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Limit analysis of an elastic thin oscillating layer

Jamal Messaho and Abdelaziz Ait Moussa

ABSTRACT: The aim of this paper, is to study the limit behavior of the solution
of a convex elasticity problem with a negative power type, of a containing structure,
an elastic thin oscillating layer of thickness and periodicity parameter depending of
a small enough parameter €. The epi-convergence method is considered to find the
limit problems with interface conditions.
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1. Introduction

The problem of inclusion of an elastic thin layer between two elastic bodies,
where the thin layer obeys to a nonlinear elastic law of power type, is widely studied
in many works. Here we can mention some authors who treated the elasticity and
thermal problems on the structure containing a thin plate layer, in one hand the
thermal case was treated by Brillard and Sanchez-Palencia et al. in [7,12]. In the
other hand the elasticity case was studied by Ait Moussa et al., Brillard et al.,
Geymonat et al. and Lenci et al. in [2,9,10,11]. The plastic plate case was treated
by Messaho et al. in [4]. From the mechanical point of view for the thin layer and
the paper of Acerbi et al. [1], we are motivated to studying the elasticity problems
on a structure containing a thin oscillating layer. It is, therefore of interest to study
the limit behavior of thin layer with an oscillating boundary, with a small enough
periodicity parameter, between the two adherents when the thickness, rigidity and
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periodicity parameters depending on a small enough parameter intended to tend
towards 0 where the rigidity parameter is great enough.

In this present work, we consider a structure containing a thin oscillating layer
of thickness, rigidity and periodicity parameter depending on € being a parameter
intended to tend towards 0. In a such structure we have treated the scalar case for
a thermal conductivity problem in Messaho et al in [3]. The aim of this work is to
study the limit behavior of an elasticity problem where a convex energy functional
defined in a such structure.

This paper is organized in the following way. In section 2, we express the
problem to study, and we give some notations and we define functional spaces for
this study in the section 3. In the section 4, we study the problem (4.1). The
section 5 is devoted to the determination of the limits problems and our main
result.

2. Statement of the problem

We consider a structure, occupying a bonded domain  C R? with lipschitzian
boundary 0f2. It is constituted of two elastics bodies joined together by a thin layer
with oscillating boundary (see figure 1), the latter obeys to a nonlinear elastic law
of power type. More precisely the stress field is related to the field of displacement
by

e __ 1 e\|p—2 €
o = E—a|e(u)| e(u®), p>1, a>0.
The structure occupying the domain 2 is subjected to a density of forces of volume
f, f: © — R3 and it is fixed on the boundary 02 . Equations which relate the
stress field 0°,0°: Q — RY, and the field of displacement u, u®: Q — R3 are

divet+f = 0 in Q,
g — g 3
ij a’ijkhekh (u ) n QE? 2.1
o = = le(u?)[P~2e(u®) in B, (2.1)
u® = 0 on 0f2.

Where ¢ being a positive parameter intended to tend towards zero, p > 1, a > 0,
ai;jin, being the elasticity coefficients and RQS is the vector space of the square
symmetrical matrices of three order . e, (u) components of the linearized tensor of
deformation e(u).

¢. being a bounded real function and 0, e[*-periodic. In the sequel, we assume
that the elasticity coefficients a;;xp, satisfy to the following hypotheses

agjrn € L(Q), (2.2)
Qijkh = Qjikh — Qkhij, (2~3)

@ijknTijTkn > CTiiTij, VT € RE. (2.4)



LIMIT ANALYSIS OF AN ELASTIC THIN OSCILLATING LAYER 239

Figure 1: The domain 2.

3. Notation and functional setting
3.1. Notations

Here is the notation that will be used in the sequel:
= (IL’/,IL’g) where 2 = (:751,:7}2),7'@( = (Ticj)1§i,j§3 T®SC = w vr,C € R3’
Y:]071[X]071[7 0r = (I_V®V)Q((I_ V®V) V(Q,l/) € RY x R37
©: R? — [a1, as] where ¢ is Y — periodic and az > a3 > 0,\ = 1,2,

0.0 = o), B2 € CR) ML), mie) = (g [ ola)a’,

__ (0. 9. _ 00 T 1—t T 14p—t -
V.= (0_901’ oz )? D() - (Wj)lgi,jgfw T’(t) - ;1_1366 ’ ﬂ(t) - ;1_1366 P70 with

t>0. 1 <7 <min(2,p) and r’ is the conjugate of r (satisfies to + + & =1).
In the following C' will denote any constant with respect to €. Also we use the
convention 0. + oo = 0.

3.2. Functional setting

First, we introduce the following space :
Ve = {ue Wy (R?) | e(u) € L*(Q-,RY) and e(u) € LP(B-,RY) },
we show easily that V¢ is a Banach space with the following norm

ur— lle(Wllz2q. rg) + le(@lLo (5. rg) -
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Let
veE) = {ue HYQRY) e, (uy) € LP(5,RY) |,
V(2) = { ue HH (LR : ey (up,) =0 }
Virs) = { w e VP(D) : ug), € W2P(X) }
vVe(m) = { weVE(®): V' (ugy) =C }

VP () and VY (X) are two Banach spaces, provided with the norm of Hg (€, R3).
VP(X) and V1P() are two Banach spaces, provided respectively with the following
norms

Ur— ||e(u>HL2(Q,]R%) + HeT(ubD)HLp(Z,]RQS) '

U He(U)HLZ(Q,Rg) + HD(v/“?’\z)HLP

(Z,R?)
Let us
ue HY(Q,R) nfa)e, (uy) € LP(SRY)}  ifa<1,
67 = Hue W) : flayus, e W2 () f<aspl,
Ve(s) ifa>p+1.
D(Q,R3) ifa<l,

D*? = ¢ DQRHNVP(E) ifl<a<p+l,
DO,R)HNVE®) ifa>p+1.
It was known that
ID)OI,I) = Ga’p.

Our goal in this work is to study the problem (2.1), and its limit behavior when

€ tends to zero. 4. Study of the problem (2.1)

We remark that, the problem (2.1) is equivalent to the minimization problem

. 1 1
{5 [ w0+ = [ e = [ ol (11)

In order to study the problem (2.1), we will interest to the study of the minimization
problem (4.1). The existence of the solution of (4.1) is given in the following
proposition.

Proposition 4.1. Under the hypotheses (2.2), (2.3), (2.4) and for f € L (Q,R3),
the problem (4.1) admits an unique solution u® in VE.

The proof of this proposition is based on classical convexity arguments see for
example [6].
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Lemma 4.2. Under the hypothesis (2.4) and for f € L™ (Q,R3), the solution of
(4.1) u® satisfies

2
||€(U€)||L2(QE,R%) < C, (4.2)
1
E—a”@(UE)HIZp(BE,R%) < C, (4.3)

. ol
moreover u® is bounded in Wy (Q,R3).

Proof: Since u® is the solution of the problem (4.1) , we have

[ esentire @+ 5 [ el ewrew = [ £o weve

In particular for v = u®, we obtain
£ £ 1 g\ |P €
aijhkehk(u )eij (u )Jr o |e(u )| = fus.
(o € . 0

According to the inequalities of Holder and Young, we have

le(u)]”

LZ(QE,R%

IN

1 g\||P
== lle)

€
LP(BE,'R%) CH@(U )HL"(Q,'R%)

C(lle(w?)]

IN

A
2
o
<
<

IN
Q
+
| =
Y
<
2
T

2
e(u®) ||L2(QE,R%)

1
+—= |le(u®)||”
5 el

LP(Be,RY)

IA

Q

+
|

So that

le(u)|I?

L2(Q€,R%

1 e\ ||1P
_ < C
= lle(O)] <

LP(Be RY)

Therefore, we will have (4.2) and (4.3).
Since r < min(2,p) and according to (4.2) and (4.3), so for a small enough ¢ the
solution (u°) is bounded in W, " (Q, R?). 0

Let v : Q — R3, we define the tangential derivative of u, noted du by

Su = Du(I — e3 ® e3) where e3 = (0,0,1)7, (4.4)
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o (4.4) becomes

U
ou = Du — =— 4.5
U U r ® es, (4.5)

from (4.5) we have
(5U)i3 =0, Vi € {1, 2,3}.
We give some lemmas that will be used in the sequel.

Lemma 4.3 (See [1]). Let f,g € C>(X,R3), with f is to compact support, then

we have
/E f850=— /E 96,1, (4.6)

From the Green formula we have the following lemme

whereéjf:ﬁL ji=1,2.

)
Oz

Lemma 4.4. Let 0 € C*(X,R%) and u € D(X,R3), so we have

/Eae(u): —/EdivT(U)u, (4.7)

with divy (o) = dz’v(”JrQ"T)

Lemma 4.5. Let u be a reqular function defined in a neighborhood of %, then

EPe EPe
0; (/ u) =cu(a’,ep,)d;p, +/ dju. (4.8)
0 0

This lemma is a consequence of [1, proposition 2].

Let us
1 EP.
We = / u.
260 J—cq,

Lemma 4.6. The solution u® of the problem (4.1) possess a cluster point u* in
Wol’T(Q, R3) with respect to the weak topology, such that u*|y, is a weak cluster point
of we in L7 (X, R3).

Proof: According to the lemma 4.2, (4.2) and (4.3), for a small enough e, u® is
bounded in VVO1 (9, R3), so for a subsequences of uf, still denoted by u®, there
exists u* € W, ™" (2, R?) such that

uf — u*in Wy(Q,R?).
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We have

e 7" 1 e e el T
Z‘wg—ub’ L 2ep |uf(z) — u® (2, 0)]
€ J—ep,
C/ /6905 /13 out T
€ JsJocp IS0 Oxs
C EPe _ 3
S
€ Js —cp, 0

< CET_I/ |Dus|"
B,

< o=t [ Dy
Q

IN

T

ou®
81'3

IN

Thanks to the lemma 4.2 and the Korn’s inequality, so we have

Lol < e ([ e+ [ fewr)

€ €

< C (ET_l + ET_H_%) ,

. T . .
then hm/ ‘wg — u8|2| = 0, since ufz —u*, in L™ (3, R3),
b

e—=0
s0 we — u*|, in L"(3,R3). O
Let us
1 /54/75
Ve = ———— |3 |P us.
T (et ),
Lemma 4.7. The sequence v. possess a weak cluster point p—_}_lu*‘z in L"(X,R3).

The proof of this lemma is based on the same technic used in the proof of the
lemma 4.6.

Note by e, (u) = (I — e3 ® e3)du the tangential part of the tensor e(u). In order
to apply the epiconvergence method, we need to characterize the topological spaces
containing any cluster point of the solution of the problem (4.1) with respect to
the used topology, therefore the weak topology to use is insured by the lemma 4.2.
So the topological spaces characterization is given in the following proposition

Proposition 4.8. The solution u® of the problem (4.1), possess a weak cluster
point u* € W&’T(Q,R?’) and u* satisfies
1. u* € H}(Q,R?),

2. If a =1, we have e, (u* ) € LP(3,RY),

3 Ifl<a<p+1, we have eT(u*‘Z):(),
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4. If a =p+1, we have e, (u* ) =0 and uj, € W2r(%),

5. Ifa>p+1, we have e, (u*| ) =0 and duj), = C.

3l=

Proof:

1. Thanks to the lemma 4.6, for a subsequence of u®, still denoted by u®, there
exists u* € W, " (Q, R3) such that

uf — u* in Wy (Q,R?),
so that
lim [ e(u®)v = / e(u™)v, Vo € LT/(Q,RQS),
e—=0 Jo Q

according to (4.2), we have x_, e(u®) is bounded in L?(2, RY), so for a subse-
quence of x, e(u®), still denoted by x,, e(u), there exists w € L*(Q,RY) C
L"(9,RY), such that

Xqe(uf) = w in L*(Q,RY),

€

then
X, e(u®) = win L"(Q, RY).

€

Let v € L (9, RY), then

/Qe(ua)v:/Qe(ue)xﬂav—i—/ﬂe(ua)xBav.

Passing to the limit, we have

/e(u*)v = / wv+ lim [ e(u®)x, v,
Q Q 0 ‘

E— Q

since x, v — 0, so that

/Qe(u*)vz/ﬂwv,

in particular for v = |e(u*) — w|" 2 (e(u*) — w), it follows that

[ ety —wl =0,

then e(u*) = w, hence e(u*) € L*(Q,R2), and according to the classical
result (see, |13, proposition 1.2, p. 16]), we have u* € H}(Q,R3).
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. If a =1, let us pose

—ep.
we have
/ el = / e / G ; (4.9)
s P | ey,
thanks to the inequality of Holder and a1 < ¢ < ag, (4.9) becomes
[l < S [ lewr,
= € JB.
< [ lewr,
from (4.3), we have
/Elvsl” < Cer (4.10)

since a = 1, then v, is bounded in LP(X,RY), so for a subsequence of v., still
denoted by v, there exists v € LP(X,R%) such that v. — v in LP(3,R2).
Let g € D(X,RY), according to the lemma 4.5 we obtain

1 Ep, 1 EPe

/g —/ er(uf) = /g —{eT / ut | —edp, @y (ua(:c’,scpg)
b)) € —E€p. b € —EPe
+us (2, fscps)) },

to simplify the writing, note U® = u®(2/,ep,) + u(z', —ep,).
Thanks to the lemma 4.4, we have

1 EPe . ) 1 EPe .
/g —e, / U = —/ div,.g —/ u® |,
) € —EPe z = —EPe

thanks to the lemma 4.6 and p_ — m(yp) in L™ (X), so passing to limit, we

obtain
1 EPe
lim [ ge, —/ u®
e—=0 /s 5 —ep,

—2m(<p)/ div,.g u” |,
5

= 2m(so)/zg er (u)y)-

Now, to continue our proof, we need to establish the following lemma
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Lemma 4.9. for all g € D(X,R%), we have
hm g do. ®, U®=0.

The proof of this lemma

Proof: Indeed, we have

1 1
/g5gﬁ€®SU8:—/g5<pE®U8+—/gUE®5gps.
> 2 > 2 b

First, show that 8, = fz g 0. ®U*® — 0 and the second term will be shown

with the same way.
We have

=
®
I

Z/ gZ]a EU&
a £ €
> (52000
.. ’D’,'D(E)

]

dp
U‘Ev 8g’L> )
Z< 77 Qw7 D', D(%)

]

we show easily that U® — 2u*|, in L"(3,R3).

V\/e llaVe
D/,D(Z) j| :CZ D/7D(E)

c I
B. = E <U —2u” 7axigij>
i,j

0]

Let 0., € D(2,R?) such that 9;71 — gﬁf_ in L"(X), so there exists he,,— 0
when n — +o00, such that

55_Z<U8_2uf| aei,ngij>D, 5"+Z< ]|>3 O gzj> )

i, D', D(¥)
since gmv is bonded on X, so for a greater enough n, for each z’ € ¥ we have

3|0¢c,
| - 2‘&%1(:6)

|02 (2

<

o |Q

)

according to the Hélder inequality, we have

o,
s ngHLT )+h€”+z< Yils 5$zg”>pfp(z:)

C
po< 220 o5 -2, |
]
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So for each v > 0, there exists ¢ such that for ¢ < ey we have

C’)’ * 8508
T M CER
1,7 1,7 D', D(%)

3

Let ¢, € D(X,R3) such that ¢, — 2u*|,, in L7 (3, R3), so there exists a. ; — 0
when [ — 400 such that

Cvy Ay
ﬁe < _ZHginLr/(g) +h6,n+z<¢laa—égij> + ac
© i Ti "/ pp(m)
Cy dp
< DY gl + e+ 3 (G5 u0s o
ST iy VO D/, D(D)

We show easily that liH(l) ae,; = 0, so passing to the limit in v to 0, n to +oo0,
e—
then in € to 0, we obtain
B. — 0.

Hence the proof of the lemma 4.9 is complete. O

So thanks to the lemma 4.9, we obtain

8113%/29 %/E:E €T(U€):/Eg 2m(p)e, (u")s))

Since v. — v in LP(3,R2), and according to v. — 2m(p)e, (u*|y) in D'(%,
R2), so it follows that
er (u*)y) € LP(Z,RY).

l<a<p+1
From (4.10), v- — 0 and according to ve — 2m(¢)e,. (u*|,) in D'(X,RY), so

e, (u*‘z) =0.
. a=p+1, let us pose

1 EP. p72 c

55: p+1/ |1'3| :L'SGT(’LL )7
€ —E€¥e

we have

EPe _9
/ 2,2 e ()

—EPe

: (4.11)

1
P _
/E|§€| 7/261324@
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from Holder’s inequality and the fact that a1 < ¢, < ag, (4.11) becomes

C’ EPe .
[er < o= [ [ e
% € X J—ep,

C g\ |P

S [ lestu)

€

C
e / ()P

3

IN

IN

€

—p—1
< Ce*P

for « > p+ 1, & is bounded LP(X,RY), so for a subsequence of &, still
denoted by &, there exists £ € LP(X,RY) such that

(=& LP(S,RY)  if a=p+1,
£ —0in LP(X,RY) if a>p+ 1.

Let g € D(X,RY), from the lemma 4.5, we have

1 EPe p—2 R 1 EPe p—2 R
Eg F s |$3| $3€T(’u ) = Eg F eT( e |‘T3| LU )
—elep. ) 00, ®, [u7] },

thanks to the lemma 4.4, we have

1 P p—2 1 EPe p—2 p
_ s\ . _
g €r |$3| LU - dZ,UTg 1 |‘T3| rsu |,
gptl ept
= —ep. b —ep,

so that

1 EPe p—2 c . d
Egé“pﬁ o, |$3| $3€T(’u) - - Wr g

7N

1 EPe
p—2 €
N
—EPe
1 EPe
_ . p—2 €
_—/dng ] |, |7 2 u
= —EPe

1 [%% Ouf
— p=1lg Z
/Eg ()P~ 0p, @y E/ o

—E€Pe 3
= Il +127
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with

. 1 (ep )P 1/8"’5 ou®
= — d AP Py P
[ divss ( Gy B
/z:

. (0 )P /5“’5 ous / , 1 /8“’5 ous
d = d —_— z,|”
W9 pe B oz, + . W g p€p+1 o | S| or

ep. 3 - 3

and

let

5= L [T etuse, e

pE —E€p.

from (4.3), we have 8. — 0 so that LP(X,R3), then it follows that

Elig%) {— /2 div,.g (i);g)p /Wa (e(u®)e, — ey (us)es)} =0,

—EPe

thanks to the lemma 4.5, we obtain

P [eee P o,
/diUTg @/ ouS = /ding (pe)? 6(/ u?)
P pe —Ep, % pe —€p,

—edp, {ui(z’, ep.) + u (o, fscpg)} ),
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note that US = u(2',ep.) + u (2, —p,), we obtain

p EPe P gp,
/ding (('DL)/ oui = /diUTg (('DL)(S(/ u?)
z pe —€p, PN pe —Ep,
P
f/dz'ng (¢e) oo U
) p
d. d » 1 €Pc -
- [ divtdivng o) [
P
_/d'L’UTg (808) 6905[];;
by p

we show in the same way like in the proof of the lemma 4.9, that

, (0P e
Eh_r% . div,.g dp U; =0,
and
1 EPe . 0
I o(di Py — ~0.
lim Edlv(dng (e) )ps /_ L
So that lim I;,; = 0. We have
e—0
1 £Pe ou®
I = di - pZ=
12 /Z Wrd ot /_WE 2l e
1 e, . .
- g € g
= diveg e ([l e, e u)es) = a6 ).
—EPe

|z, [” (e(uf).e, — e, (uf)e,), from (4.3) we obtain

¢ e\ |P
G
a—1

_ 1 ree.
let us pose a. = v i

—EPe
< Ce

IN

[ el
z

then a. — 0 in LP(X,R3), so it follows that
lim [ di L[ P (e “Ye,) =0
EI_I;% . Wr g W e |‘T3| (e(u )'63 - 633(’u )63) - Y

According to the lemma 4.5, we find that
1 EPe » 1 EPe »
div x| ous div,g ——0 o T
JLtivng e [ o = [diveg e { [ e
—/Eding (0, )P0 U;

. . 1 E(PE p IS
_/Zdw(dng) W/—a% |, " ul

*/ div,g (p_)Pop_Us,
>




LIMIT ANALYSIS OF AN ELASTIC THIN OSCILLATING LAYER 251

we show easily, like in the proof of the lemma 4.9 and thanks to the lemma
4.6, that

and

So that

2 pH+1
limlL» = /div(ding) Mu
=0 > plp+1) °l=

_ o 2m(ePth) o
= —/Ed’L’UTg méudlz

2m(pP*)
2N e (Sut
/zg p(p+1) ()
Let us show that lim Is = 0, indeed
e—0

B 1 [%%= Ou’
I = —/g(%)p 15%®s—/
» &

e, ox,

1 [%%= Ouf
= — p—1 _ g\ _ e
/Eg (pe)"™ 0 @ E/ (5, +0u) — ouj

—€p, 3

= - [atr e et [ e, - e )

—EPe
1 1 EPe
+/9 ()P 0. @ —/ Sug
= € —EPe
According to the lemma 4.5, and the fact that %fff;s (e(u®)e, — ey (u®)ey)

converges to 0 in LP(X,R?), and while redoing the same way like in the proof
of the lemma 4.9, we obtain

lim I = 0.

e—0

(6]
1 Epe B Qm((pp-i-l)
: p—2 ey _ *
gl_l’>I(l)/Zg€p+1 /_E[PE |$S| ‘rSeT(u )_/Eg p(p+1) eT(6u3|E)a

moreover £, — ¢ in LP(X,RY), then & = weT (6u;“z), it follows that

p(p+1)
ouy, € WHP(S,R?), hence uy, € WP(X).

S

\

. If a> p+1, we have

e, (u*|y,) = 0, from the case (4), (ie o« = p+1), we obtain {, — 0in LP(3,RY),
2m( p+1 * _ * _ * * _ :

so that p(;’%l))eT(éug‘z) =0, as eT(5u3|E) = (56u3‘2, then 66”'3\2 =0, it

follows that 5u;‘|E =C.
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d

Remark 4.10. The proposition 4.8 remains true for any weak cluster point u of
a sequence wu., in Wy (Q, R3), satisfies (4.2) and (4.3).

To study the limit behavior of the problem (4.1), we’ll use the epi-convergence
method , (see Annex, definition 6.1).

5. Limit behavior

Let
5 | Wesw) + = [ el itueve
= aiinhern(uw)ei(u) + — e(u if u
Fe(u)={ 2 g =~ MR pee g, (5.1)
+o00 if ue Wy (Q,R3)\ Ve
cwo:_/fuyuew@%QR% (5.2)
Q

We design by 75 the weak topology on the space WOLT(Q, R?). In sequel, we shall
characterize, according to the values of «, the epi-limit of the functional energy
given by (5.1) in the following theorem.

Theorem 5.1. According to the values of «, there exists a functional
Fo: W (Q,R3) — RU {400} such that

7, — lim FE=F in Wy (Q,R?) (5.3)
where F'* is given by

1. Ifatlanda#p+1:

1 , .
+00 if u€ Wy (Q,R3) \ G*P.
2. Ifa=1:
L . %M@nm{/ b, .
Fou) =1 3 /Qawkhekh(u)e”(u)Jr » . ‘eT(u‘E)‘ lzfu €GP,
+00 if u € Wy (Q,R3) \ G*P.

3. Ifa=p+1:

1 2m p+1 a ‘
Fu) =4 2 /Q aijrnern(w)ei;(u) + %/Z |55U3\Z)|p if u e GYP,
oo if ue Wy (,R3) \ GP.
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Proof:

a) We are now in position to determine the upper epi-limit

Let u € G%P C WOLT(Q,R?’), so there exists a sequence (u™) in D*? such
that u™ — u in G*? when n — +00, so u"* — u in W&’T(Q,R3).
Let 6 be a regular function satisfies

O(x3) = 1if |o3] <1, O(x3) = 0if |ws| > 2 and |0'(x3)| < 2 Vas €R,

and

it’s clear that 6. — 0 in L?().
we define

e,n

us" =0 (2)(u")y — z3duf ) + (1 — 0:())u”,

we have u®" € V¢ and we prove easily that "™ — «” in G®? when ¢ — 0.
As

1 1
Py = 5 [ asmen@es )+ [ e,
2 Ja. P JB.

It implies that

1 1
fﬂmﬂ=—/ aWWMwwwmwm+—/ aisknekn (4™ )i (u5T)
| 5

2 x3]|>2ep, p.<|z3|<2ep,
1
g,m\|P
— | le(w®)]
pe” JB.
_ 1 n n 1 e,n g,n
= 3 aijrnern(u™)ei(u") + = @ijrnern(us")eq; (us")
|z3|>2ep, ep.<|z3|<2ep,
=l )|
— elu”, —x3du
pe B. [ 3|z
= 51+ 59+ S;5.

Since ¢, is bounded, so it follows that

lim SQ = 0,

e—0

. 1 n n

ah—r>n051 = E/Q%'jkhekh(u )ew(u )

we have
1 n n [P
Sy= o [ fenturi) +ases oot )| 54

pe™ JB,
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1

1. If 0 < o <1, we remark that v, = S5 — vl ’eT (u"b)‘p, vanishes
when ¢ — 0. Indeed : e
As
C n p—1 n p—1
Ve = ]ﬁ |$3€T(@)|(1+‘€T(u |E)+x3eT(<p)| +|6T(u \Z)‘ )’
so that

Celfa
S /|eT<so>|,

< we,
with we — 0 when £ — 0. So passing to the upper limit, we obtain

1 2el—
limsup F(u™") = —/ aijknern(u™)ei;(u™) + lim sup /‘Pa|e (“ \z)‘p,
Q

e—0 2 a—>0

1
= §/aijkhekh(u”)eij(u ) /‘6 u” |E
Q

2. Ifl<a<p+1(54) becomes

S3 = —_— / |$3€ 6”3 5

EPH ° p+1 P
- T Lo sl

As Pt —* m(pPT1) in L>°(X), so passing to the upper limit we have

a)m(pPtt p
/aijkhekh(u”)eij(u")+M/ |60uz), |-
Q b

limsup F¢(u®™) = T
pp

e—0

DN |

3. f a >p+1 (5.4) becomes

1 p
Sy = pec 5. |[wser (dug)]
2epti-a

_ +1 n P
= m/zsﬁg | 66Uz )|

= (),
so passing to the upper limit we obtain
1

limsup F*(u™") = —/aijkhekh(un)eij(un)’
e—0 2 Q
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Since u™ — u in G*P when n — +o00, therefore according to a classic result,
diagonalization’s lemma , (see, [5, Lemma 1.15 p. 32]), there exists a function
n(e) : RY — N increasing to +o0o when ¢ — 0 such that u®™®) — ¢ in G*P?
when € — 0. and while n — +00, consequently we have

lim sup F€(uS™)) < limsup lim sup F= (u®"),
e—=0 n—+oo =0

1. If @ = 1, we obtain

1 2
limsupFE(uE’”(E)) < _/aijkhekh(u)eij(u)+777(&)7”(90)/ ‘eT(u‘E)’p,
c—0 2 Jo p b

2. If a =p+ 1, we have

. 1 2B(c)m(Pt) p
! Fe(yen(@)y < X / si(w) + 220 )55 :
T @) = 3 0" snein(w)ei;(v) p(p+1) s [65uars|

3. If a #1 and o # p + 1, we have

1
lim sup F©(us"®) < —/ ijrhern(u)eq;(u).
e—0 2 Ja

For u € W, " (Q,R?) \ G*?, so for any sequence u® — u in Wy (Q, R?)

we obtain

lim sup F¢(u®) < 4o00.
e—0

b) We are now in position to determine the lower epi-limit
Let u € G*? and (u®) C V* such that u*—u in Wol’T(Q,R?’), then

Xo.e(u®) = e(u) in L"(Q,RY) (5.5)
l.Ifa#landa#p+1
As )
Fa(ua) Z 5/9 a’ijkhekh (ua)eij (ua)

From the subdifferentiability’s inequality of u — 3 [, a,,,, €., (u)e,, (),
and passing to the lower limit, we obtain

. . 1
hgﬂ_}lélf Fa(ua) Z 5 /Q aijkhekh (u)eij (u)

2. fa=1
If lim iélf F*(u®) = 400, there is nothing to prove, because
e—

1 2m «@ p
§/Qaijkhekh(u)eij(u)+%/E}GT@LE)} < 400.
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otherwise, lim i(r)1f F#(u®) < 400, there exists a subsequence of F*©(u
E—r

°)
still denoted by F¢(u®) and a constant C' > 0, such that F*(u®) < C,

which implies that
1

e i,
Let v. be the sequence defined in the proof of the proposition 4.8, ac-
cording to the last and from (5.6), we obtain

le(u)[” < C. (5.6)

v = 2m(@)ep(uyy) in LP(S, RY)

We have
F) = 5 [ agenede, @)+ [ el
9 o ijkh Ykh ij p[_:a B
1 5 5 1 g\|P
> 5 o a’ijkhekh(u )eij (u )+ ]ﬁ 5 |6T(U’ )|
1 1 € »
Z 3 /Q i € (W), (W) + e /E @pp T |ve |
1 gl—@ 1
> D) /Qg a’ijkhekh(us)eij (UE) + D /E (2()06);0_1 |U€|pv
From the subdifferentiability’s inequality of
= 61a/ L7, wo e LP(,RY)
v v|", Yo , )
p > (2808)}771 s

we have

1 gl—@ 1
Fe(u® Z—/ a,.,., e (ue, (u) + / 2m(p)e, (uy)|”
( ) 9 o jkh kh( ) ]( ) p 5 (2905);0_1 ’ ( ) T( Iz)‘

11—«

+ [ e ) @, () (we — 2me)e, (1),

(=) in L (¥) and the

Pt

3

thanks to the lemma 6.4, we have # —
fact that m(%) m(p)P~! > 1, so from (5.5) and passing to the limit,
we deduce that

im i € (uf l a....e . (uwe. (u 7277(0()7”(('0) er ()|’
liminf F*°(u®) > 2/9 en o (w)e (1) + » /Z’ ( \z)’ )

e—0
3. Ifa=p+1

If lim i(I)lf F*(u®) = 400, there is nothing to prove, because
E—r

1 2B(a)m(pP*h) / »
— ” ii I N ALLAS A ddusz|, | < )
2/Qaﬂmekh(u)e](u)Jr Y 2| ug| | 400
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otherwise, lim i(glf F*(u®) < 400, there exists a subsequence of F<(uf)
e—

still denoted by F¢(u®) and a constant C' > 0, such that F*(u®) < C,
which implies that
1

v/, le(u?)]” < C. (5.7)

Let &, be the sequence defined in the proof of the proposition 4.8, ac-
cording to this last and from (5.7), we have

2 .
& — mm(wwl) 86us|, in LP(3,RY)
To simplify the writing let us pose £ = I%m(gppﬂ)ééu&z, which implies
that

1
/ @y (0, () + —— / e ()P
Q. B.

FE 3 >
() 2 =

1 2 \p-1 ePtl
a. . e uae..ua—i——/ P < P
[ e e, 00+ [ () e
1 eptl-a 2 o1 1
> = y e, (u® P
e R O e N =

According to the subdifferentiability’s inequality of

pt+l—«a 2 - 1
v S / )’ 1( — [v|”, Vv € LP(Z,RY).
b

p p+1 ©.)P

We have

1 Ep+170¢ 2 1 1

FE(uf) > = ) e (uf » P

@) 2 5 [ e ti)e, )+ 5= [ 2 ke

gptl-a 2 -1 1 5

T /z:(p+ 1)p (po)P* 1 €17 ¢(ve =€),
£

from the lemma 6.4, we have —— — m(ﬁ) in L” () and the fact
Pe
that m(ﬁ) m(pPT1)P=1 > 1, so from (5.5) and passing to the limit,

consequently we have

.. 1 QB(O)m((QP-H) / v
lim f Fa gy > = B B TEANTNT T (5(5 )
lsjél (u ) =9 /Qa’”khekh (u)eu (u) p(p 1) E‘ ’U,3|E‘

For u € W, " (Q,R3) \ G*? et u® € V=, such that u® — u in W, (Q, R?).
Assume that
liminf F*(u®) < 4o0.
e—0
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So there exists a constant C' > 0 and a subsequence of F¢(u®), still denoted
by F*¢(uf), such that

Fe(u®) < C. (5.8)

So u* verifies the following evaluations (4.2) and (4.3), as u® — u in W, " (Q,
R3), thanks to the remark 4.10, we have u € G*P, what contradicts the fact
that u € Wol’T(Q, R3) \ G*P, consequently we have

liminf F¢(u®) = +o0.
e—=0
Hence the proof of the theorem 5.1 is complete. a

In the sequel, we are interested to the limit problem determination linked to the
problem (4.1), when & approaches to zero. Thanks to the epi-convergence results,
(see Annex, theorem 6.3, proposition 6.2) and the theorem 5.1, according to the
T s-continuity of the functional G in WO1 (9, R3), we have
F¢ 4 G 7 j-epi-converges to F® + G in W, (Q,R?).

Proposition 5.2. For any f € LT/(Q,R3) and according to the values of the
parameter o, there exists u* € W&’T(Q,Rg) satisfies

us — u* in Wy (Q,R3),

Feu™) + Gu*) = égg . { F*(v) + G(v). }
Proof: Thanks to the lemma 4.2, the family u* is bounded in Wol’T(Q, R3), there-
fore it possess a Ty—cluster point u* in W&’T(Q,R3). And thanks to a classical

epi-convergence result, (see Annex, theorem 6.3), it follows that u* is a solution of
the limit problem

inf {F%@+G@ﬁ. (5.9)

vEW " (Q,R3)
As F® equals +0o on Wy (2,R3) \ G*P, so (5.9) becomes

m%im{F%m+G@ﬁ.
veG™

According to the uniqueness of solutions of the problem (5.9), so u® admits an
unique 7 ¢-cluster point «*, and therefore u® — w* in WOLT(Q, R3). O

Conclusion. We showed that the structure, constituted of two elastic bodies
joined together by an elastic thin oscillating layer of thickness and rigidity and
periodicity parameter depending on a small enough parameter e, obeying to a
nonlinear elastic law whose parameters depend on the negative powers of €, behaves
at the limit like an elastic body embedded on the boundary and subjected to a
density of forces of volume f, according to the powers of ¢, the layer behaves like
a rather rigid nonlinear elastic material surface with membrane effect, too rigid
inextensible material surface, a material surface with effect of inflection or the
structure is embedded on the interface X.
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6. Annex

Definition 6.1 ([5, Definition 1.9]). Let (X, 7) be a metric space and (F<). and
F be functionals defined on X and with value in RU{+o0c0}. F* epi-converges to F
in (X,7), noted T — lim.F* = F, if the following assertions are satisfied

e For all x € X, there exists 22, 20 > x such that limsup F*(22) < F(x).
e—0

e For allz € X and all x. with x. > x, 1im161fF€(:cg) > F(x).
e—r

Note the following stability result of the epi-convergence.

Proposition 6.2 ([5, p. 40]). Suppose that F* epi-converges to F in (X,7) and
that G: X — RU{+o0}, is T — continuous. Then F*+ G epi-converges to F + G
in (X, 1)

This epi-convergence is a special case of the I'—convergence introduced by De
Giorgi (1979) [8]. It is well suited to the asymptotic analysis of sequences of
minimization problems since one has the following fundamental result.

Theorem 6.3 ([5, theorem 1.10]). Suppose that
1. F¢ admits a minimizer on X,
2. The sequence () is T-relatively compact,

3. The sequence F*© epi-converges to F' in this topology T.

Then every cluster point @ of the sequence (u®) minimizes F on X and

lim F° (@) = F(q),

e’—0
if (W) denotes the subsequence of (T¢). which converges to .
Lemma 6.4. Let ¢ € L™ (%), a Y-periodic, Y =]0,1[x]0,1[. Let
() = go({), for a small enough € > 0.
€

So that

w. = m(p) in L3(X) for 1 <s < oo,
pe =" mlp) in L=(X).

Proof: Since ¢, is a €Y-periodic, so one has

w. = m(p) in LX) for 1 <s < oo,

0. =" m(g) in LX), (6.1)

*
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Since ¢ is bounded a.e. in X, so for every s > 1, there exists a constant C > 0,
such that

Llec=mion<c [ lo. - m)

< C(/@mw)(% —m(p)) - Lgm(w)(wg - m(s@)))-

Passing to the limit in (6.2), one has ¢, — m(y) in L*(X) for 1 < s < oo. O
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