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abstract: In this paper, a new numerical method for solving the optimal con-

trol problems with payoff term or fixed state endpiont by quadratic performance

index is presented. The method is based on Bezier polynomial. The properties of

Bezier polynomials in any intervel as [a, b] are presented. The operational matri-

ces of integration and derivative are utilized to reduce the solution of the optimal

control problems to a nonlinear programming one to which existing well-developed

algorithms may be applied. Illustrative examples are included to demonstrate the

validity and applicability of the technique.
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1. Introduction

One of the widely used methods to solve optimal control problems is the di-

rect method. There is a large number of research papers that employ this method

to solve optimal control problems (see for example [2,3,5,7,8,9,10,11,12,13,14,17]

and the references therein). Razzaghi, et. al. used direct method for variational

problems by using hybrid of block-pulse and Bernoulli polynomials [14]. Optimal

control of switched systems based on Bezier control points presented in [6]. Edrisi-

Tabriz et al. used B-spline functions to solve constrained quadratic optimal control

problems [9]. A new approach using linear combination property of intervals and

discretization is proposed to solve a class of nonlinear optimal control problems,

containing a nonlinear system and linear functional [16,18]. Bernstein polynomi-

als have been utilized for solving different equations by using various approximate

methods [13]. An accurate method is proposed to solve problems such as identifi-

cation, analysis and optimal control using the Bernstein orthonormal polynomials

operational matrix of integration [17].

In this paper, we present a computational method to solve optimal control prob-

lems with payoff term and fixed state endpoint by using Bezier polynomial. The

method is based on approximating the state variables and the control variables with

Bezier polynomials [5,13,14]. Our method consists of reducing the optimal control

problem to a NLP one by first expanding the state rate ẋ(t) the control u(t) as a

Bezier polynomial with unknown coefficients. These linear cardinal Bezier polyno-

mials are introduced. In order to approximate the integral and differential parts of

the problem and the performance index, the operational matrix of integration PΦ

and differentiation DΦ are given.

The paper is organized as follows: In Section 2 we describe the basic formulation

of the Bezier functions required for our subsequent development. Section 3 is

devoted to the formulation of optimal control problems. Section 4 summarizes

the application of this method to the optimal control problems, and in Section

5, we report our numerical finding and demonstrate the accuracy of the proposed

method.

2000 Mathematics Subject Classification: 35B40, 35L70
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2. Some Properties Of Bernstein And Bezier Polynomials On [a,b]

The Bernstein basis polynomial of degree n on [a,b] are defined as [17]

Bi,n(t) =

(

n

i

)

(t− a)i(b− t)n−i, i ∈ [0, n] (2.1)

where i is integer nummber and the binomial coefficients are given by

(

n

i

)

=

{

n!
i!(n−i)! , i ∈ [0, n],

0, elsewhere.

Some properties of these polynomials are

(i) Bi,n(a) = δi,0(b − a)n and Bi,n(b) = δi,n(b − a)n , where δ is the Kronecker

delta function.

(ii) Bi,n(t) has two roots, each of multiplicity i and n − i , at t = a and t = b

respectively.

(iii) Bi,n(t) ≥ 0 for t ∈[a,b] and Bi,n(b− t) = Bn−i,n(t− a).

(iv) The Bernstein polynomials form a partition of unity i.e.
∑n

i=0 Bi,n(t) =

(b− a)n.

(v) It has a degree dowing property in the sense that any of the upper-degree poly-

nomials (degree > n−1 ) can be expressed as a linear combinations of polynomials

of degree n− 1. We have,

Bi,n(t) = (b− t)Bi,n−1(t) + (t− a)Bi−1,n−1(t).

Bernstein Polynomials on [a,b] satisfy in the following relations:

(i) Derivative: d
dtBi,n(t) =

1
b−a [(n+1−i)Bi−1,n(t)+(2i−n)Bi,n(t)−(i+1)Bi+1,n].

(ii) Integral:
∫ t

a
Bi,n(x)dx = 1

n+1

∑n+1
j=i+1 Bj,n+1(t) and

∫ b

a
Bi,n(x)dx = (b−a)n+1

n+1 .

(iii) Product: Bi,m(t)Bj,n(t) =
(mi )(

n

j)
(m+n

i+j )
Bi+j,m+n(t) and

∫ b

a Bi,m(t)Bj,n(t)dt =
(b−a)n+m+1(mi )(

n

j)
(m+n

i+j )(m+n+1)
.

2.1. Definition Of Bezier Polynomials On [a,b]

We will express Bezier (polynomials) curves in terms of Bernstein polynomials,

defined explicitly by

pn(t) =

n
∑

i=0

ciBi,n(t), t ∈ [a, b], (2.2)

where the ci, i = 1, 2, . . . , n are given by ci = c[a<n−i>, b<i>] and they are control

points or Bezier pionts and a<n−i> means that a appears n− i times. For example,
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c[a<3>, b<0>] = c[a, a, a]. Some property of Bezier polynomials on [a,b] are :

(i) Symmetry:
∑n

i=0 ciBi,n(t− a) =
∑n

i=0 cn−iBi,n(b − t).

(ii) Linear precision: 1
(b−a)n−1

∑n
i=0

i
nBi,n(t) = t− a.

2.2. The Operational Matrices Of Derivative And Integration For The

Bezier Polynomials

Suppose Φn(t) on [a,b] is given by

Φn(t) = [B0,n(t), B1,n(t), ..., Bn,n(t)]
T , (2.3)

where T denotes transposition.

The differentiation of vector Φn(t) can be expressed as

Φ′
n(t) = DΦΦn(t), (2.4)

where DΦ is the (n+1)(n+1) operational matrix of derivative for the Bezier poly-

nomials given as follows:

DΦ =
1

b− a





























−n −1 0 . . . 0 0

n −(n− 2) −2 0
... 0

0 (n− 1) −(n− 4) 0
... 0

0 0 (n− k + 1) −(n− 2k) 0
...

... . . . . . . . . .
. . .

0 . . . 1 −(n− 2n)





























.

(2.5)

The integral of the vector Φn(t) defined in Eq. (2.3) is given as

∫ t

a

Φn(x)dx ≃ PΦΦn(t). (2.6)

where PΦ is the (n+ 1)× (n+ 1) operational matrix of integration for the Bezier

polynomials given as:

PΦ = (b − a)n+1Pφ, Pφ = WV, (2.7)

where Pφ is the (n+ 1) × (n+ 1) operational matrix of integration for the Bezier

polynomials on [0,1] and W = (wi,j) and V = (vj,k) are (n+ 1)× (n+ 1) matrices
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as:

wi,j =











ai,0 − 1
3ai,1, j = 0,

1
2j−1ai,j−1 − 1

2j+3ai,j+1, j = 1, 2, . . . , n− 1,
1

2n+1ai,n−1, j = n,

(2.8)

where

ai,j =
2j + 1

n+ j + 1

(

n

i

) j
∑

k=0

(−1)k+j

(

j
k

)(

j
k

)

(

n+j
k+i

) , i, j = 0, 1, . . . , n, (2.9)

and

vj,k=
1
(

n
k

)

min{j,k}
∑

i=r

(−1)j+i

(

j

i

)(

j

i

)(

n− j

k − i

)

, r = max{0, j+k−n}, j, k = 0, 1, . . . , n.

(2.10)

2.3. Function Approximation

Any function f ∈ L2[a, b] can be approximated using Bezier polynomials as

f(t) ≃ S0 =
n
∑

i=0

ciBi,n(t) = CTΦn(t), (2.11)

where C = [c0 . . . cn]
T can be obtained as

C =< f,Φn >=

∫ b

a

f(t)Φn(t)dt = [< f,B0,n >, . . . , < f,Bn,n >]T . (2.12)

Let R =< Φn,Φn > which is a (n + 1) × (n + 1) matrix and is called the dual

matrix of Φn(t), and it can obtain as:

Ri+1,j+1=<Bi,n, Bj,n>=

∫ b

a

Bi,n(t)Bj,n(t)dt=(b−a)2n+1

(

n
i

)(

n
j

)

(2n+ 1)
(

2n
i+j

) , i, j=0 . . . n.

(2.13)

Lemma 2.1. Suppose that the function f : [a, b] → R is n+ 1 times continuously

differentiable (i.e. f ∈ Cn+1[a, b]), and Sn=span{Φn(t)}. If CTB is the best

approximation of f out of Sn, then

‖f − CTB‖L2[a,b] ≤
K̂

(n+ 1)!

√

b2m+3 − a2n+3

2n+ 3
(2.14)

where K̂=max|f (n+1)(t)|, t ∈ [a, b].
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Proof: We know that Set{1, x, x2, ..., xn} is a basis for polynomials space of degree

n . Therefore we define y1(x) = f(a) + xf ′(a) + x2

2! f
′′(a) + ... + xn

n! f
(n)(a). Using

Taylor expansion we have:

|f(x) − y1(x)| = |f (n+1)(ξx)
xn+1

(n+ 1)!
| (2.15)

where ξx ∈ (a, b). Since CTB is the best approximation of f out of Sn and y1 ∈ Sn

using (2.15) we obtain

‖f − CTB‖2L2[a,b] ≤ ‖f − y1‖2L2[a,b] =
∫ b

a |f(x)− y1(x)|2dx

=
∫ b

a |f (n+1)(ξx)|2( xn+1

(n+1)!)
2dx ≤ ( K̂

(n+1)!)
2
∫ b

a x2n+2dx = ( K̂
(n+1)!)

2( b
2n+3−a2n+3

2n+3 )

= ( K̂
(n+1)!)

2(
b2n+3(1−( a

b
)2n+3)

2n+3 ) ∼= ( K̂bn

(n+1)! )
2( b3

2n+3 ).

✷

We can rewrite Eq. (2.14) as:

|f − CTBL2[a,b]| ≤
K̂

(n+ 1)!

√

b2m+3 − a2n+3

2n+ 3
∼= K̂

(n+ 1)!

√

(
b2n+3(1− (ab )

2n+3)

2n+ 3
)

∼= K̂bn

(n+ 1)!

√

b3

2n+ 3
, (2.16)

which shows that the error vanishes as n → ∞

3. Problem Statement

Consider the following class of nonlinear systems with inequality constraints,

ẋ(t) = A(t)x(t) +B(t)u(t), (3.1)

x(a) = x0, x(b) = x1 (3.2)

where A(t) = (ai,j(t))n×n and B(t) = (bi,j(t))m×m are matrices functions and

x(t) and u(t) are n × 1 and m × 1 state and control vectors respectively. The

problem is finding the optimal control u(t) and the corresponding state trajectory

x(t), a ≤ t ≤ b satisfying Eqs. (3.1) and (3.2) while minimize (or maximize) the
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quadratic performance index

Z =
1

2
xT (b)Gx(b) +

1

2

∫ b

a

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt, (3.3)

where G(t) = (gi,j(t))n×n, Q(t) = (qi,j(t))n×n are symmetric positive semi-definite

matrices and and R(t) = (ri,j(t))m×m is a symmetric positive definite matrix.

3.1. Variational Problems

Consider the following variational problem:

Z(x(t)) =

∫ b

a

F (t, x(t), ẋ(t), . . ., x(n)(t))dt, (3.4)

with the boundary conditions

x(a) = a0, ẋ(a) = a1, . . ., x
(n−1)(a) = an−1, (3.5)

x(b) = b0, ẋ(b) = b1, . . ., x
(n−1)(b) = bn−1, (3.6)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T . The problem is to find the extremum of

Eq. (3.4), subject to boundary conditions (3.5) and (3.6). The method consists of

reducing the variational problem into a set of algebraic equations by first expanding

x(t) in terms of Bezier polynomials with unknown coefficients [14].

4. The Proposed Method

Let

xi(t) ≃ ΦT
n (t)X

i, (4.1)

uj(t) ≃ ΦT
n (t)U

j , (4.2)

where X i, i = 1, . . . , n, and U j , j = 1, . . . ,m are (n + 1) × 1 state and control

coefficient vectors respectively. Then using (2.4) we get

ẋi(t) ≃ [DΦΦn(t)]
TX i, (4.3)

u̇j(t) ≃ [DΦΦn(t)]
TU j . (4.4)
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Using Eqs. (4.1) and (4.2) we have

x(t) ≃ [ΦT
n (t)X ]T = [

n
∑

j=0

Bj,n(t)X
1
j , . . . ,

n
∑

j=0

Bj,n(t)X
n
j ]

T , (4.5)

u(t) ≃ [ΦT
n (t)U ]T = [

n
∑

j=0

Bj,n(t)U
1
j , . . . ,

n
∑

j=0

Bj,n(t)U
m
j ]T , (4.6)

where X = (Xk
i )(n+1)×n and U = (U r

j )(n+1)×m are state and control coefficient

matrices respectively. The boundary conditions in Eq. (3.2) can be rewritten as

x(a) = x0 = d0⊗EΦn(t), (4.7)

x(b) = x1 = d1⊗EΦn(t). (4.8)

where d0 and d1 are n×1 constant vectors, E = [1, . . . , 1] is 1×(n+1) constant vec-

tor, and the symbol ⊗ denotes Kronecker product [19]. If x(a) or x(b) is unknown

in Eq. (3.2), then we put

x(a) ≃ [ΦT
n (a)X ]T = [

n
∑

j=0

Bj,n(a)X
1
j , . . . ,

n
∑

j=0

Bj,n(a)X
n
j ]

T , (4.9)

x(b) ≃ [ΦT
n (b)X ]T = [

n
∑

j=0

Bj,n(b)X
1
j , . . . ,

n
∑

j=0

Bj,n(b)X
m
j ]T . (4.10)

4.1. Performance Index Approximation

By substituting Eqs. (4.5), (4.6) and (4.8) in Eq. (3.3) we get

min(max)Z =
1

2
x1TG(b)x1 +

1

2
XT [

∫ b

a

ΦT
n (t)Q(t)Φn(t)dt]X

+
1

2
UT [

∫ b

a

ΦT
n (t)R(t)Φn(t)dt]U. (4.11)

For problems with time-varying performance index, Q(t) and R(t) are functions of

time. Let

Px =

∫ b

a

ΦT
n (t)Q(t)Φn(t)dt, and Pu =

∫ b

a

ΦT
n (t)R(t)Φn(t)dt. (4.12)
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Eq. (4.12) can be evaluated by numerical integration techniques. By substituting

Eqs. (4.10) and (4.12) in Eq. (4.11) we get

Z[X,U ] =
1

2
XT (P̂ + Px)X +

1

2
UTPuU, (4.13)

where

P̂ = ΦT
n (b)G(b)Φn(b).

The boundary conditions in Eq. (3.2) can be expressed as

q0k = xk(a)− x0
k , k = 1, . . . , n, (4.14)

q1k = xk(b)− x1
k , k = 1, . . . , n. (4.15)

We now find the extremum of Eq. (4.13) subject to Eqs. (4.14) and (4.15) using

the Lagrange multiplier technique. Let

Z[X,U, λ0, λ1] = Z[X,U ] + λ0Q0 + λ1Q1. (4.16)

where Q0 = (q0k), k = 1, . . . , n and Q1 = (q1k), k = 1, . . . , n are (n × 1) constant

vectors. The necessary condition for the extremum of (4.16) is

∇Z[X,U, λ0, λ1] = 0. (4.17)

4.2. Performance Index Approximation For The Variational Problem

By expanding x(t) using the Bezier polynomials we have

x(t) = XTΦn(t), (4.18)

whereX is a vector of order (n+ 1)× 1. By derivating Eq. (4.18) with respect to

t we get

x′(t) = XTDΦΦn(t), (4.19)

where DΦ is operational matrix of derivative given in Eq. (2.5). By n times

derivating of Eq. (4.18) with respect to t we have

x(n)(t) = XTDn
ΦΦn(t). (4.20)
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We expand (t− a)i, i = 0, 1, . . . , n− 1 in terms of Bezier polynomial as

(t− a)i = diΦn(t), i = 0, 1, . . . , n− 1, (4.21)

where di, i = 0, 1, . . . , n− 1, are constant vectors of order 1× (n+ 1) and are given

as

di =
1

(

n
i

)

(b− a)n−i
[0, . . . ,

(

i

i

)

,

(

i+ 1

i

)

, . . . ,

(

n

i

)

], i = 0, 1, . . . , n− 1. (4.22)

So Eq. (3.4) can be rewritten as

Z[x(t)] = Z[X ]. (4.23)

The boundary conditions in Eqs. (3.5) and (3.6) can be expressed as

r0k = x(k)(a)− ak = 0 , k = 0, . . . , n− 1, (4.24)

r1k = x(k)(b)− bk = 0 , k = 0, . . . , n− 1. (4.25)

We now find the extremum of Eq. (4.23) subject to Eq. (4.25) using the Lagrange

multiplier technique. Let

Z[x, λ] = Z[x, λ0, λ1] + λ0R0 + λ1R1, (4.26)

where R0 = (q0k), k = 1, . . . , n and R1 = (q1k), k = 1, . . . , n are (n × 1) constant

vectors. The necessary conditions for the extremum of (4.26) are

∇Z[X,λ0, λ1] = 0. (4.27)

5. Illustrative Examples

This section is devoted to numerical examples. We implemented the proposed

method in last section with MALAB (2012) in personal computer. To illustrate

our technique, we present four numerical examples, and make a comparison with

some of the results in the literatures.
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Example 5.1. This example is adapted from [15]

min Z =

∫ 4

0

u2(t) + x(t)dt, (5.1)

subject to

ẋ(t) = u(t), (5.2)

with the boundery conditions

x(0) = 0, x(4) = 1. (5.3)

Here we solve this problem using Bezier polynomials by choosing n = 3. Let

x(t) = ΦT
3 (t)X, (5.4)

u(t) = ΦT
3 (t)U, (5.5)

where

X = [X0, X1, X2, X3]
T , (5.6)

U = [U0, U1, U2, U3]
T . (5.7)

Using Eqs. (2.4) and (5.4) we get

ẋ(t) = [DΦΦ3(t)]
TX, (5.8)

where DΦ is the operational matrix of derivative given in Eq. (2.5). By substituting

Eqs. (5.6) and (5.7) in Eq. (5.2) we obtain

[DT
ΦX − U ]TΦ3(t) = 0. (5.9)

Let

Zχ[0,4] =

∫ 4

0

u2(t) + x(t)dt. (5.10)
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Using Eqs. (5.3) and (5.4) in (5.9) we have

Zχ[0,4] =

∫ 4

0

(ΦT
3 (t)U)T (ΦT

3 (t)U) + ΦT
3 (t)Xdt

=

∫ 4

0

(UTΦ3(t))(Φ
T
3 (t)U) + ΦT

3 (t)Xdt

= UT

(
∫ 4

0

Φ3(t)Φ
T
3 (t)dt

)

U +

∫ 4

0

ΦT
3 (t)dt

= UTVχ[0,4]U + vχ[0,4]X, (5.11)

where Vχ[0,4] =
∫ 4

0 Φ3(t)Φ
T
3 (t)dt and vχ[0,4] =

∫ 4

0 ΦT
3 (t)dt are constant matrix and

vector are of order (4× 4) respectively. Using the Lagrange multiplier technique to

find the extremum of (5.1) subject to the conditions (5.3) we have

Z[X,U, λ0, λ1] = Z[X,U ] + λ0R0 + λ1R1. (5.12)

where R0 = ΦT
3 (0)X − 0, R1 = ΦT

3 (4)X − 1.

The necessary conditions are

∇Z[X,U, λ0, λ1] = 0. (5.13)

The exact solutions of the problem are:

x∗(t) =
t2 − 3t

4
, u∗(t) =

2t− 3

4
, Z∗ =

11

12
. (5.14)

we obtain:
X = [0,− 1

64 ,− 1
96 ,

1
64 ],

U = [− 3
256 ,− 1

768 ,− 7
768 ,− 5

256 ],

and the approximate solutions of state and control functions are as follows:

xp(t) = − 1
64B1,3(t)− 1

96B2,3(t) +
1
64B3,3(t)

= t2−3t
4 ,

up(t) = − 3
256B0,3(t)− 1

768B1,3(t)− 7
768B2,3(t)− 5

256B3,3(t)

= 2t−3
4 ,

Zp = 11
12 .

which are the exact solutions.
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Example 5.2. This example is adapted from [4]

extermum Z =

∫ 1

0

(x2(t) + u2(t))dt, (5.15)

subject to

ẋ(t) = u(t),

x(0) = 1, x(1) is indefinite.

Let n = 3 then we have

x(t) = ΦT
3 (t)X, u(t) = ΦT

3 (t)U. (5.16)

With payoff term the other condition is obtained as follow:

ẋ(1) = 0. (5.17)

Using the presented method in the previous section, we obtain

X = [1, 41475537 ,
3592
5537 ,

3592
5537 ],

U = [− 4170
5537 ,− 2500

5537 ,− 1110
5537 , 0],

and the approximate solutions of state and control functions are as follows

x(t) = B0,3(t) +
4147
5537B1,3(t) +

3592
5537B2,3(t) +

3592
5537B3,3(t),

u(t) = − 4170
5537B0,3(t)− 2500

5537B1,3(t)− 1110
5537B2,3(t).

The analytical solutions are [4]

x∗(t) = −sinh(1− t)

cosh1
,

u∗(t) =
cosh(1− t)

cosh1
, (5.18)

Z∗ = 0.761594155955765.

Table 1, shows the approximate value of Z toghether with absolute value of errors

for n = 3 and 5. Figures 1 and 2, show plot of errors for x(t) and u(t) for n = 3

and 5 respectively.



260 A. Yari, M. Mirnia, M. Lakestani and A. Heydari

Table 1: The approximate values of Z, and absolute value of error for Example
5.2.

n Approximate values of Z Absoulte error
3 0.761603756546867 9.6e− 06
5 0.761594156033200 7.74e− 11
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Figure 1: Plots of errors for state (left) and control (right) functions for n=3
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Figure 2: Plots of errors for state (left) and control (right) functions for n=5
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Example 5.3. Find the extermum of the functional [4]

Z =

∫ T

0

(x2(t) + u2(t))dt (5.19)

subject to

ẋ(t) + x(t) = u(t),

x(0) = x0, x(T ) = 0,T is indefinite.

The exact solutions are:

x∗(t) =
x0sinh(

√
2(T − t))

sinh(
√
2T )

, (5.20)

u∗(t) =
x0(sinh(

√
2(T − t))−

√
2cosh

√
2(T − t))

sinh(
√
2T )

, (5.21)

z∗ = x2
0(5.918916999941614e− 01)T. (5.22)

For n = 3, we obtin

X =
x0

T 3
[1,

47

99
,
49

198
, 0],

U =
x0

T 3
[−19

33
,−50

99
,− 5

11
,−49

66
].

then we get the approximation solutions as following:

xp(t) =
x0

T 3
[B0,3(t) +

47

99
B1,3(t) +

49

198
B2,3(t)], (5.23)

up(t) =
x0

T 3
[−19

33
B0,3(t)−

50

99
B1,3(t)−

5

11
B2,3(t)−

49

66
B3,3(t)], (5.24)

zp =
293

495
Tx2

0. (5.25)
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Table 2: The approximate values of Z for n=3, for Example 5.3

T Exact Presented Method error
1 5.918916555204872e − 01 5.919191919191920e − 01 2.75e− 05
5 2.959458277602435e + 00 2.959595959595960e + 00 1.37e− 04
10 5.918916555204870e + 00 5.919191919191919e + 00 2.75e− 04
15 8.878374832807307e + 00 8.878787878787879e + 00 4.13e− 04
1000 5.918916555204871e + 02 5.919191919191919e + 02 2.75e− 02

Table 3: The approximate values of Z for n =5 for Example 5.3

T Exact Presented Method error
1 5.918916555204872e − 01 5.918916565792995e − 01 1.059e− 09
5 2.959458277602435e + 00 2.959458282896498e + 00 5.29e− 09
10 5.918916555204870e + 00 5.918916565792996e + 00 1.058e− 08
15 8.878374832807307e + 00 8.878374848689493e + 00 1.58e− 08
1000 5.918916555204871e + 02 5.918916565792996e + 02 1.058e − 06

Tables 2 and 3 show the approximate values of Z toghether with absolute values

of errors for different values of T and n = 3, 5.

Example 5.4. Find the extremum of the functional [14]

Z(x(t)) =

∫ π/4

0

(x2(t)− ẋ2(t))dt, (5.26)

with the conditions

x(0) = 1, ẋ(π/4) = 0. (5.27)

The exact solution is x(t) = sin(t) + cos(t).

Table 4: The approximate values of x(t), for Example 5.4

t Exact Presented Method Presented Method Method [14]
n = 3 n = 5

0 1 1 1 0.999999
0.1 1.09483758 1.09513135 1.09483761 1.094838
0.3 1.25085669 1.25065471 1.25085665 1.250857
0.5 1.35700810 1.35667301 1.35700798 1.357008
0.7 1.40905987 1.40936310 1.40905988 1.409059



264 A. Yari, M. Mirnia, M. Lakestani and A. Heydari

Table 5: The approximate values of Z(x(t)), for n = 3, 5, for Example 5.4

n Exact Presented Method error
3 1 0.9999945002929741 5.49e− 06
5 1 0.9999999999829694 1.70e− 11
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Figure 3: Plots of errors for x(t) for n = 3 (left) and for n = 5 (right)
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Table 4, shows the approximate values of x(t) toghether for different values of t

and n. Table 5, show the results for Z. Figure 3 shows the plots of errors for x(t)

for n = 3, 5.

6. Conclusion

In this paper we presented a numerical scheme for solving linear constrained

quadratic optimal control problems. The Bezier polynomials was employed. Sev-

eral test problems were used to show the applicability and efficiency of the presented

method. The obtained results show that the new approach can solve the problem

effectively.
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