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abstract: In this paper, without assuming continuity, commutativity and com-
patibility of self maps, some common fixed point theorems for weak contraction of
integral type in complete metric spaces are proved. An example and some remarks
are also given to justify that our contraction is new and weaker than other existing
contractions.

Key Words: Common fixed point, continuity, compatibility, integral type.

Contents

1 Introduction 67

2 Main results 69

3 Remarks and Example 75

4 Conclusion 76

1. Introduction

Fixed-point theory is one of the most fruitful and effective tool in mathematics.
It has number of applications within as well as outside the mathematics. The
first important result on fixed point for contractive type mapping is the Banach
contraction principle [13].

Theorem 1.1. [13] Let (X, d) be a complete metric space, α ∈ (0, 1), and F be a
self-maps of X such that for all x, y ∈ X,

d(Fx, Fy) ≤ αd (x, y) ,

then F has a unique fixed point z ∈ X.

This principle is a forceful tool in nonlinear analysis. It has many applications
in solving nonlinear equations.

In 1975, Dass and Gupta [2] proved an extension of the Banach contraction
principle through rational expression.
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Theorem 1.2. [2] Let (X, d) be a metric space and F be a self-maps of X such
that

d(Fx, Fy) ≤
αd (y, Fy) [1 + d(x, Fx)]

[1 + d(x, y)]
+ βd(x, y)

for all x, y ∈ X, α > 0, β > 0, α + β < 1, and for some x0 ∈ X, the sequence of
iterates {Fn(x0)} has a subsequence {Fnk(x0)} with z = limFnk(x0). Then F has
a unique fixed point z ∈ X.

After this result, several authors have proved common fixed point theorems for
contractive type conditions satisfying rational inequalities (see [3,4,6,12]).
In 2002, Branciari [1] introduced an integral type contractive mapping to analyze
the existence of fixed points for self mappings and then generalized the result of
Banach [13].

Theorem 1.3. [1] Let (X, d) be a complete metric space and F be a self-maps of
X such that for each x, y ∈ X

∫ d(Fx,Fy)

0

ϕ(t)dt ≤ β

∫ d(x,y)

0

ϕ(t)dt,

where β ∈ (0, 1), and ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable function which is
summable on each compact subset of R+ and such that for each ǫ > 0,

∫ ǫ

0

ϕ(t)dt > 0,

then F has a unique fixed point z ∈ X such that for each w ∈ X, Fnw → z as
n → +∞.

In 2003, Rhoades [5] extended the result of Branciari [1] by replacing more
stronger contractive condition. Since then lot of work have been done by various
authors satisfying a general contractive condition of integral type. Some of them
are noted in ( [1,5,11,16,18,19,20,10,15]). In 2011, Samet and Yazidi [6] proved the
following fixed point theorem, as an extension of the result of Dass and Gupta [2],
satisfying integral type rational inequalities in Hausdorff spaces.

Theorem 1.4. [6] Let X be a Hausdorff space and H : X × X → [0,+∞) be a
continuous mapping such that

H(x, y) 6= 0, ∀ x, y ∈ X and x 6= y.

Let F be self-maps of X satisfying the contractive condition such that for each
x, y ∈ X

∫ H(Fx,Fy)

0

ϕ(t)dt ≤ α

∫ M(x,y)

0

ϕ(t)dt + β

∫ H(x,y)

0

ϕ(t)dt,
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and

M (x, y) =
H (y, Fy) [1 +H(x, Fx)]

[1 +H(x, y)]
,

where α, β > 0 are constants such that α + β < 1 and ϕ : [0,∞) → [0,∞) is a
Lebesgue-integrable function which is summable on each compact subset of R+, and
such that for each ǫ > 0,

∫ ǫ

0

ϕ(t)dt > 0,

then F admits a fixed point z if for some x0 ∈ X the sequence of iterates {Fnx0}
has a subsequence {Fnkx0} converging to z ∈ X.

In 1976, Jungck [7] introduced the concept of commuting maps. He also gen-
eralized the Banach fixed point theorem from single self map to two self maps.
In 1982, Sessa [14] defined the concept of weak commutativity and proved some
common fixed point theorems. Again in 1988, Jungck [8] generalized this idea, first
to compatible mappings [8] and then to weakly compatible mappings [9]. There
are many examples which shows that these generalizations of commutativity are
proper extension of the previous definitions.

The main aim of our paper is to give a new contraction to prove some common
fixed point theorems for pair of self-maps satisfying integral type contractive con-
dition without using the concept of continuity, commutativity and compatibility.
An example is given at the end to show that the contractions used in main results
are weaker than the previous existing contractions.

2. Main results

The following lemma plays important role in this paper.

Lemma 2.1. Let ϕ : [0,∞) → [0,∞) be a Lebesgue-integrable function which is
summable on each compact subset of R+, and such that for each ǫ > 0,

∫ ǫ

0
ϕ(t)dt > 0

and
(

dn
)

n∈N
be non- negative sequence with limn→∞ dn = a, then

lim
n→∞

∫ dn

0

ϕ(t)dt = 0 iff lim
n→∞

dn = 0.

Proof: Follows directly from Lemma - 2.1 in Mocanu and Popa [17]. ✷

Now we prove our main result.

Theorem 2.2. Let (X, d) be a complete metric space, and F and G be self-maps
of X such that for each x, y ∈ X

∫ d(Fx,Gy)

0

ϕ(t)dt ≤ α

∫ M(x,y)

0

ϕ(t)dt+ β

∫ d(x,y)

0

ϕ(t)dt (2.1)
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and

M (x, y) =
d (y,Gy) [1 + d(x, Fx)]

[1 + d(x, y)]
, (2.2)

where α, β > 0 are constants such that α + β < 1 and ϕ : [0,∞) → [0,∞) is a
Lebesgue-integrable function which is summable on each compact subset of R+ and
such that for each ǫ > 0,

∫ ǫ

0

ϕ(t)dt > 0, (2.3)

then F and G have a unique common fixed point.

Proof: Choose x0 ∈ X such that Fx0 = x1 and Gx1 = x2. Define a sequence
{xn} in X such that x2n+1 = Fx2n and x2n+2 = Gx2n+1, where n = 0, 1, 2, · · ·.

Let {yn} =
∫ d(Fx2n,Gx2n+1)

0
ϕ(t)dt.

Consider,

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt =

∫ d(Fx2n,Gx2n+1)

0

ϕ(t)dt

≤ α

∫ M(x2n,x2n+1)

0

ϕ(t)dt+ β

∫ d(x2n,x2n+1)

0

ϕ(t)dt. (2.4)

From (2.2)

M (x2n, x2n+1) =
d(x2n+1, Gx2n+1) [1 + d (x2n, Fx2n)]

[1 + d (x2n, x2n+1)]
= d(x2n+1, x2n+2). (2.5)

Hence from (2.4),

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt ≤ α

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt+ β

∫ d(x2n,x2n+1)

0

ϕ(t)dt

≤
β

1− α

∫ d(x2n,x2n+1)

0

ϕ(t)dt

<

∫ d(x2n,x2n+1)

0

ϕ(t)dt,

continuing this way we get,

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt <

∫ d(x2n,x2n+1)

0

ϕ(t)dt < · · · <

∫ d(x0,x1)

0

ϕ(t)dt.

It follows that {yn} is a monotone decreasing and lower bounded sequence of num-
bers, and consequently there exists a r ≥ 0 such that

lim
n→∞

yn = lim
n→∞

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt = r. (2.6)
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Suppose r > 0. Taking limit as n → ∞ on both side of (2.4), we get

r ≤ αr + β lim
n→∞

inf

∫ d(x2n,x2n+1)

0

ϕ(t)dt ≤ αr + βr < r,

this is a contradiction. Therefore r = 0.
Hence from (2.6),

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt = 0. (2.7)

Now we prove that {yn} is a Cauchy sequence. To prove this, suppose that {yn}
is not a Cauchy sequence. Therefore there exists ǫ > 0 and subsequences {ni} and
{mi} such that mi < ni < mi+1 and

d(ymi
, yni

) ≥ ǫ and d(ymi
, yni−1

) < ǫ. (2.8)

Consider,

∫ ǫ

0

ϕ(t)dt ≤ lim
i→∞

∫ d(ymi
,yni

)

0

ϕ(t)dt ≤ lim
i→∞

∫ d(ymi
,yni−1

)+d(yni−1
,ymi

)

0

ϕ(t)dt

< lim
i→∞

∫ ǫ+d(yni−1
,ymi

)

0

ϕ(t)dt <

∫ ǫ

0

ϕ(t)dt.

Thus,

lim
i→∞

∫ d(ymi
,yni

)

0

ϕ(t)dt =

∫ ǫ

0

ϕ(t)dt. (2.9)

By using triangle inequality,

d(ymi−1
, yni−1

) ≤ d(ymi−1
, ymi

) + d(ymi
, yni

) + d(yni
, yni−1

)

and so
∫ d(ymi−1

,yni−1
)

0

ϕ(t)dt <

∫ d(ymi−1
,ymi

)+d(ymi
,yni

)+d(yni
,yni−1

)

0

ϕ(t)dt.

Therefore,

lim
i→∞

∫ d(ymi−1
,yni−1

)

0

ϕ(t)dt =

∫ ǫ

0

ϕ(t)dt. (2.10)

Now
∫ ǫ

0

ϕ(t)dt ≤

∫ d(ymi
,yni

)

0

ϕ(t)dt

≤ α

∫ M(ymi−1
,yni−1

)

0

ϕ(t)dt+ β

∫ d(ymi−1
,yni−1

)

0

ϕ(t)dt, (2.11)
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where

M(ymi−1
, yni−1

) =
d(yni−1

, yni
)
[

1 + d(ymi−1
, yni−1

)
]

[

1 + d(ymi−1
, yni−1

)
] = d(yni−1

, yni
). (2.12)

Taking limit as i → ∞ in (2.11) and using (2.9), (2.10), (2.12) we have,

∫ ǫ

0

ϕ(t)dt ≤ β

∫ ǫ

0

ϕ(t)dt,

since β ≤ 1, so we get a contradiction. Hence the sequence {yn} is a Cauchy
sequence and therefore there exists a z ∈ X such that

lim
n→∞

yn = lim
n→∞

∫ d(Fx2n,Gx2n+1)

0

ϕ(t)dt = z.

Furthermore, by Lemma (2.1) we get,

lim
n→∞

Fx2n = z and lim
n→∞

Gx2n+1 = z. (2.13)

Now we show that z is a fixed point of F and G. First claim that z is a fixed point
of G.
Consider,

∫ d(Fx2n,Gz)

0

ϕ(t)dt ≤ α

∫ M(x2n,z)

0

ϕ(t)dt + β

∫ d(x2n,z)

0

ϕ(t)dt, (2.14)

where

M(x2n, z) =
d(z,Gz) [1 + d(x2n, Fx2n)]

[1 + d(x2n, z)]
= d(z,Gz). (2.15)

Taking limit n → ∞ on both side of (2.14) and using (2.15), we get

∫ d(z,Gz)

0

ϕ(t)dt ≤ α

∫ d(z,Gz)

0

ϕ(t)dt,

this is a contradiction. Therefore
∫ d(z,Gz)

0 ϕ(t)dt = 0. Thus z is a fixed point of G.
Now, we shall show that any fixed point of G is also a fixed point of F .

Using (2.2),

M(z, z) =
d(z,Gz) [1 + d(z, Fz)]

[1 + d(z, z)]
= 0.

Now from (2.1),

∫ d(Fz,x2n)

0

ϕ(t)dt ≤ α

∫ M(z,x2n)

0

ϕ(t)dt+ β

∫ d(z,x2n)

0

ϕ(t)dt. (2.16)
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Taking limit as n → ∞

∫ d(Fz,z)

0

ϕ(t)dt ≤ 0,

which is a contradiction. Thus d(Fz, z) = 0. Therefore z is also a fixed point of F .
In general, we can say that F and G have common fixed point.
For uniqueness, suppose that there exist some other point w 6= z such that Fw =
Gw = w.
Again from (2.1),

∫ d(w,z)

0

ϕ(t)dt =

∫ d(Fw,Gz)

0

ϕ(t)dt

≤ α

∫ M(w,z)

0

ϕ(t)dt + β

∫ d(w,z)

0

ϕ(t)dt, (2.17)

where

M(w, z) =
d(z,Gz) [1 + d(w,Fw)]

[1 + d(w, z)]
= 0. (2.18)

Hence
∫ d(w,z)

0

ϕ(t)dt ≤ β

∫ d(w,z)

0

ϕ(t)dt,

we reaches at contradiction. This established the uniqueness and hence the result.
✷

In our next result, on omitting the completeness of metric space, we still get
unique common fixed point for pair of self maps without using continuity and
compatibility.

Theorem 2.3. Let (X, d) be a metric space and F and G be self-maps of X such
that for each x, y ∈ X

∫ d(Fx,Gy)

0

ϕ(t)dt ≤ α

∫ M(x,y)

0

ϕ(t)dt (2.19)

and

M (x, y) =
d (y,Gy) [1 + d(x, Fx)]

[1 + d(x, y)]
, (2.20)

where 0 ≤ α < 1 and ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable function which is
summable on each compact subset of R+ and such that for each ǫ > 0,

∫ ǫ

0

ϕ(t)dt > 0,

then F and G have a unique common fixed point.
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Proof: Define a sequence {xn} in X such that for each n = 0,1,2,...

x2n+1 = Fx2n and x2n+2 = Gx2n+1. (2.21)

Suppose that

x2n+1 = x2n+2 for no n ∈ N. (2.22)

Consider,

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt =

∫ d(Fx2n,Gx2n+1)

0

ϕ(t)dt

≤ α

∫ M(x2n,x2n+1)

0

ϕ(t)dt. (2.23)

From (2.20)

M (x2n, x2n+1) =
d(x2n+1, Gx2n+1) [1 + d (x2n, Fx2n)]

[1 + d (x2n, x2n+1)]
= d(x2n+1, x2n+2). (2.24)

. Hence from (2.23),

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt ≤ α

∫ d(x2n+1,x2n+2)

0

ϕ(t)dt.

Since α < 1, so this is a contradiction. Thus (2.22) is false and so x2n+1 = x2n+2

for some n ∈ N , say n = k. Consequently, with x2k+1 = x2k+2 and z = x2k+1,by
using (2.21) we get Gz = z. This proves that z is a fixed point of G.
Now we prove that any fixed point of G is also a fixed point of F .
Using (2.20),

M(z, z) =
d(z,Gz) [1 + d(z, Fz)]

[1 + d(z, z)]
= 0.

Hence from (2.19),

∫ d(Fz,z)

0

ϕ(t)dt ≤ α

∫ M(z,z)

0

ϕ(t)dt = 0. (2.25)

Thus d(Fz, z) = 0. Therefore z is also a fixed point of F . In general, we can say
that F and G have common fixed point.
For uniqueness, suppose that there exist some other fixed point w 6= z such that
Fw = Gw = w.
Again from (2.19),

∫ d(w,z)

0

ϕ(t)dt =

∫ d(Fw,Gz)

0

ϕ(t)dt

≤ α

∫ M(w,z)

0

ϕ(t)dt, (2.26)
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where

M(w, z) =
d(z,Gz) [1 + d(w,Fw)]

[1 + d(w, z)]
= 0. (2.27)

Hence

∫ d(w,z)

0

ϕ(t)dt ≤ 0.

This is possible only if d(w, z) = 0. This established the uniqueness and hence the
result. ✷

Corollary 2.4. Let (X, d) be a complete metric space and F be a self-maps of X
such that for each x, y ∈ X

∫ d(Fx,Fy)

0

ϕ(t)dt ≤ α

∫ M(x,y)

0

ϕ(t)dt + β

∫ d(x,y)

0

ϕ(t)dt,

and

M (x, y) =
d (y, Fy) [1 + d(x, Fx)]

[1 + d(x, y)]
,

where α, β > 0 are constants such that α + β < 1 and ϕ : [0,∞) → [0,∞) is a
Lebesgue-integrable function which is summable on each compact subset of R+ such
that for each ǫ > 0,

∫ ǫ

0

ϕ(t)dt > 0,

then F has a unique fixed point.

Proof: By taking F = G in Theorem 2.2, we get the required result. ✷

3. Remarks and Example

In this section, we give some remarks and an example in support and existence
of our result.

Remark 3.1. In above Theorem 2.2, if we take F = G and α = 0, then the result
of Branciari [1] is retrieved.

Remark 3.2. In above Corollary 2.4, if we take ϕ(t) = 1, then we get the result
of Dass and Gupta [2].

Remark 3.3. It is important to note that result given in Theorem 2.3 is new and
unique one. It can not be derived from any of the previous results. Also, if we take
G = F in (2.20), existence of fixed point without completeness of space and without
continuity of map F is doubtful and is open problem for future research.

Here we give an example in support of our main result (Theorem 2.2).
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Example 3.4. Let X = R be endowed with usual metric d(x, y) = |x− y| and let
E =

{

0, 1
4 , 1

}

. Let F,G : E → E be defined by

F (0) = F (
1

4
) = 0 and F (1) =

1

4
G(x) = 0, for all x ∈ E.

Let ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable function which is summable on
each compact subset of R+ and be defined as ϕ(t) = 2t for all t ∈ R+, such that
for each ǫ > 0,

∫ ǫ

0

ϕ(t)d = ǫ2 > 0.

If we define constants α = 1
3 > 0 and β = 1

2 > 0 such that α + β < 1, then by a
careful calculation, we can see that all the conditions of Theorem 2.2 holds. Hence
the self maps F and G have a unique common fixed point x = 0. i.e F (0) = G(0) =
0. More importantly, we can see that this example can not satisfy the condition of
main result of Branciari [1].

4. Conclusion

In this paper, contraction given in Theorem 2.2 and in Theorem 2.3 is new and
specially constructed for pair of self of maps such that we get unique common fixed
point without using continuity, compatibility and commutativity. Remarks- 3.1,
3.2 showed that our main result generalize the result of Branciari [1] and Dass and
Gupta [2], while Remark- 3.3 assured that contractions used in main results are
new and unique one. An example is given in support of our result.
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