k_{n-2}) + (x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2}).$$

Now, consider words of the form $(x_jx_1)R(k_1)L(k_2)\dots L(k_{n-2})$ where $j \geq 3$. We have

$$\begin{aligned} &= (x_jx_1)R(2)L(k_2)\dots L(k_{n-2}) = ((x_jx_1)x_2)L(k_2)\dots L(k_{n-2}) \\ &= -\{x_1, x_2, x_3\}L(k_2)\dots L(k_{n-2}) - ((x_2x_1)x_j)L(k_2)\dots L(k_{n-2}) \\ &= - (x_2x_1)x_jL(k_2)\dots L(k_{n-2}) \text{ (by Lemma 5.2(c))} \\ &= - (x_2x_1)R(j)L(k_2)\dots L(k_{n-2}) \\ &= (-1)^j(x_2x_1)R(3)L(4)\dots L(n) \text{ (by Lemma 3.4, 4.1, and 4.2).} \end{aligned}$$

This means precisely that the space $P_n(R)$ is linearly generated by the regular words in the ring R . \square

Lemma 6.3. *If a ring R is not nilpotent, then the regular words in this algebra are linearly independent.*

Proof: Suppose that some linear combination of regular words in R vanishes, that is,

$$\begin{aligned} \sum_j \alpha_j (x_1x_j)R(k_1)L(k_2)\dots L(k_{n-2}) &+ \sum_j \beta_j (x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2}) \\ &+ \gamma(x_2x_1)R(3)L(4)\dots L(n) = 0. \end{aligned} \quad (18)$$

Take $v \in [R, R]$, $w \in R^2$, and $j_0 \geq 3$. Setting $x_{j_0} = v$ and applying (10), we obtain $\beta_{j_0}(vx_1)L(k_1)L(k_2)\dots L(k_{n-2}) = 0$.

Since the ring R is not nilpotent, the corollary of Lemma 6.2 implies $\beta_{j_0} = 0$. Therefore, all terms of the form $\beta_j(x_jx_1)L(k_1)L(k_2)\dots L(k_{n-2})$ in (5.3) vanish.

Next, setting $x_{j_0} = w$ and using Lemma 3.4 we obtain

$$\alpha_{j_0}(x_1w)R(k_1)L(k_2)\dots L(k_{n-2}) = 0.$$

According to (6) we have

$\alpha_{j_0}w(R(k_1)L(k_2)\dots L(k_{n-2}) - L(k_1)L(k_2)\dots L(k_{n-2})) = 0$. Since the ring R is not nilpotent, Lemma 5.5 implies $\alpha_{j_0} = 0$, and equality 6.1 takes the form $\gamma(x_2x_1)R(3)L(4)\dots L(n) = 0$. Setting $x_1 = w$, we obtain $\gamma(x_2w)R(3)L(4)\dots L(n) = 0$. Arguing the above, we conclude let $\gamma = 0$. Thus the regular words are linearly independent. Lemma 6.3 readily implies Theorem 1.1. Since not all of the metabelian $(-1, 1)$ rings are nilpotent [2], Corollary 1.2 is valid as well. \square

Acknowledgments

This work is partially supported by UGC New Delhi Grant No. F.No. 42-17 (2013).

References

1. Albert, A. A., *Almost alternative algebras*, Portug. Math. J., 8, 23-36, (1949).
2. Nikitin, A. A., *Almost alternative algebras*, Algebra i logica [Algebra and Logic], 13 No.5, 501-533, (1974).
3. Il'tyakov, A. v., *The lattice of sub varieties of the variety of two-step solvable alternative algebras*, Algebra i logica [Algebra and Logic], 21, No. 2, 170-177, (1982).
4. Dorofeev, G. V., *An example of a solvable but not nilpotent alternative ring*, Uspekhi Mat. Nauk [Russian Math. Surveys], 15, No. 3, 147-150, (1960).
5. Zhevlakov, K. A., Slin'ko, A. M., Shestakov, I.P. and Shirshov, A.I. *Rings that are nearly Associative*, Academic, New York, (1982); Nauka, (1978).
6. Pchelintsev, S. V., *Varieties of solvable of index-2 alternative algebras over the field of characteristic 3*, Mat. Zametki [Math. Note], 66, No. 4, 556-566, (1999).
7. Pchelintsev, S. V. *Varieties of solvable of index 2*, Mat. Sb. [Math. USSR ? Sb.], 115, No. 2 179-203, (1981).
8. Belkin, V. P., *On varieties of right alternative algebras*, Algebra i logica [Algebra and Logic], 15, No. 5 491-508, (1976).
9. Medvedev, Yu.A., *Finite Basability of varieties with two-term identities*, Algebra i logika [Algebra and Logic], 17, No. 6, 705-726, (1978).

K. Jayalakshmi and K. Hari Babu
Department of Mathematics,
JNTUA College Of Engineering (Ananthapuramu),
India.
E-mail address: kjay.maths@jntua.ac.in
E-mail address: kharis.logic@gmail.com