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abstract: In this paper, generalizations of adherence and convergence of nets
and filters on a bi-GTS are introduced and studied. Several properties and inter-
relations among such adherence and convergence of nets and filters on a bi-GTS
are discussed and characterized using graphs of functions. Finally, these results are
applied to investigate the behaviour of a generalization of compactness, known as
gij-closedness of a bi-GTS.
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1. Introduction and Preliminaries

In continuation of our work on bi-generalized topological spaces (in short, bi-
GTS) [2,1], we introduce and study certain generalizations of adherence and con-
vergence of nets and filters on a bi-GTS. Discussing several properties and interre-
lations among such adherence and convergence of nets and filters on a bi-GTS, we
have characterized them using graphs of functions. Finally, the results obtained in
the first part of the paper are applied to investigate the behaviour of a generaliza-
tion of compactness, called gij-closedness [2] of a bi-GTS.

We list a few known definitions and existing results here, which we require in
the following sections.
Let X be a nonempty set and µ be a collection of subsets of X (i.e. µ ⊆ P(X)).
µ is called a generalized topology (briefly GT) [3] on X iff ∅ ∈ µ and Gλ ∈ µ for
λ ∈ Λ(6= ∅) implies ∪λ∈ΛGλ ∈ µ. The pair (X,µ) is called a generalized topological
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space (briefly GTS). The elements of µ are called µ-open sets and their comple-
ments are called µ-closed sets. The generalized closure of a subset S of X , denoted
by cµS, is the intersection of all µ-closed sets containing S. The generalized interior
of a subset S of X, denoted by iµS, is the union of all µ-open sets included in S.
The set of all µ-open sets containing an element x ∈ X is denoted by µ(x). A GT
µ is called a strong GT if X ∈ µ.

Let ψ : X → exp(expX) satisfy V ∈ ψ(x) for each x ∈ V . Then ψ(x) is called
a generalized neighbourhood of x ∈ X and ψ a generalized neighbourhood system
(briefly GNS) on X . On a GTS (X,µ), ψµ defined by ψµ(x) = {A ⊆ X : x ∈M ⊆
A for some M ∈ µ}, for each x ∈ X also forms a GNS on X which is called GNS
generated by the GT µ (briefly µ-GNS). Each member of ψµ(x) is called a µ-nbd
of x. [3]

Let µ1, µ2 be two GTs on a nonempty set X . Then (X,µ1, µ2) is called a bi-
generalized topological space (briefly bi-GTS) [6]. On a bi-GTS (X,µ1, µ2), γµi,µj

:

P(X) → P(X), i, j = 1, 2(i 6= j), is defined by
γµi,µj

(A) = {x ∈ X : cµj
M ∩A 6= φ for all M ∈ µi(x)}. [4]

Let (X,µ1, µ2) be a bi-GTS. Then θ(µi, µj) [4] ⊆ P(X)(i 6= j), defined by
θ(µi, µj) = {A ⊆ X : for each x ∈ X∃M ∈ µi(x), with cµj

M ⊆ A} also forms a
GT on X . The elements of θ(µi, µj) are called θ(µi, µj)-open and the complements
are called θ(µi, µj)-closed.

Theorem 1.1. [4] Let (X,µ1, µ2) be a bi-GTS and A ⊆ X. Then A is θ(µi, µj)-
closed iff A = γµi,µj

(A).

Let µ1, µ2 be two GTs on a nonempty setX andA ⊆ X . A is said to be r(µi, µj)-
open (resp. r(µi, µj)-closed) if A = iµi

(cµj
(A)) (resp. A = cµi

(iµj
(A))) [4]. Let

(X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. If νi(i = 1, 2) on the cartesian product
X×Y is given by νi = µi×ηj for i, j = 1, 2(i 6= j) then (X×Y, ν1, ν2) is a bi-GTS.
Similarly, for a bi-GTS (X,µ1, µ2), (X ×X, ν1, ν2) is a bi-GTS where νi = µi ×µj

for i, j = 1, 2(i 6= j).
It is well known that a filterbase F induces a net [7] P : (Λ,≥) → X defined
by P ((x, F )) = x where Λ = {(x, F ) : x ∈ F ∈ F} and the binary relation
≥ is given by (x1, F1) ≥ (x2, F2) if and only if F1 ⊆ F2. Similarly, a net (xα)
with the directed set (Λ,≥) induces a filterbase [7] {Tα : α ∈ Λ}, where each
Tα = {xβ : β ∈ Λ and β ≥ α}.

2. (µi, µj)-adherence and (µi, µj)-convergence of Nets and Filterbases

Definition 2.1. [2] A filterbase F on a bi-GTS (X,µ1, µ2) is said to
(i) (µi, µj)-adhere (i, j = 1, 2 and i 6= j) at x ∈ X if for each U ∈ µi(x) and each
F ∈ F, F ∩ cµj

U 6= ∅.
(ii) (µi, µj)-converge (i, j = 1, 2 and i 6= j) to x ∈ X if for each U ∈ µi(x) there
exists F ∈ F, such that F ⊆ cµj

U .
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Definition 2.2. A net (xα) on a bi-GTS (X,µ1, µ2) with the directed set (Λ,≥)
as a domain is said to
(i) (µi, µj)-adhere (i, j = 1, 2 and i 6= j) at x ∈ X if for each U ∈ µi(x) and each
α ∈ Λ, there exists β ∈ Λ such that β ≥ α and xβ ∈ cµj

U .
(ii) (µi, µj)-converge to x ∈ X (i, j = 1, 2 and i 6= j) if for each U ∈ µi(x) there
exists α0 ∈ Λ such that xα ∈ cµj

U for all α ∈ Λ with α ≥ α0.

Theorem 2.3. Let (X,µ1, µ2) be a bi-GTS and x0 ∈ X. Then a filterbase F

on X (µi, µj)-converges to x0 iff the net P based on F (µi, µj)-converges to x0;
i, j = 1, 2(i 6= j).

Proof: Let a filterbase F be (µi, µj)-convergent to x0 and P : Λ → X be the net
based on F. If U ∈ µi(x0) then by the convergence of F there exists F ∈ F such
that F ⊆ cµj

U . Choose p ∈ F so that (p, F ) ∈ Λ. So if (x1, F1) ≥ (p, F ) then
P [(x1, F1)] = x1 ∈ F1. As F1 ⊆ F , x1 ∈ cµj

U . i.e., P is (µi, µj)-convergent to x0.
Conversely, let P be (µi, µj)-convergent to x0 and U ∈ µi(x0). Then there exists
(x1, F1) ∈ Λ such that (y, F ) ≥ (x1, F1) implies P [(y, F )] = y ∈ cµj

U . Now for
each z ∈ F1 we have (z, F1) ≥ (x1, F1), i.e., z ∈ cµj

U and hence F1 ⊆ cµj
U . Thus

F is (µi, µj)-convergent to x0. ✷

Theorem 2.4. Let (X,µ1, µ2) be a bi-GTS and x0 ∈ X. Then x0 is a (µi, µj)-
adherent point of a filterbase F iff the net P based on F has x0 as a (µi, µj)-adherent
point; i, j = 1, 2(i 6= j).

Proof: Let x0 be a (µi, µj)-adherent point of a filterbase F and P : Λ → X be
the net based on F. Let (p, F ) ∈ Λ and U ∈ µi(x0). Then by the adherence of F,
F ∩ cµj

U 6= ∅. If x1 ∈ F ∩ cµj
U then (x1, F ) ≥ (p, F ) and P [(x1, F )] = x1 ∈ cµj

U .
Hence x0 is a (µi, µj)-adherent point of P .
Conversely, let P have x0 as a (µi, µj)-adherent point. Let U ∈ µi(x0) and F ∈ F.
Choose p ∈ F so that (p, F ) ∈ Λ and so by the adherence of the net P there
exists (b,K) ∈ Λ with (b,K) ≥ (p, F ), P [(b,K)] = b ∈ cµj

U . As K ⊆ F , we have
F ∩ cµj

U 6= ∅, i.e., x0 is a (µi, µj)-adherent point of F. ✷

Theorem 2.5. Let (X,µ1, µ2) be a bi-GTS and x0 ∈ X. Then a net (xα)α∈Λ

(µi, µj)-converges to x0 iff the filterbase generated by the net is (µi, µj)-convergent
to x0; i, j = 1, 2(i 6= j).

Proof: Let a net (xα)α∈Λ (µi, µj)-converge to x0 and U ∈ µi(x0). Then there
exists some α0 ∈ Λ such that xβ ∈ cµj

U, ∀β ≥ α0. The filterbase generated by the
net (xα)α∈Λ is {Tα : α ∈ Λ} where Tα = {xβ : β ∈ Λ and β ≥ α}. It is clear that
Tα0

⊆ cµj
U and hence {Tα : α ∈ Λ} (µi, µj)-converges to x0.

Conversely, let {Tα : α ∈ Λ} (µi, µj)-converge to x0 and U ∈ µi(x0). Then there
exists some α ∈ Λ such that Tα ⊆ cµj

U , i.e., xβ ∈ cµj
U, ∀β ≥ α and hence (xα)α∈Λ

(µi, µj)-converges to x0. ✷
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Theorem 2.6. Let (X,µ1, µ2) be a bi-GTS and x0 ∈ X. Then x0 is a (µi, µj)-
adherent point of a net (xα)α∈Λ iff x0 is a (µi, µj)-adherent point of the filterbase
generated by (xα)α∈Λ; i, j = 1, 2(i 6= j).

Proof: Let x0 be a (µi, µj)-adherent point of a net (xα)α∈Λ and U ∈ µi(x0). Then
for each α ∈ Λ there exists some β ∈ Λ with β ≥ α and xβ ∈ cµj

U . The filterbase
generated by (xα)α∈Λ is {Tα : α ∈ Λ} where Tα = {xβ : β ∈ Λ and β ≥ α}. It
can be easily shown that Tα ∩ cµj

U 6= ∅ for each α ∈ Λ and hence x0 is a (µi, µj)-
adherent point of {Tα : α ∈ Λ}.
Conversely, let x0 be a (µi, µj)-adherent point of {Tα : α ∈ Λ} and U ∈ µi(x0).
Then for each α ∈ Λ, Tα ∩ cµj

U 6= ∅, i.e., for each α ∈ Λ there exists some β ∈ Λ
with β ≥ α and xβ ∈ cµj

U and hence x0 is a (µi, µj)-adherent point of (xα)α∈Λ. ✷

Theorem 2.7. Let (X,µ1, µ2) be a bi-GTS, where µi is a strong GT and x0 ∈ X.
Then x0 is a (µi, µj)-adherent point of a net (xα)α∈Λ in X iff there exists a subnet
(xαλ

) of (xα)α∈Λ, which (µi, µj)-converge to x0; i, j = 1, 2(i 6= j).

Proof: Let x0 be a (µi, µj)-adherent point of a net (xα)α∈Λ. Let M = {(α, cµj
U) :

x0 ∈ U ∈ µi and xα ∈ cµj
U}. Define (α1, cµj

U1) ≥ (α2, cµj
U2) iff α1 ≥ α2 and

cµj
U1 ⊆ cµj

U2. Let φ : M → Λ be defined by φ[(α, cµj
U)] = α. So φ defines

a subnet of (xα)α∈Λ. Now if U ∈ µi(x0) then for some α ∈ Λ, xα ∈ cµj
U , and

so (β, cµj
V ) ≥ (α, cµj

U) implies xβ ∈ cµj
V ⊆ cµj

U . Hence the subnet (µi, µj)-
converges to x0.
Conversely, let (xα)α∈Λ be a net with the directed set (Λ,≥) as a domain. Let
(xαλ

) a subnet of (xα)α∈Λ with the domain M , which (µi, µj)-converges to x0. Let
U ∈ µi(x0) and α0 ∈ Λ. Then there exists λ0 ∈ M such that for each λ ≥ λ0,
xαλ

∈ cµj
U . Take λ1 ∈ M such that αλ1

≥ α0. Let λ2 be such that λ2 ≥ λ0 and
λ2 ≥ λ1, then αλ2

≥ αλ1
≥ α0 and xαλ2

∈ cµj
U . Hence x0 is a (µi, µj)-adherent

point of (xα)α∈Λ. ✷

3. Adherence and Convergence of nets and filters in terms of graph of

a function

Definition 3.1. [2] Let (X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. Then f :
(X,µ1, µ2) → (Y, η1, η2) is said to be (µiµj , ηk)-continuous at x ∈ X if for each
V ∈ ηk(f(x)), there exists U ∈ µi(x) such that f(cµj

U) ⊆ V ; i, j, k = 1, 2(i 6= j).
If f is (µiµj , ηk)-continuous at each x ∈ X then f is called (µiµj , ηk)-continuous
on X or simply (µiµj , ηk)-continuous.

Definition 3.2. Let µ be a GT on a nonempty set X. Then a filterbase F on X
is said to µ-converge to x ∈ X if for each U ∈ µ(x) there exists F ∈ F, such that
F ⊆ U .

Theorem 3.3. Let (X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. If f : X → Y
is a (µiµj , ηk)-continuous function then for every filterbase F on X, F (µi, µj)-
converges to some x ∈ X implies f(F) ηk-converges to f(x), where f(F) = {f(F ) :
F ∈ F} is a filterbase on Y ; i, j, k = 1, 2 (i 6= j).
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Proof: Let V be any ηk-open set containing f(x). Then there exists a µi-open
set U containing x such that f(cµj

U) ⊆ V . Again since F (µi, µj)-converges to
x, there is F ∈ F such that F ⊆ cµj

U , i.e., f(F ) ⊆ f(cµj
U) ⊆ V . Hence, f(F)

ηk-converges to f(x). ✷

The converse of Theorem 3.3 is also true if we take µi as a topology on X .

Theorem 3.4. Let f : (X,µ1, µ2) → (Y, η1, η2) be a function between two bi-GTS.
If for every filterbase F on X, F (µi, µj)-converges to x whenever f(F) ηk-converges
to f(x), where µi is a topology on X and f(F) = {f(F ) : F ∈ F} then f : X → Y
is (µiµj , ηk)-continuous; i, j, k = 1, 2 (i 6= j).

Proof: Suppose f : X → Y is not (µiµj , ηk)-continuous at some point x ∈ X .
Then there exists some V ∈ ηk(f(x)) such that f(cµj

U) * V for every U ∈ µi(x).
Now F = {cµj

U : U ∈ µi(x)} is a filterbase on X such that F (µi, µj)-converges to
x but f(F) does not ηk-converge to f(x). ✷

In what follows, by G(f) we denote the graph of a function f : X → Y ; i.e.,
G(f) = {(x, y) ∈ X × Y : y ∈ f(x)}. Clearly, for any f : X → Y , if A ⊆ X and
B ⊆ Y , f(A) ∩B = {y ∈ Y : (x, y) ∈ ((A ×B) ∩G(f)), for some x ∈ X}.

Theorem 3.5. Let (X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. If f : X → Y has a
θ(νi, νj)-closed graph then for every filterbase F on X, F (µi, µj) converges to some
x ∈ X implies (ηj , ηi)-ad (f(F))∪{f(x)} = {f(x)}, where (ηi, ηj)-adΩ denotes the
collection of all (ηi, ηj)-adherent points of a filterbase Ω; i, j = 1, 2(i 6= j).

Proof: Let y ∈ (ηj , ηi)-ad f(F) such that y 6= f(x). Then (x, y) ∈ X × Y \G(f).
Since y ∈ (ηj , ηi)-ad f(F), for any W ∈ ηj(y) and for any f(F ) ∈ f(F) we have,
f(F ) ∩ cηi

W 6= ∅. Again since, F (µj , µi)-converges to x, for any V ∈ µi(x) there
exists F ∈ F such that F ⊆ cµj

V . Then f(F ) ⊆ f(cµj
V ) and hence f(cµj

V ) ∩
cηi
W 6= ∅. It then follows that for every V ∈ µi(x) and W ∈ ηj(y), (cµj

V ×cηi
W )∩

G(f) 6= ∅, i.e., cνj
(V ×W ) ∩ G(f) 6= ∅. i.e., (x, y) ∈ γνi,νj

G(f). So by Theorem
1.1 f can not have θ(νi, νj)-closed graph. ✷

The converse of Theorem 3.5 is also true if we take µi as a topology on X .

Theorem 3.6. Let f : (X,µ1, µ2) → (Y, η1, η2) be a function between two bi-GTS.
If for a filterbase F on X, (ηj , ηi)-ad (f(F)) ∪ {f(x)} = {f(x)} for some x ∈ X
implies F (µi, µj)-converges to x, where µi is a topology, then f : X → Y has
a θ(νi, νj)-closed graph. Here (ηi, ηj)-adΩ denotes the collection of all (ηi, ηj)-
adherent points of a filterbase Ω; i, j = 1, 2 (i 6= j).

Proof: Suppose graph of f is not θ(νi, νj)-closed. Then by Theorem 1.1 there
exists (x, y) ∈ X × Y \G(f) such that (x, y) ∈ γνi,νj

G(f). i.e., y 6= f(x) and for
each V ∈ µi(x), W ∈ ηj(y), cνj

(V ×W )∩G(f) 6= ∅. So (cµj
V × cηi

W )∩G(f) 6= ∅
and hence f(cµj

V ) ∩ cηi
W 6= ∅. Now F = {cµj

V : V ∈ µi(x)} is a filterbase
on X such that F (µi, µj)-converges to x but f(F) is a filterbase on Y such that
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there exists some y ∈ (ηj , ηi)-ad (f(F)) other than f(x), a contradiction to the
hypothesis. Hence f has θ(νi, νj)-closed graph. ✷

Theorem 3.7. Let (X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. Suppose f : (X,µ1, µ2)
→ (Y, η1, η2) has a θ(νi, νj)-closed graph G(f). If F is a filterbase on X such that
F (µi, µj)-converges to some point p and f(F) (ηj , ηi)-converges to some q in Y ,
then f(p) = q; i, j = 1, 2(i 6= j).

Proof: If possible let f(p) 6= q, then (p, q) /∈ G(f). Since G(f) is θ(νi, νj)-closed,
by Theorem 1.1 (p, q) /∈ γνi,νj

G(f). Thus there exist U ∈ µi(p) and V ∈ ηj(q) such
that cνj

(U×V )∩G(f) = ∅, i.e., (cµj
U×cηi

V )∩G(f) = ∅. Since F (µi, µj)-converges
to p and f(F) (ηj , ηi)-converges to q, there exists Aα ∈ F such that Aα ⊆ cµj

U
and f(Aα) ⊆ cηi

V . Consequently (cµj
U × cηi

V ) ∩G(f) 6= ∅, a contradiction. ✷

4. gij-closed spaces

Definition 4.1. [2] A bi-GTS (X,µ1, µ2) is called gij-closed if for every µi-open
cover U of X, there exists a finite subcollection U0 of U such that X = ∪U∈U0

cµj
U ;

i, j = 1, 2(i 6= j).

Theorem 4.2. Let (X,µ1, µ2) be a bi-GTS. Then for i, j = 1, 2(i 6= j) the following
are equivalent:

1. X is gij-closed;

2. any filterbase (µi, µj)-adheres in X;

3. any net (µi, µj)-adheres in X.

Proof: (1) ⇒ (2) Suppose F is a filterbase on (X,µ1, µ2) such that it has no
(µi, µj)-adherent point. So for each x ∈ X , there exists a Ux ∈ µi(x) and Fx ∈ F

such that Fx ∩ cµj
Ux = ∅. Let us consider the µi-open cover {Ux : x ∈ X} of X .

Then there exist x1, x2, · · · , xn such that X = ∪n
k=1

cµj
Uxk

. Now Fxk
∩ cµj

Uxk
= ∅

for k = 1, 2, · · · , n, i.e., (∩n
k=1

Fxk
)∩(∪n

k=1
cµj

Uxk
) = ∅. Since F is a filterbase, there

is some F ∈ F such that F ⊆ ∩n
k=1

Fxk
⊆ X − ∪n

k=1
cµj

Uxk
= ∅, a contradiction.

(2) ⇒ (1) Let {Gλ : λ ∈ Λ} be a µi-open cover of X such that for any fi-
nite subset Λ0 of Λ, ∪λ∈Λ0

cµj
Gλ 6= X . Consider F = {X − ∪λ∈Λ0

cµj
Gλ :

Λ0 is a finite subset ofΛ}. Then clearly F is a filterbase on X . So by (2) there ex-
ists some x ∈ X such that F (µi, µj)-adheres at x. Since {Gλ : λ ∈ Λ} is a µi-open
cover of X there is some λ0 ∈ Λ such that x ∈ Gλ0

. Now X − cµj
Gλ0

= F ∈ F

such that F ∩ cµj
Gλ0

= ∅, a contradiction to the fact that F is (µi, µj)-adheres at
x.
(2) ⇒ (3) Follows from Theorem 2.6.
(3) ⇒ (2) Follows from Theorem 2.4. ✷
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Definition 4.3. Let µ be a GT on a nonempty set X. Then A family F of subsets
of X is said to have µ-interiorly finite intersection property (in short µ-IFIP) if
for every finite subcollection F0 of F there exists a non-void µ-open set U such that
U ⊆ ∩F0.

Theorem 4.4. Let (X,µ1, µ2) be a gij-closed bi-GTS. Then every family of µi-
closed set in X with µj-IFIP has a non-void intersection; i, j = 1, 2(i 6= j).

Proof: Let F be a family of µi-closed sets in X with µj-IFIP such that ∩F = ∅.
Then U = {X − F : F ∈ F} is a µi-open cover of X . Now for any subcollection
{X−F1, · · · , X−Fn}, there exists a non-null µj-open set U such that U ⊆ ∩n

r=1Fr.
Then ∪n

r=1cµj
(X − Fr) ⊆ cµj

(∪n
r=1(X − Fr)) ⊆ cµj

(X − ∩n
r=1Fr) ⊆ cµj

(X − U) =
X − U 6= X. Thus X is not gij-closed, a contradiction to the hypothesis. ✷

Definition 4.5. Let µ be a GT on a nonempty set X. A filterbase F on X is said
to be a µ-open filterbase if F ⊆ µ.

Definition 4.6. Let µ be a GT on a nonempty set X. A point x of X is said to
be a µ-adherent point of a filterbase F on X if for each U ∈ µ(x) and each F ∈ F,
F ∩ U 6= ∅.

Theorem 4.7. Let (X,µ1, µ2) be a gij-closed bi-GTS. Then every µj-open filter-
base has a µi-adherent point; i, j = 1, 2(i 6= j).

Proof: Let F be a µj-open filterbase such that it has no µi-adherent point. Then
for each x ∈ X there exist Gx ∈ µi(x) and Fx ∈ F such that Gx ∩ Fx = ∅.
Consider the µi-open cover {Gx : x ∈ X} of X . Then by gij-closedness of X
we have x1, x2, · · · , xn ∈ X such that X = ∪n

k=1
cµj

Gxk
. Again, Gxk

∩ Fxk
=

∅ ⇒ cµj
Gxk

∩ Fxk
= ∅ (since, Fxk

is µj-open)⇒ Fxk
⊆ X\cµj

Gxk
⇒ ∩n

k=1
Fxk

⊆
∩n
k=1

(X\cµj
Gxk

) = X\ ∪n
k=1

cµj
Gxk

= ∅, a contradiction to the fact that F is a
filterbase. ✷

The converse of Theorem 3.6 is also true if we take µj as a topology on X .

Theorem 4.8. Let (X,µ1, µ2) be a bi-GTS. If every µj-open filterbase has a µi-
adherent point, where µj is a topology, then X is gij-closed, i, j = 1, 2(i 6= j).

Proof: If possible let X be not gij-closed. Then there exists a µi-open cover
{Gα : α ∈ Λ} such that for every finite subset Λ0 of Λ, X 6= ∪α∈Λ0

cµj
Gα ⇒

X\ ∪α∈Λ0
cµj

Gα 6= ∅ ⇒ ∩α∈Λ0
(X\cµj

Gα) 6= ∅. Now F = {∩α∈Λ0
(X\cµj

Gα) :
Λ0 is a finite subset ofΛ} forms a µj-open filterbase on X . So by the hypothesis
F µi-adheres to some x ∈ X . Now, x ∈ Gα0

∈ µi for some α0 ∈ Λ. Again
X\cµj

Gα0
∈ F, contradicts that F µi-adheres at x. ✷

Definition 4.9. Let µ be a GT on a nonempty set X and (Λ,≥) be a directed set.
Then {Oα ∈ µ : α ∈ Λ} is said to be a net of µ-open sets.
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Definition 4.10. Let (X,µ1, µ2) be a bi-GTS and {Oα : α ∈ Λ} be a net of µj-
open sets. Then a point x of X is called µi-adherent point of the net {Oα : α ∈ Λ}
of µj-open sets iff for each V ∈ µi(x) and each α ∈ Λ, there exists β ∈ Λ such that
β ≥ α and V ∩Oβ 6= ∅; i, j = 1, 2(i 6= j).

Theorem 4.11. Let (X,µ1, µ2) be a gij-closed bi-GTS. Then every net of µj-open
sets in X has µi-adherent point; i, j = 1, 2(i 6= j).

Proof: Let {Oα : α ∈ Λ} be a net of µj-open sets. Consider Fα = cµi
[∪{Oβ : β ∈

Λ and β ≥ α}] for each α. Then clearly F = {Fα : α ∈ Λ} is a family of µi-closed
sets with µj-IFIP. By Theorem 4.4 there exists x ∈ ∩F. Let α ∈ Λ and V ∈ µi(x).
Then V ∩ (∪β≥αOβ) 6= ∅, i.e., there exists β ∈ Λ with β ≥ α such that V ∩Oβ 6= ∅,
proving that x is a µi-adherent point of the given net. ✷

Theorem 4.12. A bi-GTS (X,µ1, µ2) is gij-closed iff every family U of r(µj , µi)-
closed sets having the property that for each x ∈ X, there is U ∈ U such that U is
a µi-nbd of x, has a finite subcover; i, j = 1, 2(i 6= j).

Proof: Let X be a gij-closed space and U a family satisfying the given condition.
So for each x ∈ X , we can find some Ux ∈ U and µi-open set Vx such that
x ∈ Vx ⊆ Ux. It then follows that {Vx : x ∈ X} is a µi-open cover of X . Then for
a finite subset {x1, x2, · · · , xn} of X , X = ∪n

k=1
cµj

Vxk
⊆ ∪n

k=1
cµj

Uxk
= ∪n

k=1
Uxk

.
Conversely, for any µi-open cover U of X , {cµj

U : U ∈ U} is a family which satisfies
the hypothesis of the theorem and the rest is clear. ✷

Theorem 4.13. Let (X,µ1, µ2) be a bi-GTS. Then X is gij-closed iff each filterbase
F on X with at most one (µi, µj)-adherent point, (µi, µj)-converges; i, j = 1, 2(i 6=
j).

Proof: Let F be a filterbase on gij-closed bi-GTS (X,µ1, µ2) with at most one
(µi, µj)-adherent point. So by Theorem 4.2 there exists a point x0 ∈ X such that
(µi, µj)-adF = {x0}. If F does not (µi, µj)-converge to x0 then there exists a
V ∈ µi(x0) such that for each F ∈ F, F * cµj

V . i.e., F ∩ (X\cµj
V ) 6= ∅. Now

G = {F ∩ (X\cµj
V ) : F ∈ F} is a filterbase on X . Since X is gij-closed, G has non-

void (µi, µj)-adherence by Theorem 4.2. Consequently ∩G∈Gγµi,µj
G 6= ∅. Again

∩G∈Gγµi,µj
G = ∩F∈Fγµi,µj

(F ∩ (X\cµj
V )) ⊆ (µi, µj)-adF ∩ γµi,µj

(X\cµj
V ) =

{x0} ∩ γµi,µj
(X\cµj

V ), i.e., x0 ∈ γµi,µj
(X\cµj

V ), which is a contradiction. Hence

F (µi, µj) converges to x0.
Conversely, If possible let X be not gij-closed. Then there exists a filterbase F on
X which has no adherent point in X . So by the hypothesis F is (µi, µj)-converges
to some point x ∈ X . Since x is not a (µi, µj)-adherent point of F, there exist
U ∈ µi(x) and F1 ∈ F such that F1 ∩ cµj

U = ∅. Again since F (µi, µj)-converges
to x, we have some F2 ∈ F such that F2 ⊆ cµj

U . But F is a filterbase on X and
so there exist F ∈ F such that F ⊆ F1 ∩ F2, which contradicts F1 ∩ cµj

U = ∅ and
F2 ⊆ cµj

U to hold simultaneously. ✷



On gij-closed Bi-Generalized topological spaces 67

Definition 4.14. [5] Let (X,µ1, µ2) be a bi-GTS. Then X is said to be (µi, µj)-
regular if for any x ∈ X and any µi-closed set F not containing x, there exist
U ∈ µi and V ∈ µj with x ∈ U, F ⊆ V such that U ∩ V = ∅; i, j = 1, 2(i 6= j).

Theorem 4.15. [5] Let (X,µ1, µ2) be a (µi, µj)-regular bi-GTS. Then µi ⊆
θ(µi, µj); i, j = 1, 2(i 6= j).

Theorem 4.16. A (µi, µj)-regular bi-GTS (X,µ1, µ2) is gij-closed iff every cover
of X by θ(µi, µj)-open sets of X has a finite subcover; i, j = 1, 2(i 6= j).

Proof: Let X be gij-closed space and U a cover of X by θ(µi, µj)-open sets. Then
for each x ∈ X , there is Ux ∈ U such that x ∈ Ux, and then x ∈ Vx ⊆ cµj

Vx ⊆ Ux

for a µi-open set Vx. Now {Vx : x ∈ X} is a µi-open cover of X and hence by
gij-closedness of X , X = ∪n

k=1
cµj

Vxk
, for a finite subset {x1, x2, ..., xn} of X . Then

{Ux1
, Ux2

, ..., Uxn
} is a finite subcover of U.

Conversely, let X be (µi, µj)-regular and U be a µi-open cover of X . Then by
Theorem 4.15 U is also a θ(µi, µj)-open cover of X and so there exists a finite
subcollection U0 of U such that X = ∪U∈U0

U , i.e., X = ∪U∈U0
cµj

U . ✷
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