Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 35** 2 (2017): **59–67**. ISSN-00378712 IN PRESS doi:10.5269/bspm.v35i2.28091 ### On g_{ij} -closed Bi-Generalized topological spaces #### A. Deb Ray and Rakesh Bhowmick ABSTRACT: In this paper, generalizations of adherence and convergence of nets and filters on a bi-GTS are introduced and studied. Several properties and interrelations among such adherence and convergence of nets and filters on a bi-GTS are discussed and characterized using graphs of functions. Finally, these results are applied to investigate the behaviour of a generalization of compactness, known as g_{ij} -closedness of a bi-GTS. Key Words: (μ_i, μ_j) -adherence, (μ_i, μ_j) -convergence, μ -IFIP, net of μ -open sets. #### Contents | 1 | Introduction and Preliminaries | 59 | |---|-------------------------------------------------------------------------|-----------| | 2 | $(\mu_i,\mu_j)\text{-adherence}$ and $(\mu_i,\mu_j)\text{-convergence}$ | | | | of Nets and Filterbases | 60 | | 3 | Adherence and Convergence of nets and filters | | | | in terms of graph of a function | 62 | | 4 | g_{ij} -closed spaces | 64 | # 1. Introduction and Preliminaries In continuation of our work on bi-generalized topological spaces (in short, bi-GTS) [2,1], we introduce and study certain generalizations of adherence and convergence of nets and filters on a bi-GTS. Discussing several properties and interrelations among such adherence and convergence of nets and filters on a bi-GTS, we have characterized them using graphs of functions. Finally, the results obtained in the first part of the paper are applied to investigate the behaviour of a generalization of compactness, called g_{ij} -closedness [2] of a bi-GTS. We list a few known definitions and existing results here, which we require in the following sections. Let X be a nonempty set and μ be a collection of subsets of X (i.e. $\mu \subseteq \mathcal{P}(X)$). μ is called a *generalized topology* (briefly GT) [3] on X iff $\emptyset \in \mu$ and $G_{\lambda} \in \mu$ for $\lambda \in \Lambda(\neq \emptyset)$ implies $\bigcup_{\lambda \in \Lambda} G_{\lambda} \in \mu$. The pair (X, μ) is called a *generalized topological* 2000 Mathematics Subject Classification: 54A10, 54D20, 54D30. space (briefly GTS). The elements of μ are called μ -open sets and their complements are called μ -closed sets. The generalized closure of a subset S of X, denoted by $c_{\mu}S$, is the intersection of all μ -closed sets containing S. The generalized interior of a subset S of X, denoted by $i_{\mu}S$, is the union of all μ -open sets included in S. The set of all μ -open sets containing an element $x \in X$ is denoted by $\mu(x)$. A GT μ is called a strong GT if $X \in \mu$. Let $\psi: X \to exp(expX)$ satisfy $V \in \psi(x)$ for each $x \in V$. Then $\psi(x)$ is called a generalized neighbourhood of $x \in X$ and ψ a generalized neighbourhood system (briefly GNS) on X. On a GTS (X, μ) , ψ_{μ} defined by $\psi_{\mu}(x) = \{A \subseteq X : x \in M \subseteq A \text{ for some } M \in \mu\}$, for each $x \in X$ also forms a GNS on X which is called GNS generated by the GT μ (briefly μ -GNS). Each member of $\psi_{\mu}(x)$ is called a μ -nbd of x. [3] Let μ_1, μ_2 be two GTs on a nonempty set X. Then (X, μ_1, μ_2) is called a bigeneralized topological space (briefly bi-GTS) [6]. On a bi-GTS $(X, \mu_1, \mu_2), \gamma_{\mu_i, \mu_j}$: $\mathcal{P}(X) \to \mathcal{P}(X), i, j = 1, 2(i \neq j)$, is defined by $\gamma_{\mu_i, \mu_j}(A) = \{x \in X : c_{\mu_j} M \cap A \neq \phi \text{ for all } M \in \mu_i(x)\}$. [4] Let (X, μ_1, μ_2) be a bi-GTS. Then $\theta(\mu_i, \mu_j)$ [4] $\subseteq \mathcal{P}(X)(i \neq j)$, defined by $\theta(\mu_i, \mu_j) = \{A \subseteq X : \text{ for each } x \in X \exists M \in \mu_i(x), \text{ with } c_{\mu_j} M \subseteq A\}$ also forms a GT on X. The elements of $\theta(\mu_i, \mu_j)$ are called $\theta(\mu_i, \mu_j)$ -open and the complements are called $\theta(\mu_i, \mu_j)$ -closed. **Theorem 1.1.** [4] Let (X, μ_1, μ_2) be a bi-GTS and $A \subseteq X$. Then A is $\theta(\mu_i, \mu_j)$ -closed iff $A = \gamma_{\mu_i, \mu_i}(A)$. Let μ_1, μ_2 be two GTs on a nonempty set X and $A \subseteq X$. A is said to be $r(\mu_i, \mu_j)$ -open (resp. $r(\mu_i, \mu_j)$ -closed) if $A = i_{\mu_i}(c_{\mu_j}(A))$ (resp. $A = c_{\mu_i}(i_{\mu_j}(A))$) [4]. Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. If $\nu_i (i=1,2)$ on the cartesian product $X \times Y$ is given by $\nu_i = \mu_i \times \eta_j$ for $i, j=1, 2 (i \neq j)$ then $(X \times Y, \nu_1, \nu_2)$ is a bi-GTS. Similarly, for a bi-GTS (X, μ_1, μ_2) , $(X \times X, \nu_1, \nu_2)$ is a bi-GTS where $\nu_i = \mu_i \times \mu_j$ for $i, j=1, 2 (i \neq j)$. It is well known that a filterbase \mathcal{F} induces a net [7] $P:(\Lambda,\geq)\to X$ defined by P((x,F))=x where $\Lambda=\{(x,F):x\in F\in\mathcal{F}\}$ and the binary relation \geq is given by $(x_1,F_1)\geq (x_2,F_2)$ if and only if $F_1\subseteq F_2$. Similarly, a net (x_α) with the directed set (Λ,\geq) induces a filterbase [7] $\{T_\alpha:\alpha\in\Lambda\}$, where each $T_\alpha=\{x_\beta:\beta\in\Lambda\ and\ \beta\geq\alpha\}$. # 2. (μ_i, μ_j) -adherence and (μ_i, μ_j) -convergence of Nets and Filterbases **Definition 2.1.** [2] A filterbase \mathcal{F} on a bi-GTS (X, μ_1, μ_2) is said to (i) (μ_i, μ_j) -adhere $(i, j = 1, 2 \text{ and } i \neq j)$ at $x \in X$ if for each $U \in \mu_i(x)$ and each $F \in \mathcal{F}$, $F \cap c_{\mu_i}U \neq \emptyset$. (ii) (μ_i, μ_j) -converge $(i, j = 1, 2 \text{ and } i \neq j)$ to $x \in X$ if for each $U \in \mu_i(x)$ there exists $F \in \mathcal{F}$, such that $F \subseteq c_{\mu_i}U$. **Definition 2.2.** A net (x_{α}) on a bi-GTS (X, μ_1, μ_2) with the directed set (Λ, \geq) as a domain is said to - (i) (μ_i, μ_j) -adhere $(i, j = 1, 2 \text{ and } i \neq j)$ at $x \in X$ if for each $U \in \mu_i(x)$ and each $\alpha \in \Lambda$, there exists $\beta \in \Lambda$ such that $\beta \geq \alpha$ and $x_\beta \in c_{\mu_i}U$. - (ii) (μ_i, μ_j) -converge to $x \in X$ $(i, j = 1, 2 \text{ and } i \neq j)$ if for each $U \in \mu_i(x)$ there exists $\alpha_0 \in \Lambda$ such that $x_\alpha \in c_{\mu_i}U$ for all $\alpha \in \Lambda$ with $\alpha \geq \alpha_0$. **Theorem 2.3.** Let (X, μ_1, μ_2) be a bi-GTS and $x_0 \in X$. Then a filterbase \mathcal{F} on X (μ_i, μ_j) -converges to x_0 iff the net P based on \mathcal{F} (μ_i, μ_j) -converges to x_0 ; $i, j = 1, 2(i \neq j)$. **Proof:** Let a filterbase \mathcal{F} be (μ_i, μ_j) -convergent to x_0 and $P: \Lambda \to X$ be the net based on \mathcal{F} . If $U \in \mu_i(x_0)$ then by the convergence of \mathcal{F} there exists $F \in \mathcal{F}$ such that $F \subseteq c_{\mu_j}U$. Choose $p \in F$ so that $(p, F) \in \Lambda$. So if $(x_1, F_1) \geq (p, F)$ then $P[(x_1, F_1)] = x_1 \in F_1$. As $F_1 \subseteq F$, $x_1 \in c_{\mu_j}U$. i.e., P is (μ_i, μ_j) -convergent to x_0 . Conversely, let P be (μ_i, μ_j) -convergent to x_0 and $U \in \mu_i(x_0)$. Then there exists $(x_1, F_1) \in \Lambda$ such that $(y, F) \geq (x_1, F_1)$ implies $P[(y, F)] = y \in c_{\mu_j}U$. Now for each $z \in F_1$ we have $(z, F_1) \geq (x_1, F_1)$, i.e., $z \in c_{\mu_j}U$ and hence $F_1 \subseteq c_{\mu_j}U$. Thus \mathcal{F} is (μ_i, μ_j) -convergent to x_0 . **Theorem 2.4.** Let (X, μ_1, μ_2) be a bi-GTS and $x_0 \in X$. Then x_0 is a (μ_i, μ_j) -adherent point of a filterbase $\mathcal F$ iff the net P based on $\mathcal F$ has x_0 as a (μ_i, μ_j) -adherent point; $i, j = 1, 2 (i \neq j)$. **Proof:** Let x_0 be a (μ_i, μ_j) -adherent point of a filterbase $\mathcal F$ and $P:\Lambda\to X$ be the net based on $\mathcal F$. Let $(p,F)\in\Lambda$ and $U\in\mu_i(x_0)$. Then by the adherence of $\mathcal F$, $F\cap c_{\mu_j}U\neq\emptyset$. If $x_1\in F\cap c_{\mu_j}U$ then $(x_1,F)\geq (p,F)$ and $P[(x_1,F)]=x_1\in c_{\mu_j}U$. Hence x_0 is a (μ_i,μ_j) -adherent point of P. Conversely, let P have x_0 as a (μ_i, μ_j) -adherent point. Let $U \in \mu_i(x_0)$ and $F \in \mathcal{F}$. Choose $p \in F$ so that $(p, F) \in \Lambda$ and so by the adherence of the net P there exists $(b, K) \in \Lambda$ with $(b, K) \geq (p, F)$, $P[(b, K)] = b \in c_{\mu_j}U$. As $K \subseteq F$, we have $F \cap c_{\mu_i}U \neq \emptyset$, i.e., x_0 is a (μ_i, μ_j) -adherent point of \mathcal{F} . **Theorem 2.5.** Let (X, μ_1, μ_2) be a bi-GTS and $x_0 \in X$. Then a net $(x_\alpha)_{\alpha \in \Lambda}$ (μ_i, μ_j) -converges to x_0 iff the filterbase generated by the net is (μ_i, μ_j) -convergent to x_0 ; $i, j = 1, 2 (i \neq j)$. **Proof:** Let a net $(x_{\alpha})_{\alpha \in \Lambda}$ (μ_i, μ_j) -converge to x_0 and $U \in \mu_i(x_0)$. Then there exists some $\alpha_0 \in \Lambda$ such that $x_{\beta} \in c_{\mu_j}U$, $\forall \beta \geq \alpha_0$. The filterbase generated by the net $(x_{\alpha})_{\alpha \in \Lambda}$ is $\{T_{\alpha} : \alpha \in \Lambda\}$ where $T_{\alpha}^j = \{x_{\beta} : \beta \in \Lambda \text{ and } \beta \geq \alpha\}$. It is clear that $T_{\alpha_0} \subseteq c_{\mu_j}U$ and hence $\{T_{\alpha} : \alpha \in \Lambda\}$ (μ_i, μ_j) -converges to x_0 . Conversely, let $\{T_{\alpha}: \alpha \in \Lambda\}$ (μ_i, μ_j) -converge to x_0 and $U \in \mu_i(x_0)$. Then there exists some $\alpha \in \Lambda$ such that $T_{\alpha} \subseteq c_{\mu_j}U$, i.e., $x_{\beta} \in c_{\mu_j}U$, $\forall \beta \geq \alpha$ and hence $(x_{\alpha})_{\alpha \in \Lambda}$ (μ_i, μ_j) -converges to x_0 . **Theorem 2.6.** Let (X, μ_1, μ_2) be a bi-GTS and $x_0 \in X$. Then x_0 is a (μ_i, μ_j) -adherent point of a net $(x_\alpha)_{\alpha \in \Lambda}$ iff x_0 is a (μ_i, μ_j) -adherent point of the filterbase generated by $(x_\alpha)_{\alpha \in \Lambda}$; $i, j = 1, 2(i \neq j)$. **Proof:** Let x_0 be a (μ_i, μ_j) -adherent point of a net $(x_\alpha)_{\alpha \in \Lambda}$ and $U \in \mu_i(x_0)$. Then for each $\alpha \in \Lambda$ there exists some $\beta \in \Lambda$ with $\beta \geq \alpha$ and $x_\beta \in c_{\mu_j}U$. The filterbase generated by $(x_\alpha)_{\alpha \in \Lambda}$ is $\{T_\alpha : \alpha \in \Lambda\}$ where $T_\alpha = \{x_\beta : \beta \in \Lambda \ and \ \beta \geq \alpha\}$. It can be easily shown that $T_\alpha \cap c_{\mu_j}U \neq \emptyset$ for each $\alpha \in \Lambda$ and hence x_0 is a (μ_i, μ_j) -adherent point of $\{T_\alpha : \alpha \in \Lambda\}$. Conversely, let x_0 be a (μ_i, μ_j) -adherent point of $\{T_\alpha : \alpha \in \Lambda\}$ and $U \in \mu_i(x_0)$. Then for each $\alpha \in \Lambda$, $T_\alpha \cap c_{\mu_j}U \neq \emptyset$, i.e., for each $\alpha \in \Lambda$ there exists some $\beta \in \Lambda$ with $\beta \geq \alpha$ and $x_\beta \in c_{\mu_j}U$ and hence x_0 is a (μ_i, μ_j) -adherent point of $(x_\alpha)_{\alpha \in \Lambda}$. \square **Theorem 2.7.** Let (X, μ_1, μ_2) be a bi-GTS, where μ_i is a strong GT and $x_0 \in X$. Then x_0 is a (μ_i, μ_j) -adherent point of a net $(x_\alpha)_{\alpha \in \Lambda}$ in X iff there exists a subnet (x_{α_λ}) of $(x_\alpha)_{\alpha \in \Lambda}$, which (μ_i, μ_j) -converge to x_0 ; $i, j = 1, 2(i \neq j)$. **Proof:** Let x_0 be a (μ_i, μ_j) -adherent point of a net $(x_\alpha)_{\alpha \in \Lambda}$. Let $M = \{(\alpha, c_{\mu_j} U) : x_0 \in U \in \mu_i \text{ and } x_\alpha \in c_{\mu_j} U\}$. Define $(\alpha_1, c_{\mu_j} U_1) \geq (\alpha_2, c_{\mu_j} U_2)$ iff $\alpha_1 \geq \alpha_2$ and $c_{\mu_j} U_1 \subseteq c_{\mu_j} U_2$. Let $\phi: M \to \Lambda$ be defined by $\phi[(\alpha, c_{\mu_j} U)] = \alpha$. So ϕ defines a subnet of $(x_\alpha)_{\alpha \in \Lambda}$. Now if $U \in \mu_i(x_0)$ then for some $\alpha \in \Lambda$, $x_\alpha \in c_{\mu_j} U$, and so $(\beta, c_{\mu_j} V) \geq (\alpha, c_{\mu_j} U)$ implies $x_\beta \in c_{\mu_j} V \subseteq c_{\mu_j} U$. Hence the subnet (μ_i, μ_j) -converges to x_0 . Conversely, let $(x_{\alpha})_{\alpha \in \Lambda}$ be a net with the directed set (Λ, \geq) as a domain. Let $(x_{\alpha_{\lambda}})$ a subnet of $(x_{\alpha})_{\alpha \in \Lambda}$ with the domain M, which (μ_i, μ_j) -converges to x_0 . Let $U \in \mu_i(x_0)$ and $\alpha_0 \in \Lambda$. Then there exists $\lambda_0 \in M$ such that for each $\lambda \geq \lambda_0$, $x_{\alpha_{\lambda}} \in c_{\mu_j}U$. Take $\lambda_1 \in M$ such that $\alpha_{\lambda_1} \geq \alpha_0$. Let λ_2 be such that $\lambda_2 \geq \lambda_0$ and $\lambda_2 \geq \lambda_1$, then $\alpha_{\lambda_2} \geq \alpha_{\lambda_1} \geq \alpha_0$ and $x_{\alpha_{\lambda_2}} \in c_{\mu_j}U$. Hence x_0 is a (μ_i, μ_j) -adherent point of $(x_{\alpha})_{\alpha \in \Lambda}$. # **3.** Adherence and Convergence of nets and filters in terms of graph of a function **Definition 3.1.** [2] Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. Then $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is said to be $(\mu_i \mu_j, \eta_k)$ -continuous at $x \in X$ if for each $V \in \eta_k(f(x))$, there exists $U \in \mu_i(x)$ such that $f(c_{\mu_j}U) \subseteq V$; $i, j, k = 1, 2(i \neq j)$. If f is $(\mu_i \mu_j, \eta_k)$ -continuous at each $x \in X$ then f is called $(\mu_i \mu_j, \eta_k)$ -continuous on X or simply $(\mu_i \mu_j, \eta_k)$ -continuous. **Definition 3.2.** Let μ be a GT on a nonempty set X. Then a filterbase $\mathfrak F$ on X is said to μ -converge to $x \in X$ if for each $U \in \mu(x)$ there exists $F \in \mathfrak F$, such that $F \subseteq U$. **Theorem 3.3.** Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. If $f: X \to Y$ is a $(\mu_i \mu_j, \eta_k)$ -continuous function then for every filterbase \mathfrak{F} on X, \mathfrak{F} (μ_i, μ_j) -converges to some $x \in X$ implies $f(\mathfrak{F})$ η_k -converges to f(x), where $f(\mathfrak{F}) = \{f(F) : F \in \mathfrak{F}\}$ is a filterbase on Y; i, j, k = 1, 2 $(i \neq j)$. **Proof:** Let V be any η_k -open set containing f(x). Then there exists a μ_i -open set U containing x such that $f(c_{\mu_j}U) \subseteq V$. Again since $\mathcal{F}(\mu_i,\mu_j)$ -converges to x, there is $F \in \mathcal{F}$ such that $F \subseteq c_{\mu_j}U$, i.e., $f(F) \subseteq f(c_{\mu_j}U) \subseteq V$. Hence, $f(\mathcal{F})$ η_k -converges to f(x). The converse of Theorem 3.3 is also true if we take μ_i as a topology on X. **Theorem 3.4.** Let $f:(X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ be a function between two bi-GTS. If for every filterbase $\mathfrak F$ on X, $\mathfrak F$ (μ_i, μ_j) -converges to x whenever $f(\mathfrak F)$ η_k -converges to f(x), where μ_i is a topology on X and $f(\mathfrak F) = \{f(F) : F \in \mathfrak F\}$ then $f: X \to Y$ is $(\mu_i \mu_j, \eta_k)$ -continuous; i, j, k = 1, 2 $(i \neq j)$. **Proof:** Suppose $f: X \to Y$ is not $(\mu_i \mu_j, \eta_k)$ -continuous at some point $x \in X$. Then there exists some $V \in \eta_k(f(x))$ such that $f(c_{\mu_j}U) \not\subseteq V$ for every $U \in \mu_i(x)$. Now $\mathcal{F} = \{c_{\mu_j}U: U \in \mu_i(x)\}$ is a filterbase on X such that $\mathcal{F}(\mu_i, \mu_j)$ -converges to x but $f(\mathcal{F})$ does not η_k -converge to f(x). In what follows, by G(f) we denote the graph of a function $f: X \to Y$; i.e., $G(f) = \{(x,y) \in X \times Y : y \in f(x)\}$. Clearly, for any $f: X \to Y$, if $A \subseteq X$ and $B \subseteq Y$, $f(A) \cap B = \{y \in Y : (x,y) \in ((A \times B) \cap G(f)), \text{ for some } x \in X\}$. **Theorem 3.5.** Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. If $f: X \to Y$ has a $\theta(\nu_i, \nu_j)$ -closed graph then for every filterbase $\mathfrak F$ on X, $\mathfrak F$ (μ_i, μ_j) converges to some $x \in X$ implies (η_j, η_i) -ad $(f(\mathfrak F)) \cup \{f(x)\} = \{f(x)\}$, where (η_i, η_j) -ad Ω denotes the collection of all (η_i, η_j) -adherent points of a filterbase Ω ; $i, j = 1, 2(i \neq j)$. **Proof:** Let $y \in (\eta_j, \eta_i)$ -ad $f(\mathcal{F})$ such that $y \neq f(x)$. Then $(x,y) \in X \times Y \backslash G(f)$. Since $y \in (\eta_j, \eta_i)$ -ad $f(\mathcal{F})$, for any $W \in \eta_j(y)$ and for any $f(F) \in f(\mathcal{F})$ we have, $f(F) \cap c_{\eta_i}W \neq \emptyset$. Again since, $\mathcal{F}(\mu_j, \mu_i)$ -converges to x, for any $V \in \mu_i(x)$ there exists $F \in \mathcal{F}$ such that $F \subseteq c_{\mu_j}V$. Then $f(F) \subseteq f(c_{\mu_j}V)$ and hence $f(c_{\mu_j}V) \cap c_{\eta_i}W \neq \emptyset$. It then follows that for every $V \in \mu_i(x)$ and $W \in \eta_j(y), (c_{\mu_j}V \times c_{\eta_i}W) \cap G(f) \neq \emptyset$, i.e., $c_{\nu_j}(V \times W) \cap G(f) \neq \emptyset$. i.e., $(x,y) \in \gamma_{\nu_i,\nu_j}G(f)$. So by Theorem 1.1 f can not have $\theta(\nu_i,\nu_j)$ -closed graph. The converse of Theorem 3.5 is also true if we take μ_i as a topology on X. **Theorem 3.6.** Let $f:(X,\mu_1,\mu_2) \to (Y,\eta_1,\eta_2)$ be a function between two bi-GTS. If for a filterbase $\mathfrak F$ on X, (η_j,η_i) -ad $(f(\mathfrak F)) \cup \{f(x)\} = \{f(x)\}$ for some $x \in X$ implies $\mathfrak F$ (μ_i,μ_j) -converges to x, where μ_i is a topology, then $f:X \to Y$ has a $\theta(\nu_i,\nu_j)$ -closed graph. Here (η_i,η_j) -ad Ω denotes the collection of all (η_i,η_j) -adherent points of a filterbase Ω ; i,j=1,2 $(i\neq j)$. **Proof:** Suppose graph of f is not $\theta(\nu_i, \nu_j)$ -closed. Then by Theorem 1.1 there exists $(x, y) \in X \times Y \backslash G(f)$ such that $(x, y) \in \gamma_{\nu_i, \nu_j} G(f)$. i.e., $y \neq f(x)$ and for each $V \in \mu_i(x)$, $W \in \eta_j(y)$, $c_{\nu_j}(V \times W) \cap G(f) \neq \emptyset$. So $(c_{\mu_j}V \times c_{\eta_i}W) \cap G(f) \neq \emptyset$ and hence $f(c_{\mu_j}V) \cap c_{\eta_i}W \neq \emptyset$. Now $\mathcal{F} = \{c_{\mu_j}V : V \in \mu_i(x)\}$ is a filterbase on X such that $\mathcal{F}(\mu_i, \mu_j)$ -converges to x but $f(\mathcal{F})$ is a filterbase on Y such that there exists some $y \in (\eta_j, \eta_i)$ -ad $(f(\mathfrak{F}))$ other than f(x), a contradiction to the hypothesis. Hence f has $\theta(\nu_i, \nu_j)$ -closed graph. **Theorem 3.7.** Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. Suppose $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ has a $\theta(\nu_i, \nu_j)$ -closed graph G(f). If $\mathfrak F$ is a filterbase on X such that $\mathfrak F$ (μ_i, μ_j) -converges to some point p and $f(\mathfrak F)$ (η_j, η_i) -converges to some q in Y, then f(p) = q; $i, j = 1, 2 (i \neq j)$. **Proof:** If possible let $f(p) \neq q$, then $(p,q) \notin G(f)$. Since G(f) is $\theta(\nu_i, \nu_j)$ -closed, by Theorem 1.1 $(p,q) \notin \gamma_{\nu_i,\nu_j}G(f)$. Thus there exist $U \in \mu_i(p)$ and $V \in \eta_j(q)$ such that $c_{\nu_j}(U \times V) \cap G(f) = \emptyset$, i.e., $(c_{\mu_j}U \times c_{\eta_i}V) \cap G(f) = \emptyset$. Since $\mathcal{F}(\mu_i, \mu_j)$ -converges to p and $f(\mathcal{F})(\eta_j, \eta_i)$ -converges to q, there exists $A_\alpha \in \mathcal{F}$ such that $A_\alpha \subseteq c_{\mu_j}U$ and $f(A_\alpha) \subseteq c_{\eta_i}V$. Consequently $(c_{\mu_j}U \times c_{\eta_i}V) \cap G(f) \neq \emptyset$, a contradiction. \square ## 4. g_{ij} -closed spaces **Definition 4.1.** [2] A bi-GTS (X, μ_1, μ_2) is called g_{ij} -closed if for every μ_i -open cover \mathcal{U} of X, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $X = \bigcup_{U \in \mathcal{U}_0} c_{\mu_j} U$; $i, j = 1, 2 (i \neq j)$. **Theorem 4.2.** Let (X, μ_1, μ_2) be a bi-GTS. Then for $i, j = 1, 2(i \neq j)$ the following are equivalent: - 1. X is g_{ij} -closed; - 2. any filterbase (μ_i, μ_j) -adheres in X; - 3. any net (μ_i, μ_j) -adheres in X. **Proof:** (1) \Rightarrow (2) Suppose $\mathcal F$ is a filterbase on (X,μ_1,μ_2) such that it has no (μ_i,μ_j) -adherent point. So for each $x\in X$, there exists a $U_x\in \mu_i(x)$ and $F_x\in \mathcal F$ such that $F_x\cap c_{\mu_j}U_x=\emptyset$. Let us consider the μ_i -open cover $\{U_x:x\in X\}$ of X. Then there exist x_1,x_2,\cdots,x_n such that $X=\cup_{k=1}^n c_{\mu_j}U_{x_k}$. Now $F_{x_k}\cap c_{\mu_j}U_{x_k}=\emptyset$ for $k=1,2,\cdots,n$, i.e., $(\cap_{k=1}^n F_{x_k})\cap (\cup_{k=1}^n c_{\mu_j}U_{x_k})=\emptyset$. Since $\mathcal F$ is a filterbase, there is some $F\in \mathcal F$ such that $F\subseteq \cap_{k=1}^n F_{x_k}\subseteq X-\cup_{k=1}^n c_{\mu_j}U_{x_k}=\emptyset$, a contradiction. (2) \Rightarrow (1) Let $\{G_\lambda:\lambda\in\Lambda\}$ be a μ_i -open cover of X such that for any finite subset Λ_0 of Λ , $\cup_{\lambda\in\Lambda_0}c_{\mu_j}G_\lambda\neq X$. Consider $\mathcal F=\{X-\cup_{\lambda\in\Lambda_0}c_{\mu_j}G_\lambda:\Lambda_0 \text{ is a finite subset of }\Lambda\}$. Then clearly $\mathcal F$ is a filterbase on X. So by (2) there exists some $x\in X$ such that $\mathcal F$ (μ_i,μ_j)-adheres at x. Since $\{G_\lambda:\lambda\in\Lambda\}$ is a μ_i -open cover of X there is some $\lambda_0\in\Lambda$ such that $x\in G_{\lambda_0}$. Now $x\in C_{\mu_j}G_{\lambda_0}=F\in \mathcal F$ such that $x\in C_{\mu_j}G_{\lambda_0}=\emptyset$, a contradiction to the fact that $x\in C_{\mu_j}G_{\lambda_0}=\emptyset$ such that $x\in C_{\mu_j}G_{\lambda_0}=\emptyset$, a contradiction to the fact that $x\in C_{\mu_j}G_{\lambda_0}=\emptyset$. - $(2) \Rightarrow (3)$ Follows from Theorem 2.6. - $(3) \Rightarrow (2)$ Follows from Theorem 2.4. **Definition 4.3.** Let μ be a GT on a nonempty set X. Then A family \mathfrak{F} of subsets of X is said to have μ -interiorly finite intersection property (in short μ -IFIP) if for every finite subcollection \mathfrak{F}_0 of \mathfrak{F} there exists a non-void μ -open set U such that $U \subseteq \cap \mathfrak{F}_0$. **Theorem 4.4.** Let (X, μ_1, μ_2) be a g_{ij} -closed bi-GTS. Then every family of μ_i -closed set in X with μ_i -IFIP has a non-void intersection; $i, j = 1, 2(i \neq j)$. **Proof:** Let \mathcal{F} be a family of μ_i -closed sets in X with μ_j -IFIP such that $\cap \mathcal{F} = \emptyset$. Then $\mathcal{U} = \{X - F : F \in \mathcal{F}\}$ is a μ_i -open cover of X. Now for any subcollection $\{X - F_1, \cdots, X - F_n\}$, there exists a non-null μ_j -open set U such that $U \subseteq \cap_{r=1}^n F_r$. Then $\bigcup_{r=1}^n c_{\mu_j} (X - F_r) \subseteq c_{\mu_j} (\bigcup_{r=1}^n (X - F_r)) \subseteq c_{\mu_j} (X - \bigcap_{r=1}^n F_r) \subseteq c_{\mu_j} (X - U) = X - U \neq X$. Thus X is not g_{ij} -closed, a contradiction to the hypothesis. \square **Definition 4.5.** Let μ be a GT on a nonempty set X. A filterbase \mathcal{F} on X is said to be a μ -open filterbase if $\mathcal{F} \subseteq \mu$. **Definition 4.6.** Let μ be a GT on a nonempty set X. A point x of X is said to be a μ -adherent point of a filterbase $\mathfrak F$ on X if for each $U \in \mu(x)$ and each $F \in \mathfrak F$, $F \cap U \neq \emptyset$. **Theorem 4.7.** Let (X, μ_1, μ_2) be a g_{ij} -closed bi-GTS. Then every μ_j -open filter-base has a μ_i -adherent point; $i, j = 1, 2(i \neq j)$. **Proof:** Let \mathcal{F} be a μ_j -open filterbase such that it has no μ_i -adherent point. Then for each $x \in X$ there exist $G_x \in \mu_i(x)$ and $F_x \in \mathcal{F}$ such that $G_x \cap F_x = \emptyset$. Consider the μ_i -open cover $\{G_x : x \in X\}$ of X. Then by g_{ij} -closedness of X we have $x_1, x_2, \cdots, x_n \in X$ such that $X = \bigcup_{k=1}^n c_{\mu_j} G_{x_k}$. Again, $G_{x_k} \cap F_{x_k} = \emptyset \Rightarrow c_{\mu_j} G_{x_k} \cap F_{x_k} = \emptyset$ (since, F_{x_k} is μ_j -open) $\Rightarrow F_{x_k} \subseteq X \setminus c_{\mu_j} G_{x_k} \Rightarrow \bigcap_{k=1}^n F_{x_k} \subseteq \bigcap_{k=1}^n (X \setminus c_{\mu_j} G_{x_k}) = X \setminus \bigcup_{k=1}^n c_{\mu_j} G_{x_k} = \emptyset$, a contradiction to the fact that \mathcal{F} is a filterbase. The converse of Theorem 3.6 is also true if we take μ_i as a topology on X. **Theorem 4.8.** Let (X, μ_1, μ_2) be a bi-GTS. If every μ_j -open filterbase has a μ_i -adherent point, where μ_i is a topology, then X is g_{ij} -closed, $i, j = 1, 2(i \neq j)$. **Proof:** If possible let X be not g_{ij} -closed. Then there exists a μ_i -open cover $\{G_{\alpha}: \alpha \in \Lambda\}$ such that for every finite subset Λ_0 of Λ , $X \neq \bigcup_{\alpha \in \Lambda_0} c_{\mu_j} G_{\alpha} \Rightarrow X \setminus \bigcup_{\alpha \in \Lambda_0} c_{\mu_j} G_{\alpha} \neq \emptyset \Rightarrow \bigcap_{\alpha \in \Lambda_0} (X \setminus c_{\mu_j} G_{\alpha}) \neq \emptyset$. Now $\mathcal{F} = \{\bigcap_{\alpha \in \Lambda_0} (X \setminus c_{\mu_j} G_{\alpha}) : \Lambda_0 \text{ is a finite subset of } \Lambda \}$ forms a μ_j -open filterbase on X. So by the hypothesis \mathcal{F} μ_i -adheres to some $x \in X$. Now, $x \in G_{\alpha_0} \in \mu_i$ for some $\alpha_0 \in \Lambda$. Again $X \setminus c_{\mu_i} G_{\alpha_0} \in \mathcal{F}$, contradicts that \mathcal{F} μ_i -adheres at x. **Definition 4.9.** Let μ be a GT on a nonempty set X and (Λ, \geq) be a directed set. Then $\{O_{\alpha} \in \mu : \alpha \in \Lambda\}$ is said to be a net of μ -open sets. **Definition 4.10.** Let (X, μ_1, μ_2) be a bi-GTS and $\{O_\alpha : \alpha \in \Lambda\}$ be a net of μ_j -open sets. Then a point x of X is called μ_i -adherent point of the net $\{O_\alpha : \alpha \in \Lambda\}$ of μ_j -open sets iff for each $V \in \mu_i(x)$ and each $\alpha \in \Lambda$, there exists $\beta \in \Lambda$ such that $\beta \geq \alpha$ and $V \cap O_\beta \neq \emptyset$; $i, j = 1, 2(i \neq j)$. **Theorem 4.11.** Let (X, μ_1, μ_2) be a g_{ij} -closed bi-GTS. Then every net of μ_j -open sets in X has μ_i -adherent point; $i, j = 1, 2(i \neq j)$. **Proof:** Let $\{O_{\alpha}: \alpha \in \Lambda\}$ be a net of μ_j -open sets. Consider $F_{\alpha} = c_{\mu_i}[\cup \{O_{\beta}: \beta \in \Lambda \ and \ \beta \geq \alpha\}]$ for each α . Then clearly $\mathcal{F} = \{F_{\alpha}: \alpha \in \Lambda\}$ is a family of μ_i -closed sets with μ_j -IFIP. By Theorem 4.4 there exists $x \in \cap \mathcal{F}$. Let $\alpha \in \Lambda$ and $V \in \mu_i(x)$. Then $V \cap (\cup_{\beta \geq \alpha} O_{\beta}) \neq \emptyset$, i.e., there exists $\beta \in \Lambda$ with $\beta \geq \alpha$ such that $V \cap O_{\beta} \neq \emptyset$, proving that x is a μ_i -adherent point of the given net. **Theorem 4.12.** A bi-GTS (X, μ_1, μ_2) is g_{ij} -closed iff every family \mathbb{U} of $r(\mu_j, \mu_i)$ -closed sets having the property that for each $x \in X$, there is $U \in \mathbb{U}$ such that U is a μ_i -nbd of x, has a finite subcover; $i, j = 1, 2(i \neq j)$. **Proof:** Let X be a g_{ij} -closed space and \mathcal{U} a family satisfying the given condition. So for each $x \in X$, we can find some $U_x \in \mathcal{U}$ and μ_i -open set V_x such that $x \in V_x \subseteq U_x$. It then follows that $\{V_x : x \in X\}$ is a μ_i -open cover of X. Then for a finite subset $\{x_1, x_2, \cdots, x_n\}$ of X, $X = \bigcup_{k=1}^n c_{\mu_j} V_{x_k} \subseteq \bigcup_{k=1}^n c_{\mu_j} U_{x_k} = \bigcup_{k=1}^n U_{x_k}$. Conversely, for any μ_i -open cover \mathcal{U} of X, $\{c_{\mu_j}U : U \in \mathcal{U}\}$ is a family which satisfies the hypothesis of the theorem and the rest is clear. **Theorem 4.13.** Let (X, μ_1, μ_2) be a bi-GTS. Then X is g_{ij} -closed iff each filterbase \mathcal{F} on X with at most one (μ_i, μ_j) -adherent point, (μ_i, μ_j) -converges; $i, j = 1, 2 (i \neq j)$. **Proof:** Let \mathcal{F} be a filterbase on g_{ij} -closed bi-GTS (X, μ_1, μ_2) with at most one (μ_i, μ_j) -adherent point. So by Theorem 4.2 there exists a point $x_0 \in X$ such that (μ_i, μ_j) -ad $\mathcal{F} = \{x_0\}$. If \mathcal{F} does not (μ_i, μ_j) -converge to x_0 then there exists a $V \in \mu_i(x_0)$ such that for each $F \in \mathcal{F}$, $F \nsubseteq c_{\mu_j}V$. i.e., $F \cap (X \setminus c_{\mu_j}V) \neq \emptyset$. Now $\mathcal{F} = \{F \cap (X \setminus c_{\mu_j}V) : F \in \mathcal{F}\}$ is a filterbase on X. Since X is g_{ij} -closed, $\mathcal{F} = \{F \cap (X \setminus c_{\mu_j}V) : F \in \mathcal{F}\}$ is a filterbase on X. Since X is X is X is X in a non-void X is X in a filterbase on X. Since X is X is X in a non-void X in a filterbase of X is X in a filterbase of X in a filterbase of X is X in a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in a filterbase of X in a filterbase of X is a filterbase of X in filte Conversely, If possible let X be not g_{ij} -closed. Then there exists a filterbase $\mathcal F$ on X which has no adherent point in X. So by the hypothesis $\mathcal F$ is (μ_i,μ_j) -converges to some point $x\in X$. Since x is not a (μ_i,μ_j) -adherent point of $\mathcal F$, there exist $U\in \mu_i(x)$ and $F_1\in \mathcal F$ such that $F_1\cap c_{\mu_j}U=\emptyset$. Again since $\mathcal F$ (μ_i,μ_j) -converges to x, we have some $F_2\in \mathcal F$ such that $F_2\subseteq c_{\mu_j}U$. But $\mathcal F$ is a filterbase on X and so there exist $F\in \mathcal F$ such that $F\subseteq F_1\cap F_2$, which contradicts $F_1\cap c_{\mu_j}U=\emptyset$ and $F_2\subseteq c_{\mu_j}U$ to hold simultaneously. **Definition 4.14.** [5] Let (X, μ_1, μ_2) be a bi-GTS. Then X is said to be (μ_i, μ_j) -regular if for any $x \in X$ and any μ_i -closed set F not containing x, there exist $U \in \mu_i$ and $V \in \mu_j$ with $x \in U, F \subseteq V$ such that $U \cap V = \emptyset$; $i, j = 1, 2(i \neq j)$. **Theorem 4.15.** [5] Let (X, μ_1, μ_2) be a (μ_i, μ_j) -regular bi-GTS. Then $\mu_i \subseteq \theta(\mu_i, \mu_j)$; $i, j = 1, 2 (i \neq j)$. **Theorem 4.16.** A (μ_i, μ_j) -regular bi-GTS (X, μ_1, μ_2) is g_{ij} -closed iff every cover of X by $\theta(\mu_i, \mu_j)$ -open sets of X has a finite subcover; $i, j = 1, 2(i \neq j)$. **Proof:** Let X be g_{ij} -closed space and \mathcal{U} a cover of X by $\theta(\mu_i, \mu_j)$ -open sets. Then for each $x \in X$, there is $U_x \in \mathcal{U}$ such that $x \in U_x$, and then $x \in V_x \subseteq c_{\mu_j} V_x \subseteq U_x$ for a μ_i -open set V_x . Now $\{V_x : x \in X\}$ is a μ_i -open cover of X and hence by g_{ij} -closedness of X, $X = \bigcup_{k=1}^n c_{\mu_j} V_{x_k}$, for a finite subset $\{x_1, x_2, ..., x_n\}$ of X. Then $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U} . Conversely, let X be (μ_i, μ_j) -regular and $\mathcal U$ be a μ_i -open cover of X. Then by Theorem 4.15 $\mathcal U$ is also a $\theta(\mu_i, \mu_j)$ -open cover of X and so there exists a finite subcollection $\mathcal U_0$ of $\mathcal U$ such that $X = \cup_{U \in \mathcal U_0} U$, i.e., $X = \cup_{U \in \mathcal U_0} c_{\mu_i} U$. #### References - 1. A. Debray and R. Bhowmick, Separation Axioms on Bi-Generalized Topological Spaces , J. Chungcheong Math. Soc. 27(3)(2014), 363 379. - R. Bhowmick and A. Debray, On generalized cluster sets of functions and multifunctions, Acta Math. Hungar., 140(1-2)(2013),47-59. - 3. Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002),351-357; - 4. Á. Császár and E.Makai Jr., Further remarks on δ and θ -modifications, Acta Math. Hungar., 123(3)(2009),223-228; - W. K. Min, Mixed Weak continuity on generalized topological spaces. Acta Math. Hungar., 132(4)(2011),339-347; - 6. W. K. Min, A note on δ and θ -modifications, Acta Math. Hungar. 132(1-2)(2011), 107-112. DOI: 10.1007/s10474-010-0045-3(2010); - 7. S. Willard, General Topology, Addison-Wesley Publishing Company, 1970; A. Deb Ray Department of Mathematics, West Bengal State University, Barasat, North 24 Paraganas, Kolkata - 700126, India E-mail address: atasi@hotmail.com and $Rakesh\ Bhowmick$ Department of Mathematics, West Bengal State University, Barasat, North 24 Paraganas, Kolkata - 700126, India E-mail address: r.bhowmick88@gmail.com