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A Non-Smooth Three Critical Points Theorem for General

Hemivariational Inequality on Bounded Domains
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abstract: In this paper we are concerned with the study of a hemivariational
inequality with nonhomogeneous Neumann boundary condition. We establish the
existence of at least three solutions of the problem by using the nonsmooth three
critical points theorem and the principle of symmetric criticality for Motreanu-
Panagiotopoulos type functionals.
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1. Introduction

In this paper, we study the following nonlinear elliptic differential inclusion with
p(x)−Laplacian

{

−∆p(x)u+ a(x)|u|p(x)−2u = −µg(x, u) in Ω

−|∇u|p(x)−2 ∂u
∂ν

∈ −λ∂F (x, u) on ∂Ω,
(1.1)

where Ω ⊂ R
N(N ≥ 2) is a bounded smooth domain, ∂u

∂ν
is the outward unit normal

derivative on ∂Ω, p : Ω̄ → R is a continuous function satisfying

1 < p− = inf
x∈Ω̄

p(x) ≤ p(x) ≤ p+ = sup
x∈Ω̄

p(x) < +∞,

and λ, µ ∈ [0,∞). F : ∂Ω × R → R is a function in which F (·, u) is measurable
for every u ∈ R and F (x, ·) is locally Lipschitz for a.e. x ∈ ∂Ω. ∂F (x, u) denotes
the generalized Clarke gradient of F (x, u) at u ∈ R. Moreover, g : Ω× R → R is a
Carathéodory function and G(x, u) =

∫ u

0
g(x, t)dt.

In this paper, a class of problem for hemivariational inequality is studied which is
defined on domains of the type B which are nonempty, closed, convex cone subsets

of W
1,p(x)
0 (Ω).
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Our purpose is to study the following hemivariational inequality problem:
Find u ∈ B (it is called a weak solution of problem (1.1)) if for all v ∈ B,

∫

Ω

|∇u|p(x)−2∇u∇(v − u)dx+

∫

Ω

a(x)|u|p(x)−2u(v − u)dx

+λ

∫

∂Ω

F 0(x, u;u− v)dσ + µ

∫

Ω

g(x, u)(v − u)dx ≥ 0. (1.2)

To indicate the existence for solutions of (1.2), we consider the functional I(u) :

W
1,p(·)
0 (Ω) → R by I(u) = φ(u) − λF(u) + µG(u) + χ(u) associated to (1.2), such

that

φ(u) =

∫

Ω

1

p(x)
[|∇u|p(x) + a(x)|u|p(x)]dx, ∀u ∈ W

1,p(x)
0 (Ω),

F(u) =

∫

∂Ω

F (x, u)dσ, ∀u ∈ W
1,p(x)
0 (Ω),

G(u) =

∫

Ω

G(x, u)dx, ∀u ∈ W
1,p(x)
0 (Ω),

where χ(u) is the indicator function of the set B.

The p(x)−Laplace operator ∆p(x)u = div(|∇u|p(x)−2∇u) is a natural gener-
alization of the p−Laplacian operator ∆pu = div(|∇u|p−2∇u), where p > 1 is a
real constant. The main difference between them is that p−Laplacian operator is
(p− 1)−homogenous, but the p(x)−Laplacian operator, when p(x) is not constant
is not homogeneous. For p(x)−Laplacian operator, we refer the readers to (cf. [13],
[14], [15], [18], [23]) and references therein.
In recent years, differential equations and variational problems have been studied
in many papers, we refer to some interesting works (cf. [27], [28]). For a thorough
treatment of the hemivariational inequality problems we refer to the monographs
Naniewicz and Panagiotopoulos (cf. [26]) (based on pseudomonotonicity), Motre-
anu and Panagiotopoulos (cf. [24]), Motreanu and Rádulescu (cf. [25]) (based
on compactness arguments). In these works (and in references therein) there are
studied the elliptic problems on bounded domains.
It is well known that many problems in mathematics and physics that comes from
the real world by some authors have investigated (see cf. [1], [2], [29], [30], [31]).
The applications to nonsmooth variational problems have been seen in (cf. [3]),
Bonanno and Candito studied a class of variational-hemivariational inequalities; in
(cf. [32]), Zhang and Liu studied an elliptic equation with discontinuous nonlin-
earities in R

N .
In recent years, the study of the three-critical-points theorem nonsmooth varia-
tional problems was investigated. The goal of this article is to apply a version for
locally Lipschitz functionals (was established by Kristály, Marzantowicz and Varga
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in (cf. [21])).
In the present article, we use a class of perturbed Motreanu-Panagiotopoulos func-
tionals. We prove the existence of at least three solutions for a hemivariational
inequality depending on two parameters.
The paper is organized as follows. We prepare the basic definitions and proper-
ties in the framework of the generalized Lebesgue and Sobolev spaces. For this
introductory part we refer to (cf. [6], [8], [9], [11], [12]). Moreover, some important
properties of the p(x)−biharmonic operator, some basic notions about generalized
directional derivative and hypotheses on F, the basic definitions and facts about
the non-smooth three-critical-points theorem are given. Finally, we will give the
proofs of our main results.

2. Preliminaries

We recall some basic facts about the variable exponent Lebesgue-Sobolev.
The variable exponent Lebesgue space Lp(·)(Ω) is defined by

{u : Ω −→ R :

∫

Ω

|u(x)|p(x)dx < ∞}.

It is endowed with the Luxemburg norm

‖u‖p(·) = inf { λ > 0 :

∫

Ω

|
u(x)

λ
|p(x)dx} ≤ 1}.

For p ≡ const., the Luxemburg norm ‖ · ‖p(·) coincides with the standard norm

‖ · ‖p of the Lebesgue space Lp(Ω). Then (Lp(x)(Ω), ‖ · ‖p(·)) is a Banach space (cf.
[22]).

Let p′ be the function obtained by conjugating the exponent p pointwise, that
is 1

p(x) +
1

p′(x) = 1 for all x ∈ Ω̄, then p′ belongs to C+(Ω̄).

Proposition 2.1. (cf. [22]) Lp(·)(Ω) is a separable, reflexive Banach space and
Lṕ(·)(Ω) is its dual space.

Proposition 2.2. (cf. [11]) (i) For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), the
following Hölder type inequality valid

∫

Ω

|u(x)v(x)|dx ≤ (
1

p−
+

1

p′−
)‖u‖p(x)‖v‖p′(x).

(ii) If p, q ∈ C(Ω̄) and 1 ≤ p ≤ q in Ω, then the embedding Lq(·) →֒ Lp(·) is
continuous.

Proposition 2.3. (cf. [11]) Let p be a function in C+(Ω). Set ϕp(·)(u) =
∫

Ω
|u(x)|p(x)dx. If u, (un)n are in Lp(·)(Ω), with 1 ≤ p− ≤ p+ ≤ ∞, then the

following relations hold:

(i) ‖u‖p(·) ≥ 1 ⇒ ‖u‖p
−

p(·) ≤ ϕp(·) ≤ ‖u‖p
+

p(·),

(ii) ‖u‖p(·) ≤ 1 ⇒ ‖u‖p
+

p(·) ≤ ϕp(·) ≤ ‖u‖p
−

p(·).
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The generalized Lebesgue-Sobolev space WL,p(x)(Ω) for L = 1, 2, ... is defined
as

WL,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ L},

where Dαu = ∂|α|

∂α1x1···∂αnxn
, α = (α1, α2, ···, αN ) is a multi-index and |α| = ΣN

i=1αi.

The space WL,p(x)(Ω) with the norm

‖u‖WL,p(·)(Ω) =
∑

|α|≤L

‖Dαu‖p(·),

is a separable and reflexive Banach space.

The space W
L,p(x)
0 (Ω) denotes the closure in WL,p(·)(Ω) of the set of

all WL,p(·)(Ω)−functions with compact support.

Proposition 2.4. (cf. [7]) W
L,p(·)
0 (Ω) is a separable, uniformly convex and re-

flexive Banach space.

For every u ∈ W
L,p(·)
0 (Ω) the Poincaré inequality holds, i.e., there exists a

positive constant Cp such that

‖u‖Lp(·)(Ω) ≤ Cp‖∇u‖Lp(·)(Ω).

(see (cf. [13])).

Hence, an equivalent norm for the space W
L,p(·)
0 (Ω) is given by

‖u‖
W

L,p(·)
0 (Ω)

=
∑

|α|=L

‖Dαu‖p(·).

Let p∗L denote the critical variable exponent related to p, defined for all x ∈ Ω̄
by the pointwise relation

p∗L(x) =







Np(x)
N−Lp(x) Lp(x) < N,

+∞ Lp(x) ≥ N,
(2.1)

is the critical exponent related to p.

Proposition 2.5. (cf. [11], [22]) For p, q ∈ C+(Ω) such that q(x) ≤ p∗L(x) for all
x ∈ Ω, there is a continuous embedding

WL,p(x)(Ω) →֒ Lq(x)(Ω).

If we replace ≤ with <, the embedding is compact.

Remark 2.6. (i) By the Proposition 2.5 there is a continuous and compact em-

bedding of W
1,p(x)
0 (Ω) into Lq(x) where q(x) < p∗(x) for all x ∈ Ω.

(ii) Define ‖u‖ = inf{λ > 0 :
∫

Ω[|
∇u
λ
|p(x) + a(x)|u

λ
|p(x)]dx ≤ 1}, for all

u ∈ W
1,p(x)
0 (Ω), then ‖u‖ is a norm on W

1,p(x)
0 (Ω).
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In this paper, we denote by X = W
1,p(x)
0 (Ω) and X⋆ the dual space.

Proposition 2.7. Set Φ(u) =
∫

Ω
[|∇u|p(x) + a(x)|u(x)|p(x)dx]. For u, un ∈ X we

have

(i) ‖u‖ < (=;>)1 ⇔ Φ(u) < (=;>)1,

(ii) ‖u‖ < 1 ⇒ ‖u‖p
+

≤ Φ(u) ≤ ‖u‖p
−

,

(iii) ‖u‖ > 1 ⇒ ‖u‖p
−

≤ Φ(u) ≤ ‖u‖p
+

,

(iv) ‖un‖ → 0 ⇔ Φ(un) → 0,

(v) ‖un‖ → ∞ ⇔ Φ(un) → ∞.

The proof of this proposition is similar to the proof in (cf. [11]).

Let η : ∂Ω → R be a measurable. Define the weighted variable exponent
Lebesgue space by

L
p(x)
η(x)(∂Ω) =

{

u : ∂Ω → R is measurable and

∫

∂Ω

|η(x)||u|p(x)dσ < ∞
}

,

with the norm

|u|(p(x),a(x)) = inf{τ > 0;

∫

∂Ω

|η(x)||
u

τ
|p(x)dσ ≤ 1},

where dσ is the measure on the boundary.

Lemma 2.8. (cf. [5]) Let ρ(x) =
∫

∂Ω |a(x)||u|p(x)dσ for u ∈ L
p(x)
a(x)(∂Ω) we have

|u|(p(x),η(x)) ≥ 1 ⇒ |u|p
−

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),η(x)),

|u|(p(x),η(x)) ≤ 1 ⇒ |u|p
+

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),η(x)).

For A ⊆ Ω̄ denote by infx∈A p(x) = p−, supx∈A p(x) = p+. Define

p∂(x) = (p(x))∂ :=







(N−1)p(x)
N−p(x) p(x) < N,

+∞ p(x) ≥ N,
(2.2)

p∂(x)r(x) :=
r(x) − 1

r(x)
p∂(x),

where x ∈ ∂Ω, r ∈ C(∂Ω,R) and r(x) > 1.
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Proposition 2.9. (cf. [16], [22]) If q ∈ C+(Ω) and q(x) < p∗∂(x) for any x ∈ Ω,
then the embedding from W 1,p(x)(Ω) to Lq(x)(∂Ω) is compact and continuous.

Here, we review the definitions and basic properties from the theory of gener-
alized differentiation for locally Lipschitz functions.
Let X be a Banach space and X⋆ its topological dual. By ‖ · ‖ we will denote
the norm in X and by < ·, · > the duality brackets for the pair (X,X⋆). A func-
tion h : X → R is said to be locally Lipschitz, if for every x ∈ X there ex-
ists a neighbourhood U of x and a constant K > 0 depending on U such that
|h(y)− h(z)| ≤ K‖y − z‖ for all y, z ∈ U.
For a locally Lipschitz function h : X → R we define the generalized directional
derivative of h at u ∈ X in the direction γ ∈ X is defined by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)

t
.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x⋆ ∈ X⋆ : < x⋆, γ >X≤ h0(u; γ), ∀γ ∈ X}.

It is nonempty, convex and w⋆−compact subset of X⋆, where < ·, · >X is the du-
ality pairing between X⋆ and X, see (cf. [4]).

Proposition 2.10. (cf. [4]) Let h, g : X → R be a locally Lipschitz function.
Then
(i) h0(u; ·) is subadditive and positively homogeneous.
(ii) (−h)0(u; v) = h0(u;−v), ∀u, v ∈ X.
(iii) h0(u; v) = max{< ξ, v > : ξ ∈ ∂h(u)}, ∀u, v ∈ X.
(iv) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v), ∀u, v ∈ X.

Proposition 2.11. (cf. [4])(Lebourg’s mean value theorem) Let h : X → R be a
locally Lipschitz functional. Then, for every u, v ∈ X there exists w ∈ [u, v], w∗ ∈
∂h(u) such that h(u)− h(v) = 〈w∗, u− v〉.

Definition 2.12. (cf. [24]) Let X be a Banach space, I : X → (−∞,+∞] is called
a Motreanu-Panagiotopoulos-type functional, if I = h + χ, where h : X → R is
locally Lipschitz and χ : X → (−∞,+∞] is convex, proper and lower semicontin-
uous.

Definition 2.13. (cf. [24]) An element u ∈ X is said to be a critical point of
I = h+ χ if

h0(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.
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In most applications, the following special case is considered: Let h : X → R be
a locally Lipschitz functional and we assume it is also given a functional χ : X →
R ∪ {+∞} which is convex, lower semicontinuous and proper whose restriction to
the set dom(χ) = {x ∈ X : χ(u) < ∞} is continuous. The indicator of B is the
function χB : X → R ∪ {+∞} defined by

χB =







0 u ∈ B

+∞ u /∈ B

(2.3)

(it is easily seen that χB is proper, convex and lower semicontinuous), while its
restriction to dom(χB) = B is the constant 0; clearly u ∈ X is a critical point
for the Motreanu-Panagiotopoulos functional h + χB iff u ∈ B and the following
condition holds

h0(u; v − u) ≥ 0, ∀v ∈ B.

Definition 2.14. (cf. [17]) The functional I : X → X⋆ verifies the (S+) property
if for any weakly convergence sequence {un}n ⊂ X to u in X in which

lim sup
n→∞

< I(un), un − u >≤ 0,

then {un}n converges strongly to u in X.

3. Main Results

For the reader’s convenience, we recall the non-smooth three critical points
theorem.

Theorem 3.1. (cf. [19]) Let X be a separable and reflexive Banach space, Λ a real
interval and B a nonempty, closed, convex subset of X. φ ∈ C1(X,R) a sequentially
weakly l.s.c. functional and bounded on any bounded subset of X such that φ′ is of
type (S)+, suppose that F : X → R is a locally Lipschitz functional with compact
gradient. Assume that:
(i) lim‖u‖→+∞[φ− λF] = +∞, ∀λ ∈ Λ,
(ii)There exists ρ0 ∈ R such that

sup
λ∈Λ

inf
u∈X

[φ+ λ(ρ0 − F(u))] < inf
u∈X

sup
λ∈Λ

[φ+ λ(ρ0 − F(u))].

Then, there exist λ1, λ2 ∈ Λ (λ1 < λ2) and σ > 0 such that for every λ ∈ [λ1, λ2]
and every locally Lipschitz functional G : X → R with compact derivative, there
exists µ1 > 0 such that for every µ ∈]0, µ1[ the functional φ− λF+ µG has at least
three critical points whose norms are less than σ.

Let us introduce the following conditions of our problem.
We assume that F : ∂Ω × R → R is a Carathéodory function, which is locally
Lipschitz in the second variable and satisfies the following properties:
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(F1) |ξ| ≤ K(|s|t(x)−1 + |s|z(x)−1) for all ξ ∈ ∂F (x, s) with (x, s) ∈ ∂Ω × R

(1 ≤ p− ≤ p(x) ≤ p+ < z− ≤ z(x) ≤ z+ < t− ≤ t(x) ≤ t+ < p∂(x));
(F2) |F (x, s)| ≤ H(|s|α(x) + |s|β(x)) for all (x, s) ∈ ∂Ω × R (H > 0, 1 ≤ α− ≤
α(x) ≤ α+ < β− ≤ β(x) ≤ β+ < p− ≤ p(x) ≤ p+ < p∂(x));

(F3) there exists û ∈ W
1,p(x)
0 (Ω) such that

∫

∂Ω F (x, û)dσ > 0 for a.e. x ∈ ∂Ω,

(G) let g ∈ C(Ω̄ × R,R) such that |g(x, s)| ≤ N(1 + |s|q(x)−1) ∀(x, s) ∈ Ω̄ × R,
where q ∈ C(Ω̄), N > 0 and 1 ≤ q(x) < p∗(x), ∀x ∈ Ω̄.

The next lemma displays some properties of φ (cf. [10]).

Lemma 3.2. Let φ(u) =
∫

Ω
1

p(x) [|∇u|p(x) + a(x)|u|p(x)]dx. Then

(i) φ : X → R is sequentially weakly lower semicontinuous, φ ∈ C1(X,R).
(ii) φ′ is of (S+) type.
(iii) φ′ is a homeomorphism.

We need the following lemmas in the proof of our main result.

Lemma 3.3. Let (F1) be satisfied. Then F : X → R is locally Lipschitz functional
with compact gradient.

Proof: First we prove that F is Lipschitz continuous on each bounded subset of X.
Let u, v ∈ B(0,M) (M > 0), and ‖u‖, ‖v‖ ≥ 1. Utilizing Proposition 2.11 , from
the Hölder inequality, and the embedding of X in Lt(x)(∂Ω) and Lz(x)(∂Ω)

|F(u)− F(v)| ≤

∫

∂Ω

|F (x, u(x)) − F (x, v(x))|dσ

≤

∫

∂Ω

K
(

|u(x)|t(x)−1 + |v(x)|t(x)−1

+ |u(x)|z(x)−1 + |v(x)|z(x)−1
)

|u(x)− v(x)|dσ

≤ K
(

‖u‖t
+−1+‖v‖t

+−1
)

‖u− v‖ +K
(

‖u‖z
+−1+‖v‖z

+−1
)

‖u−v‖

≤ 2K
(

c1M
t+−1 + c2M

z+−1
)

‖u− v‖,

where c1, c2 are positive constants.
We prove that ∂F is compact. Let {un} be a sequence in X such that ‖un‖ ≤ M and
choose u∗

n ∈ ∂F(un) for any n ∈ N. From (F1) it follows that for any n ∈ N, v ∈ X,

< u∗
n, v >≤

∫

∂Ω

|u∗
n(x)||v(x)|dσ

≤

∫

∂Ω

K(|u(x)|t(x)−1 + |u(x)|z(x)−1)|v(x)|dσ

≤ (c3M
t+−1 + c4M

z+−1)‖v‖,
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where c3, c4 are positive constants.
Consequently,

‖u∗
n‖X∗ ≤ (c3M

t+−1 + c4M
z+−1).

The sequence (u∗
n) is bounded and hence, up to a subsequence, u∗

n ⇀ u∗.
Suppose on the contrary; we assume there exists ǫ > 0 for which ‖u∗

n − u∗‖X∗ > ǫ
(choose a subsequence if necessary). For every n ∈ N, we can find vn ∈ X with
‖vn‖ < 1 and

〈u∗
n − u∗, vn〉 > ǫ. (3.1)

Then, (vn) is a bounded sequence and up to a subsequence, vn ⇀ v, ‖vn −
v‖Lt(x)(∂Ω) → 0 and ‖vn − v‖Lz(x)(∂Ω) → 0.
Therefore

〈u∗
n − u∗, vn〉 ≤ 〈u∗

n, vn − v〉+ 〈u∗
n − u∗, v〉+ 〈u∗, v − vn〉

≤

∫

∂Ω

|u∗
n(x)||vn(x)− v(x)|dσ + 〈u∗

n − u∗, v〉+ 〈u∗, v − vn〉

≤ K(c3M
t+−1‖vn−v‖Lt(x)+c4M

z+−1‖vn−v‖Lz(x))+〈u∗
n−u∗, v〉+〈u∗, v−vn〉 → 0,

which contradicts (3.1).
For ‖u‖, ‖v‖ ≤ 1 the proof is similar. ✷

Lemma 3.4. Let G be satisfied. Then G is a locally Lipschitz functional with
compact derivative.

Proof: G(u) =
∫

Ω
G(x, u)dx is locally continuous on each bounded subset of X.

Indeed, let u, v ∈ B(0,M)(M > 0) and apply Theorem 2.5, the Hölder inequal-
ity and mean value Theorem there is a functional ω(x) in which

∫ u

v
g(x, s)ds =

g(x, ω(x))(u − v). Then

|G(u)−G(v)| = |

∫

Ω

G(x, u)dx−

∫

Ω

G(x, v)dx|

= |

∫

Ω

(

∫ u

0

g(x, s)ds−

∫ v

0

g(x, s)ds)dx| = |

∫

Ω

(

∫ u

v

g(x, s)ds)dx|

≤

∫

Ω

|g(x,w(x))||(u(x) − v(x))|dx ≤ (
1

p−
+

1

p′−
)‖g(x,w(x))‖p(x)‖u− v‖p′(x)

≤

∫

Ω

(1 + |w(x)|q(x)−1)p(x)dx‖u− v‖X ≤ c5(1 +M q+−1)p
+

‖u− v‖X ,

where c5 is positive constant. Hence, G is locally Lipschitz.
It remains to show that G′ is compact. Let (un) ⊂ X be a sequence such that
un ⇀ u. From compact embedding of X into Lq(x)(Ω), we can assume up to subse-
quence un → u in Lq(x)(Ω). According to the Krasnoselki’s theorem, the Nemytskii
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operator Ng : u(x) → g(x, u(x)) is a continuous bounded operator from Lq(x)(Ω) to

L
q(x)

q(x)−1 (Ω).
Using Hölder’s inequality and the continuous embedding of X to Lq(x)(Ω), it follows
that

|〈DG(un)−DG(u), v〉| ≤ 2c6‖Ng(un)−Ng(u)‖ q(x)
q(x)−1

‖v‖X .

This inequality shows that the operator A : L
q(x)

q(x)−1 (Ω) → X∗ defined by A(g(x, u)) =
DG(u) is continuous. Then the composite operator DG = AoNgoI : u → DG(u)
from X into X∗ is continuous. Therefore, G is Frèchet differentiable and its Frèchet
derivative G′(u) = DG(u). Hence, G(u) ∈ C1(X,R) and G′ is compact. ✷

Proposition 3.5. (cf. [4]) Let F : ∂Ω × R → R be a locally Lipschitz function
which satisfies (F1). Then F is well-defined and

F
0(u; v) ≤

∫

Ω

F 0(x, u; v)dσ, ∀u, v ∈ X.

The next lemma points out the relationship between the critical points of I(u)
and solutions of Problem (1.2).

Lemma 3.6. Every critical point of the functional I is a solution of Problem (1.1).

Proof: According to the Definition 2.13, I = φ − λF + µG + χ is a Motreanu-
Panagiotopoulos type functional. Let u ∈ X be a critical point of I(u) = φ(u) −
λF(u) + µG+ χ(u). Then u ∈ B and by Definition 2.13

〈φ′u, v − u〉+ λ(−F)0(u; v − u) + µ〈G′u, v − u〉 ≥ 0, ∀v ∈ X.

Using Proposition 3.5 and the property (ii) of Proposition 2.10, we obtain the desired
inequality. ✷

Lemma 3.7. If (F2) holds, then for any λ ∈ (0,+∞)

lim
‖u‖→+∞

[φ− λF] = +∞. (3.2)

Proof: For u ∈ X such that ‖u‖ ≥ 1 and using (F2),

F(u)=

∫

∂Ω

F (x, u)dσ ≤

∫

∂Ω

H(|u|α(x)+ |u|β(x))dσ ≤ H(‖u‖α
+

Lα(x)(∂Ω)+‖u‖β
+

Lβ(x)(∂Ω)
).

By the embedding theorem for suitable positive constant c7, c8 it implies that

F(u) ≤ H(c7‖u‖
α+

X + c8‖u‖
β+

X ).

On the other hand from Proposition 2.7,

φ(u) =

∫

Ω

1

p(x)
[|∇u|p(x) + a(x)|u|p(x)]dx ≥

1

p+
‖u‖p

−

X .



A Non-Smooth Three Critical Points Theorem 105

This implies that for any λ > 0,

φ(u)− λF(u) ≥
1

p+
‖u‖p

−

X −H(c7‖u‖
α+

X + c8‖u‖
β+

X ).

Since p− > min{α+, β+}, it follows that

lim
‖u‖→+∞

[φ− λF] = +∞, ∀u ∈ X, λ ∈ [0,+∞).

✷

Theorem 3.8. Let Ω, p, F be as mentioned and F1, F2, F3 are satisfied. Then there
exist λ1, λ2 > 0(λ1 < λ2) and σ > 0 such that for every λ ∈ [λ1, λ2] and every G

satisfying G, there exists µ1 > 0 such that for every µ ∈]0, µ1[ problem (1.1) admits
at least three solutions whose norms are less than σ.

Proof: According to Lemma 3.6, it is sufficient to prove the existence of a critical
point of functional I. For this, we check if I satisfies the conditions of the non-
smooth three critical points Theorem 3.1. First, we note that Lemma 3.2 guarantees
that φ satisfies the weakly sequentially lower semicontinuous property and φ′ is of
type (S+). Besides, Due to Lemma (3.3), the functional F is weakly sequentially
continuous.
Lemma 3.7, implies that φ − λF is coercive on X for all λ ∈ Λ =]0,+∞[; the
assumption (i) of Theorem 3.1, verified.
For assumption (ii), let us consider two cases.
Case 1. Let us assume that ‖u‖ < 1.
Put for every r > 0,

θ1(r) = sup{F(u);u ∈ X,
1

p−
‖u‖p

−

≤ r},

we prove that

lim
r→0+

θ1(r)

r
= 0. (3.3)

In view of (F1), it is follows that for every ǫ > 0, there exists c(ǫ) > 0 such that for
every x ∈ ∂Ω, u ∈ R and ξ ∈ ∂F (x, u)

|ξ| ≤ ǫ|u|t(x)−1 + c(ǫ)|u|z(x)−1. (3.4)

It implies that for every u ∈ X by the Sobolev embedding theorem, there exist
suitable positive constants c9 and c10

F(u) =

∫

∂Ω

F (x, u)dσ ≤

∫

∂Ω

K(|u|t(x)+ |u|z(x))dσ ≤ K(‖u‖t
+

Lt(x)(∂Ω)+‖u‖z
+

Lz(x)(∂Ω))
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≤ Kc9(‖u‖
t+

X + ‖u‖z
+

X ) ≤ Kc10(r
t+

p− + r
z+

p− ).

It follows from min{t+, z+} > p− that

lim
r→0+

θ1(r)

r
= 0.

From (F3) û 6= 0. Hence, due to (3.3), there is r ∈ R in which

0 < r < 1
p− ‖û‖p

−

, 0 < θ1(r)
r

< F(û)
1

p−
‖û‖p−

.

Choose ρ0 > 0 such that

θ1(r) < ρ0 <
rF(û)
1
p− ‖û‖p− , (3.5)

especially, ρ0 < F(û).

We claim that

sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] < r. (3.6)

It is obvious that the mapping

λ 7→ sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))]

is upper semicontinuous on Λ and

lim
λ→+∞

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] ≤ lim
λ→+∞

[
1

p−
‖û‖p

−

+ λ(ρ0 − F(û))] = −∞.

Therefore, there exists λ̄ ∈ Λ in which

sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] = inf
u∈B

[
1

p−
‖u‖p

−

+ λ̄(ρ0 − F(u))].

We consider two cases:
(I) If λ̄ρ0 < r, we obtain

inf
u∈B

[
1

p−
‖u‖p

−

+ λ̄(ρ0 − F(u))] ≤ λ̄ρ0 < r

(II) If λ̄ρ0 ≥ r, from (3.5) we obtain

inf
u∈B

[
1

p−
‖u‖p

−

+ λ̄(ρ0 − F(u))] ≤
1

p−
‖û‖p

−

+ λ̄(ρ0 − F(û)) ≤

≤
1

p−
‖û‖p

−

+
r

ρ0
(ρ0 − F(û)) ≤ r.
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We claim that

inf
u∈B

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] ≥ r. (3.7)

Infact, for every u ∈ B there are two cases:
(I) If F(u) < ρ0,

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] = +∞.

(II) If F(u) ≥ ρ0, by (3.5)

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] = φ(u) ≥
1

p+
‖u‖p

+

≥ r.

From (3.6), (3.7) and the assumption (ii) of Theorem 3.1, this case verified.
Case 2. Assume that ‖u‖ > 1.

In a similar way like the case 1:
Put for every r > 0

θ2(r) = sup{F(u);u ∈ X,
1

p−
‖u‖p

+

≤ r}.

We claim that

lim
r→0+

θ2(r)

r
= 0. (3.8)

In order to (3.4), for every u ∈ X for continuous and compact embedding, it implies
the existence of c11 and c12 such that

F(u) =

∫

∂Ω

F (x, u)dσ ≤

∫

∂Ω

K(|u|t(x)+ |u|z(x))dσ ≤ K(‖u‖t
+

Lt(x)(∂Ω)+‖u‖z
+

Lz(x)(∂Ω))

≤ Kc11(‖u‖
t+

X + ‖u‖z
+

X ) ≤ Kc12(r
t+

p+ + r
z+

p+ ).

It follows from min{t+, z+} > p+ that

lim
r→0+

θ2(r)

r
= 0.

From (F3) û 6= 0, so, due to (3.3), there is some r ∈ R such that

0 < r < 1
p− ‖û‖p

+

, 0 < θ2(r)
r

< F(û)
1

p−
‖û‖p+

.

Let ρ0 > 0 such that

θ2(r) < ρ0 <
rF(û)
1
p− ‖û‖p+ . (3.9)
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We claim that

sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] < r. (3.10)

Because of the mapping

λ 7→ sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))]

is upper semicontinuous on Λ, so

lim
λ→+∞

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] ≤ lim
λ→+∞

[
1

p−
‖û‖p

+

+ λ(ρ0 − F(û))] = −∞.

Therefore, there exists λ̄ ∈ Λ

sup
λ∈Λ

inf
u∈B

[φ(u) + λ(ρ0 − F(u))] = inf
u∈B

[
1

p−
‖u‖p

+

+ λ̄(ρ0 − F(u))].

We consider two cases:
(I) If λ̄ρ0 < r, we obtain

inf
u∈B

[
1

p−
‖u‖p

+

+ λ̄(ρ0 − F(u))] ≤ λ̄ρ0 < r.

(II) If λ̄ρ0 ≥ r, from (3.9) we obtain

inf
u∈B

[
1

p−
‖u‖p

+

+ λ̄(ρ0 − F(u))] ≤
1

p−
‖û‖p

+

+ λ̄(ρ0 − F(û)) ≤

≤
1

p−
‖û‖p

+

+
r

ρ0
(ρ0 − F(û)) ≤ r.

Moreover, we claim that

inf
u∈B

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] ≥ r. (3.11)

For every u ∈ B two cases can occure:
(I) If F(u) < ρ0 we have

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] = +∞.

(II) If F(u) ≥ ρ0 we have by (3.9)

sup
λ∈Λ

[φ(u) + λ(ρ0 − F(u))] = φ(u) ≥
1

p+
‖u‖p

−

≥ r.

From (3.10), (3.11) and the assumption (ii) of Theorem 3.1, this case verified.
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For function G which satisfies (G), it follows from Lemma 3.4, that the func-
tional G : X → R is locally Lipschitz with weakly sequentially continuous. Then
according to Theorem 3.1 there exist λ1, λ2 ∈ Λ (without loss of generality we may
assume 0 < λ1 < λ2) and σ > 0 with the following property that, for λ ∈ [λ1, λ2]
there exists µ1 > 0 in which: for every µ1 ∈]0, µ[, the functional φ − λF + µG
admits at least three critical points u0, u1, u2 ∈ B with ‖ui‖ < σ. So by Lemma 3.6
u0, u1, u2 are three solutions of the problem (1.1). ✷
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