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A collocation method for solving the fractional calculus of variation

problems

Mohammadreza Ahmadi Darani and Mitra Nasiri

abstract: In this paper, we use a family of Müntz polynomials and a computa-
tional technique based on the collocation method to solve the calculus of variation
problems. This approach is utilized to reduce the solution of linear and nonlin-
ear fractional order differential equations to the solution of a system of algebraic
equations. Thus, we can obtain a good approximation even by using a smaller of
collocation points.
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1. Introduction

Fractional calculus which involves the study of non-integer powers of differen-
tiation and integral operators has many applications in studying and solving the
complicated problems in science and engineering [2,1]. The fractional calculus of
variations as an important branch of the fractional calculus is a research area un-
der strong recent development. For instance, the reader is referred to the recent
books [4,5,3] and papers [6,7]. The calculus of variations deals with the problem
of extremizing functions [8] and be is defined as follows:
All differentiable functions y : [a, b] → R such that y(a) = ya and y(b) = yb that ya
and yb are known, find minimize (or maximize) of the following functional:

J [y(·)] =

∫ b

a

L
(

t, y(t), C
aD

α
t y(t)

)

dt, (1.1)
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where C
aD

α
t denotes the left fractional derivative operator of order α in the Caputo

sense. We can solve this problem with using the following differential equation [6]

∂L

∂y
+ C

tD
α
b

∂L

∂ C
aD

α
t y

= 0, (1.2)

which is called the Euler-Lagrange equation. Here C
tD

α
b denotes the right fractional

derivative operator of order α which will be defined in the next section. By em-
ploying fractional derivatives into the variational integral we obtain the fractional
Euler-Lagrange equation. Now, in this paper we use a kind of the Müntz-Legendre
polynomials such that their fractional derivatives be Müntz-Legendre polynomials
again. For this purpose, in Section 2, we express some necessary definitions and no-
tations. In Section 3, the Müntz-Legendre polynomials are introduced. In Section
4, we solve the fractional differential equations in calculus of variations numerically
by using the collocation method. Some numerical examples are given in Section 5.

2. Preliminaries and notation

In this section, we present a short overview to the fractional calculus [11,10,9].
In this sequel, we suppose α ∈ (0, 1) and Γ represents the Gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Definition 2.1. The fractional derivative of f in the Caputo sense is defined for

f ∈ C1[0, 1] as

CDα
xf(x) =

1

Γ(1− α)

∫ x

0

(x− t)−αf ′(t), x ∈ [0, 1]. (2.1)

Definition 2.2. The left and right hand sides Caputo fractional derivatives of

order α are defined for f ∈ C1[0, 1] as

C
aD

α
xf(x) =

1

Γ(1 − α)

∫ x

0

(x− t)−αf ′(t)dt, x ∈ [0, 1],

and

C
xD

α
b f(x) =

−1

Γ(1− α)

∫ 1

x

(t− x)−αf ′(t)dt, x ∈ [0, 1],

respectively.

Remark 2.3. According to the above definitions it is clear that for a = 0, the Ca-

puto fractional derivative is equal to the left hand side Caputo fractional derivative.

According to the definition of right hand side Caputo derivative [10], we get

C
aD

α
xx

β =
Γ(1 + β)

Γ(1 + β − α)
xβ−α, β, t > 0. (2.2)

Remark 2.4. For the simplification the notation Dα
∗ is used instead of C

aD
α
x .
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3. Müntz polynomials

Let {λi, i ∈ N0} be a set of real numbers which 0 ≤ λ0 < λ1 < · · · →
∞. According to Müntz’s idea there are functions si =

∑n
k=0 akx

λk with real
coefficients which are dense in L2[0, 1] if and only if

∑∞
k=1 λ

−1
k = +∞. We consider

the Müntz-Legendre polynomials that are orthogonal in the interval (0, 1) with
respect to the weight function w(x) = 1.

3.1. Müntz-Legendre polynomials

Before discussion about Müntz polynomials, we need to brief review of the
general form of orthogonal polynomials which are the familiar as the Jacobi poly-

nomials. These polynomials which are denoted by P
(α,β)
k (x), α, β > −1, are widely

applicable in numerical solution of differential equations. They have the following
explicit form [12]

P
(α,β)
k (x) =

k
∑

m=0

(−1)k−m(1 + β)k(1 + α+ β)k+m

m!(k −m)!(1 + β)m(1 + α+ β)k

(1 + x

2

)m
,

(j)0 = 1, (j)i = j(j + 1) · · · (j + i − 1).

The Jacobi polynomials are orthogonal on [−1, 1], with respect to the weight func-
tion w(x) = (1 − x)α(1 + x)β . By choosing α = β = −1/2 and α = β = 0, the
well known Chebyshev polynomials of the first kind and the Legendre polynomials
are derived, respectively. They can computed by the following recurrence relation
[13,14,12]

P
(α,β)
0 = 1, P

(α,β)
1 =

1

2
[(α− β) + (α+ β + 2)x],

aα,β1,k P
(α,β)
k+1 (x) = aα,β2,k (x)P

(α,β)
k (x) − aα,β3,k P

(α,β)
k−1 (x),

where

aα,β1,k = 2(k + 1)(k + α+ β + 1)(2k + α+ β),

aα,β2,k (x) = (2k + α+ β + 1)[(2k + α+ β)(2k + α+ β + 2)x+ α2 − β2],

aα,β3,k = 2(k + α)(k + β)(2k + α+ β + 2). (3.1)

The following formula is very useful that relates the Jacobi polynomials and their
derivatives

d

dx
P

(α,β)
k (x) =

1

2
(k + α+ β + 1)P

(α+1,β+1)
k−1 (x).

If the complex numbers from the set Λn = {λi, i = 0 · · · , n} satisfy the condition
ℜ(λk) > −1/2, then the Müntz-Legendre polynomials on the interval (0, 1] are
defined as follows (see [16,15,17])

Pn(x) := Pn(x; Λn) =

n
∑

k=0

Cn,kx
λk, Cn,k =

∏n−1
v=0 (λk + λv + 1)

∏n
v=0,v 6=k(λk − λv)

. (3.2)
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For the Müntz-Legendre polynomials (3.2), the orthogonality condition is

(Pn, Pm) =

∫ 1

0

Pn(x)Pm(x)dx =
δmn

λn + λn + 1
.

Obviously Pn(1) = 1 and P ′
n(1) = λn+

∑n−1
k=0 (λk+λk+1) [17]. In the case λk = kα

for positive number α, the Müntz-Legendre polynomials on the interval [0, T ] are
defined as

Ln(t;α) :=

n
∑

k=0

Cn,k

( t

T

)kα

, Cn,k =
(−1)n−k

αnk!(n− k)!

n−1
∏

v=0

((k + v)α+ 1). (3.3)

The functions Lk(t;α), k = 0, 1, · · · , n, form an orthogonal basis for Mn,α, where
Mn,α is represented by

Mn,α = span{1, tα, · · · , tnα}, t ∈ [0, T ],

= {c0 + c1t
α + · · ·+ cnt

nα : ck ∈ R, t ∈ [0, T ]}.

Theorem 3.1. Let α > 0 be a real number and t ∈ [0, T ]. Then the following

representation holds true

Ln(t;α) = P
(0, 1

α
−1)

n

(

2(
t

T
)α − 1

)

, (3.4)

where P is the well known Jacobi polynomial.

Proof: See [18]. ✷

Therefore, the Müntz-Legendre polynomials Ln(t;α) can be obtained by means
of the following recurrence formula

L0(t;α) = 1, L1(t;α) =
( 1

α
+ 1

)( t

T

)α

−
1

α
,

b1,nLn+1(t;α) = b2,n(t)Ln(t;α)− b3,nLn−1(t;α), (3.5)

where

b1,n = a
0, 1

α
−1

1,n , b2,n(t) = a
0, 1

α
−1

2,n

(

2
( t

T

)α

− 1
)

, b3,n = a
0, 1

α
−1

3,n ,

and the coefficients a
0, 1

α
−1

·,n are appeared in recurrence relation for Jacobi polyno-
mials where are stated in (3.1). By applying (2.2) and (3.3), the Caputo fractional
derivative of Ln(t;α) can be represented as

Dα
∗Ln(t;α) :=

n
∑

k=1

Dn,k

( t

T

)(k−1)α

, Dn,k =
Γ(1 + kα)

Γ(1 + kα− α)Tα
Cn,k. (3.6)

It is important to notice that Dα
∗Ln(t;α) ∈ Mn,α.
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4. The collocation method

This section is devoted for solving a nonlinear fractional differential equation
with boundary conditions that is expressed as [13,19]

J [y(t)] =

∫ b

a

L
(

t, y(t), Dα
∗ y(t)

)

dt, t ∈ (0, T ], (4.1)

with the initial conditions

y(a) = ya, y(b) = yb, (4.2)

in which ya and yb are fixed and real numbers. Numerical evaluation of this solution
is the aim of this section. At first, the solution y is approximated by ỹn ∈ Mn,α as
the following truncated series

ỹn(t) :=

n
∑

k=0

akLk(t;α), (4.3)

where ak is unknown coefficients and Lk(t;α) is Müntz-Legendre polynomials. We
know that if ỹn ∈ Mn,α then Dα

∗ ỹn belongs to Mn,α, too. Hence, we have

Dα
∗ ỹn(t) =

n
∑

k=0

ak Dα
∗Lk(t;α), (4.4)

where the fractional operator in left hand side is easily evaluated by (3.6). Sub-
stituting the above truncated series into (1.2), we get an fractional differential
equation as

ϕ(t, a0, a1, · · · , an) :=
∂L

∂ỹn
+ c

tD
α
b

∂L

∂Dα
∗ ỹn

= 0. (4.5)

Calculating the Caputo fractional derivative in the above equation is based on
Gauss-Legendre quadrature. The unknown coefficients ak in (4.3) are obtained
from collocating (4.5) in n− 1 points along with the initial conditions

ỹn(a) = ya, ỹn(b) = yb. (4.6)

Now, we set the collocation points as θi, i = 1, · · · , n−1. In this case, a particularly

convenient choice for the collocation points θi are θi = t
1/α
i , i = 1, · · · , n−1, where

ti are the well-known Chebyshev-Gauss-Lobatto points shifted to the interval [0, T ],
i.e.,

ti =
T

2
−

T

2
cos

iπ

n− 1
, i = 0, · · · , n− 1.
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By substituting (4.3) into (4.6), we get

ga(a0, · · · , an) :=

n
∑

k=0

akLk(a;α)− ya = 0,

gb(a0, · · · , an) :=

n
∑

k=0

akLk(b;α)− yb = 0. (4.7)

Also, collocating (4.5) on the mentioned nodes yields

ϕ(θi, a0, a1, · · · , an) = 0, i = 0, · · · , n− 1. (4.8)

The unknown coefficients a0, a1, · · · , an are obtained from the solution of system
of n+ 1 algebraic equations derived from (4.7) and (4.8).

5. Numerical Examples

In this section, we apply the proposed approximation procedure in two exam-
ples.

Example 5.1. As the first example, we consider the following minimization prob-

lem:

J [y(t)] =

∫ T

0

(0D
0.5
t y(t)−

2

Γ(2.5)
t1.5)2dt −→ min

y(0) = 0, y(1) = 1. (5.1)

The Euler-Lagrange equation for this problem has the following form

C
tD

0.5
1 (0D

0.5
t ỹn(t)−

2

Γ(2.5)
t1.5) = 0.

Collocating the above fractional differential equation according to the mentioned

method in previous section, yields the approximation of the solution of the problem.

In Fig. 1, we can see the approximated solution obtained by our method for α = 0.5,
n = 2, 3, 4 and T = 1. For n = 4 we have the exact solution and we can see that

by increasing n the approximated solutions converge to the exact solution.

If we solve the problem with the direct method, we can see that with n = 30, the

solution is not exact again. In Fig. 2, the approximation solution and the exact

solution with direct method are plotted. It reveals that collocation method is better

than the direct method.
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Figure 1: Analytic and approximate solutions for example (5.1) with collocation
method

Example 5.2. As the second example, we consider (4.1) with the operator L as

follows

L = (0D
0.5
t y(t)−

16Γ(6)

Γ(5.5)
t4.5 +

20Γ(4)

Γ(3.5)
t2.5 −

5

Γ(1.5)
t0.5)4, (5.2)

and the boundary conditions are given as

y(0) = 0, y(1) = 1.

The exact solution of this problem is y(t) = 16t5 − 20t3 + 5t. The corresponding

Euler-Lagrange equation corresponding to this problem is

C
tD

0.5
1 (0D

0.5
t y(t)−

16Γ(6)

Γ(5.5)
t4.5 +

20Γ(4)

Γ(3.5)
t2.5 −

5

Γ(1.5)
t0.5)3 = 0.

In Fig. 3, we indicate the approximated solutions obtained for n = 5, 6, 10. For

n = 10, we obtain the exact solution.
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Figure 2: Analytic and approximate solutions for example (5.1) with direct method

Figure 3: Analytic and approximate solutions for problem (5.2) with collocation
method
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Figure 4: Analytic and approximate solutions for problem (5.2) with direct method

6. Conclusion

This paper describes an efficient method for finding the minimum of the initial
value problems for fractional differential equations. We use a family of Müntz-
Legendre as an approximation basis. The aim is to estimate fractional differential
equations in calculus of variations based on nonclassical orthogonal polynomials
with collocation method.
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