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abstract: In this paper, the authors provided a discussion on one and two dimen-
sional Laplace transforms and generalized Stieltjes transform and their applications
in evaluating special series and integrals. Finally, we implemented the joint Laplace
– Fourier transforms to construct exact solution for a variant of the KdV equation.
Illustrative examples are also provided.
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Introduction

In this work, we consider some methods consisting Laplace, Stieljes, Fourier
transforms to evaluate some certain integrals and series and also to find the solution
of some integral equations. The authors have already studied several methods to
evaluate series, integrals and solve fractional differential equations, specially the
popular Laplace transform method, [1], [2], [3], [4], [5], [6], [7], [8] and this work
is a completion for their previous researches.
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1. One dimensional Laplace transform

Definition 1.1. Laplace transform of function f(t) is as follows

L{f(t)} =

∫ ∞

0

e−stf(t)dt := F (s).

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c.

Theorem 1.2 (Buschman). If the functions f(t), g(t), k(t) be analytical and real
on (0,∞) such that g(0) = 0 and g(∞) = ∞. Then

L{k(t)f [g(t)]} =

∫ +∞

0

R(s, u)F (u)du.

in which

Q(s, p) =

∫ +∞

0

e−puR(s, u)du = e−sh(p)k[h(p)]h′(p), h = g−1,

Proof: See [14]. ✷

Definition 1.3. Kratzel function was first introduced by Kratzel and then studied
by Puri [18]

Zν
ρ (z) =

∫ ∞

0

tν−1 exp(−tρ − z

t
)dt, ν ∈ C, ρ ∈ R,

for example we have

Zν
1 (

x2

4
) =

∫ ∞

0

tν−1 exp(−t− x2

4 t
)dt =

2ν+1

xν
K−ν(x),

which is in the form of an integral representation of modified Bessel function and
can be expressed in terms of Airy function as below. Letν = − 1

3 , x = 2
3η

3
2

Z
− 1

3
1 (

η3

9
) =

∫ ∞

0

t−
4
3 exp(−t− η3

9 t
)dt = 2

6
√
3

√

η

3
K 1

3
(
2

3
η

3
2 ) = 2π

6
√
3Ai(η).

Example 1.4. Prove that the following relationship holds true

∫ ∞

0

Zν
ρ (z)dz =

1

ρ
Γ(

ν + 1

ρ
).
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Proof. Taking Laplace transform of the Kratzel function we have

L{Zν
ρ (z); s} =

∫ ∞

0

e−sz

(
∫ ∞

0

tν−1 exp(−tρ − z

t
)dt

)

dz,

now changing the order of integrals

L{Zν
ρ (z); s} =

1

s

∫ ∞

0

tνe−tρ

t+ (1
s
)
dt =

∫ ∞

0

tνe−tρ dt

1 + st
,

in suffices to let s = 0in the last integral and making a change of variable tρ = w

to get
∫ ∞

0

Zν
ρ (z)dz =

1

ρ
Γ(

ν + 1

ρ
).

Lemma 1.5. The following identities hold true

1−
∫ +∞
0 zµKν(z)dz = 2µ−1Γ(µ+ν+1

2 )Γ(µ−ν+1
2 )

2−
∫ +∞
0 ln zK0(z)dz = −π

2 (ln 2 + γ)

Where γ = .577215664901532860606512090082.... is Euler – Maschroni constant

Proof: 1 – We use integral representation for modified Bessel function of order v,
to get

∫ +∞

0

zµKν(z)dz =

∫ +∞

0

zµ
{

1

2

(z

2

)ν
∫ +∞

0

exp(−t− z2

4t
)
dt

tν+1

}

dz.

Changing the order of integration to get

∫ +∞

0

zµKν(z)dz =

(

1

2

)ν+1 ∫ +∞

0

e−t

(
∫ +∞

0

zν+µe−
z2

4t dz

)

dt

tν+1
.

In the inner integral, introducing the change of variable z2

4 t
= w

∫ +∞

0

zµKν(z)dz = 2µ−1{
∫ +∞

0

w
µ+ν−1

2 e−wdw}{
∫ +∞

0

t
µ−ν−1

2 e−tdt}.

After calculating each integral by definition of Laplace transform, one has

∫ +∞

0

zµKν(z)dz = 2µ−1Γ(
µ+ ν + 1

2
)Γ(

µ− ν + 1

2
).

2 – In the above relation, let us differentiate with respect to y , after simplifying ,
one gets

∫ +∞
0

zµ ln z Kν(z)dz = ln 2 2µ−1Γ(µ+ν+1
2 )Γ(µ−ν+1

2 ) + 2µ−2Γ′(µ+ν+1
2 )Γ(µ−ν+1

2 )+

+2µ−2Γ(µ+ν+1
2 )Γ′(µ−ν+1

2 ).
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By setting µ = ν = 0 we have

∫ +∞

0

ln z K0(z)dz =
ln 2

2
(Γ(

1

2
))2 +

1

2
Γ(

1

2
)Γ′(

1

2
) =

π

2
(ln 2 + (−2 ln 2− γ))

= −π

2
(ln 2 + γ).

✷

Example 1.6. Find the inverse Laplace transform of the function
∫ b

a
dβ

(s+λ)β .

Solution. We have

∫ b

a

dβ

(s+ λ)β
=

1

ln(s+ λ)

[

(s+ λ)−a − (s+ λ)−b
]

.

Then by using inverse of Laplace transform we get

f(t) = L−1{F (s)} =
1

2πi

∫ c+i∞

c−i∞

(s+ λ)−a − (s+ λ)−b

ln(s+ λ)
estds,

now making a change of variable s+ λ = p the following result will be obtained

f(t) = e−λt 1

2πi

∫ c′+i∞

c′−i∞

p−a − p−b

ln p
eptdp.

At this point, we evaluate the complex integral by virtue of Titchmarsh theorem [3]

f(t) = e−λt 1

π

∫ ∞

0

Im

(

(re−iπ)−a − (re−iπ)−b

ln(−r)

)

e−trdr

=
e−λt

π

∫ ∞

0

Im

(

r−aeiaπ − r−beibπ

ln |r| + iπ

)

e−trdr,

multiplying the numerator and denominator by the conjugate of the denominator ,
we ge

f(t) =
e−λt

π

∫ ∞

0

ln r(rb cos aπ − ra cos bπ)− π(rb sinaπ − ra sin bπ)

ra+b(ln2 r + π2)
e−trdr.

Lemma 1.7. The following relationship holds true

L{f(t3)} =
1

3π

∫ ∞

0

( s

u

)
1
2

K 1
3

[

2

(

s

3u
1
3

)
3
2

]

F (u)du.

Proof. By using Buschman’s theorem (see [14]) for k(t) = 1, g(t) = t3and therefore
h(p) = 3

√
pwe have

R(s, u) = L−1{e
−sp

1
3

3p
2
3

},
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on the other hand by using table of Laplace transform we can see that

L−1{e
−3p

1
3

p
2
3

} =
1

π

√

3

u
K 1

3
(
2√
u
),

Using the fact that L−1{F (as)} = 1
a
f( t

a
)then for a = ( s3 )

3we obtain

L−1{e
−sp

1
3

3p
2
3

} =
1

3π
(
s

u
)

1
2K 1

3
[2(

s

3u
1
3

)
3
2 ],

and therefore

L{f(t3)} =
1

3π

∫ ∞

0

( s

u

)
1
2

K 1
3

[

2

(

s

3u
1
3

)
3
2

]

F (u)du.

Corollary 1.8. The following relationship holds true

L{e−t6} =
1

6
√
π

∫ ∞

0

( s

u

)
1
2

K 1
3

[

2

(

s

3u
1
3

)
3
2

]

e
u2

4 erfc(
u

2
)du.

Solution. Let us consider the function f(t) = e−t2so we have

L{e−t2} =

∫ +∞

0

e−st−t2dt = e
s2

4

∫ +∞

0

e−(t+ s
2 )

2

dt.

Making a change of variable t+ s
2 = wthe error function will be appeared as below

L{e−t2} = e
s2

4

∫ +∞

s
2

e−w2

dw =

√
π

2
e

s2

4 erfc(
s

2
).

Now using the previous lemma we can write

L{e−t6} =
1

6
√
π

∫ ∞

0

( s

u

)
1
2

K 1
3

[

2

(

s

3u
1
3

)
3
2

]

e
u2

4 erfc(
u

2
)du.

2. Inverse Laplace transform of some functions by using conformal

mapping

Definition 2.1. The function f : C → C defined as

f(z) = a(z +
b2

z
),

is named Joukowsky map. This function is a conformal mapping (analytic and
angle preserving). Jokouwsky map is extensively used in aerodynamics and physics
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which transforms a circle into an ellipse, because if z = x+ iybe a point on a circle
of radius rthen

f(z) = u+ iv = a((x+ iy) +
b2

(x+ iy)
) =

ax(r2 + b2)

r2
+ i

ay(r2 − b2)

r2
,

and consequently
u2

(r2 + b2)2
+

v2

(r2 − b2)2
=

a2

r2
,

which is the equation of the desired ellipse. One can deduce from the above rela-
tionship that if the radius of the circle tends to bthen the ellipse will tend to a line
segment on xaxis between the points x = 2aband x = −2ab.

Theorem 2.2. The following relationship holds true

L−1

{

e−a
√

s2+2λs+µ2

Q(s)
√

s2 + 2λs+ µ2
; t

}

=







−e−λt(
√

t−a
t+a

)νIν((λ
2 − µ2)

√
t2 − a2); λ2 − µ2 > 0

−e−λt(
√

t−a
t+a

)νJν((λ
2 − µ2)

√
t2 − a2); λ2 − µ2 < 0

.

Where, Q(s) = (
√

s2 + 2λs+ µ2 + s+ λ)−ν .

Proof: By using inverse of Laplace transform we have

L−1{F (s); t} =
1

2πi

∫ c+i∞

c−i∞
est

e−a
√

s2+2λs+µ2

Q(s)
√

s2 + 2λs+ µ2
ds

=
1

2πi

∫ c+i∞

c−i∞
est

e−a
√

(s+λ)2−(λ2−µ2)

Q(s)
√

(s+ λ)2 − (λ2 − µ2)
ds.

It is clear that the function F (s) has branch points at s = −λ±
√

λ2 − µ2 therefore
according to the figure 2 consider the branch cuts. Case 1: Assume that λ2−µ2 > 0
then we integrate the function estF (s)on the path Øč1 and then let it tend to
infinity.

By integrating along the path indicated in the figure 1 and using residue theorem
we have

1
2πi

∮

Γ1

e−a
√

(s+λ)2−(λ2
−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds

= 1
2πi

∫ c+iT

c−iT
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds+ 1

2πi

∫

CR

e−a
√

(s+λ)2−(λ2
−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds

+ 1
2πi

∫

AB
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds+ 1

2πi

∫

Ω
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds

+ 1
2πi

∫

DC
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds+ 1

2πi

∫

C′

R

e−a
√

(s+λ)2−(λ2
−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds = 0.
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Figure 1:

One can show that summation of integrals along AB and DC is zero. Then

1
2πi

∫ c+iT

c−iT
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2+(λ2−µ2)
ds = − 1

2πi

∫

CR

e−a
√

(Reiθ+λ)2−(λ2
−µ2)+Reiθt

Q(Reiθ)
√

(Reiθ+λ)2+(λ2−µ2)
Rieiθdθ

− 1
2πi

∫

C′

R

e−a
√

(Reiθ+λ)2−(λ2
−µ2)+Reiθt

Q(Reiθ)
√

(Reiθ+λ)2−(λ2−µ2)
Rieiθdθ − 1

2πi

∫

Ω
e−a

√
(s+λ)2−(λ2

−µ2)+st

Q(s)
√

(s+λ)2−(λ2−µ2)
ds.

On the other hand if R → ∞one can show that integrals along the arcs CR and
C′

Ralso tend to zero. Hence we have

1

2πi

∫ c+i∞

c−i∞

e−a
√

(s+λ)2−(λ2−µ2)+st

Q(s)
√

(s+ λ)2−(λ2 − µ2)
ds=− 1

2πi

∫

Ω

e−a
√

(s+λ)2−(λ2−µ2)+st

Q(s)
√

(s+ λ)2 − (λ2 − µ2)
ds,

now we make a change of variables s+ λ = pin the right hand side integral to get

I = −e−λt

2πi

∫

Ω1

e−a
√

p2−(λ2−µ2)+pt

R(p)
√

p2 − (λ2 − µ2)
dp,

where R(p) = (
√

p2 + (µ2 − λ2) + p)νand Ω1 is obtained by shifting the ellipse

Ω in direction of horizontal axis by λ( if λ > 0shifting to the left and if λ < 0
shifting to the right). Therefore it suffices to evaluate the integralI. This integral
can be rewritten as follows

I = −e−λt

2πi

∫

Ω1

e−a(
√

p2−(λ2−µ2)+p)

R(p)
√

p2 − (λ2 − µ2)
e(t+a)pdp.

Now let us make a change of variables w =
√

p2 − (λ2 − µ2) + p in the above

integral, this is in fact the inverse of the Jokouwsky map p = 1
2 (w + (λ2−µ2)

w
) so

we can transform the ellipse Ω1to a circle of radius r. Therefore we have

I = −e−λt

2πi

∫

|w|=r

e−aw+ 1
2 (t+a)(w+ (λ2

−µ2)
w

) dw

wν+1
,
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now we make a change of variables z =
√

t−a
t+a

w to get

I = −e−λt

2πi
(

√

t− a

t+ a
)ν
∫

|z|=
√

t−a
t+a

r

e
1
2

√
t2−a2(z+ (λ2

−µ2)
z

) dz

zν+1
,

according to the definition of Jokouwsky map if the ellipse Ω1 tends to a line
segment then r tends to λ2 − µ2 therefore one can rewrite the above equation as
below

I = −e−λt

2π
(

√

t− a

t+ a
)ν
∫ π

−π

e
1
2 (λ

2−µ2)
√
t2−a2(eiθ+e−iθ)−iνθdθ

= −e−λt

2π
(

√

t− a

t+ a
)ν
∫ π

−π

e(λ
2−µ2)

√
t2−a2 cos θ cos νθdθ.

On the other hand, using the fact that Iν(x) =
1
2π

∫ π

−π
ex cosα cos να dα (see [15])

then one gets

L−1

{

e−a
√

s2+2λs+µ2

Q(s)
√

s2 + 2λs+ µ2
; s → t

}

= −e−λt(

√

t− a

t+ a
)νIν((λ

2 − µ2)
√

t2 − a2).

Case 2: Assume that λ2 − µ2 < 0 then the branch points of the function F (s) are

s = −λ± i
√

µ2 − λ2 therefore we integrate the function estF (s) along the path Γ2

then we let Rto tend to infinity. Similarly to case 1 we obtain the following result

Figure 2:

L−1

{

e−a
√

s2+2λs+µ2

Q(s)
√

s2 + 2λs+ µ2
; s → t

}

= −e−λt(

√

t− a

t+ a
)νJν((µ

2 − λ2)
√

t2 − a2).

✷
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Lemma 2.3. The following relationship holds true

L−1

{

F (
√

s2 + 2µs+ λ2)

Q(s)
√

s2 + 2µs+ λ2
; t

}

=







−e−λt
∫∞
0

f(u)
√

t−u
t+u

)νIν((µ
2 − λ2)

√
t2 − u2)du, λ2 − µ2 < 0

−e−λt
∫∞
0

f(u)
√

t−u
t+u

)νJν((µ
2 − λ2)

√
t2 − u2)du, λ2 − µ2 > 0

.

Proof: Let us assume that g(t) =
∫ t

0 f(u)du then we know that G(p) = L{g(t); p}
= F (p)

p
in which F (p) = L{f(t); p} so by substituting p =

√

s2 + 2µs+ λ2 we can
write

F (
√

s2 + 2µs+ λ2)

Q(s)
√

s2 + 2µs+ λ2
=

∫ ∞

0

e−t
√

s2+2µs+λ2

Q(s)

(
∫ t

0

f(u)du

)

dt,

changing the order of integrals we have

F (
√

s2 + 2µs+ λ2)

Q(s)
√

s2 + 2µs+ λ2
=

∫ ∞

0

f(u)(

∫ ∞

u

e−t
√

s2+2µs+λ2

Q(s)
dt)du

=

∫ ∞

0

f(u)
e−u

√
s2+2µs+λ2

Q(s)
√

s2 + 2µs+ λ2
du,

now we take inverse of Laplace transform

h(t) = L−1{ F (
√

s2 + 2µs+ λ2)

Q(s)
√

s2 + 2µs+ λ2
; t}

=
1

2πi

∫ c+i∞

c−i∞
est{

∫ ∞

0

f(u)
e−u

√
s2+2µs+λ2

Q(s)
√

s2 + 2µs+ λ2
du}ds.

Once again change the order of integrals to get

h(t) =

∫ ∞

0

f(u)

(

1

2πi

∫ c+i∞

c−i∞

e−u
√

s2+2µs+λ2

Q(s)
√

s2 + 2µs+ λ2
estds

)

du,

therefore by using the solution to the previous theorem we obtain

h(t) =







−e−λt
∫∞
0

f(u)
√

t−u
t+u

)νIν((µ
2 − λ2)

√
t2 − u2)du, λ2 − µ2 < 0

−e−λt
∫∞
0 f(u)

√

t−u
t+u

)νJν((µ
2 − λ2)

√
t2 − u2)du, λ2 − µ2 > 0

.

✷
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3. Evaluation of certain series

Lemma 3.1. The following relationships hold true

∞
∑

n=1

F (n) =

∫ ∞

0

e−
x
2 f(x)

2 sinh x
2

dx =

∫ ∞

0

f(x)

ex − 1
dx, (3.1)

∞
∑

n=1

(−1)nF (n) =

∫ ∞

0

e−
x
2 f(x)

2 cosh x
2

dx =

∫ ∞

0

f(x)

ex + 1
dx (3.2)

in which F (s) = L{f(t); t → s}.

Proof: By using the definition of Laplace transform

F (s) =

∫ ∞

0

e−sxf(x)dx,

the values of the function F (s)for natural arguments will be

F (n) =

∫ ∞

0

e−nxf(x)dx,

at this point, we sum the above relationship over all positive integers to get

∞
∑

n=1

F (n) =

∫ ∞

0

∞
∑

n=1

e−nxf(x)dx =

∫ ∞

0

f(x)

ex − 1
dx =

∫ ∞

0

e−
x
2 f(x)

2 sinh x
2

dx ,

and also

∞
∑

n=1

(−1)n−1F (n)=

∫ ∞

0

∞
∑

n=1

(−1)n−1e−nxf(x)dx=

∫ ∞

0

f(x)

ex + 1
dx=

∫ ∞

0

e−
x
2 f(x)

2 cosh x
2

dx.

✷

Example 3.2. For evaluating the series
∑∞

n=1
8

(2n−1)2+4we use Laplace transform

of the function
f(t) = 2e

t
2 sin t.

We know that F (s) = 2
(s− 1

2 )
2+1

is the Laplace transform of the functionf(t). There-

fore substituting in (??) we get the following result

∞
∑

n=1

2

(n− 1
2 )

2 + 1
=

∫ ∞

0

sin t

sinh t
2

dt.

By integrating of the following function over the closed path indicated in figure 3
we have

1

2πi

∮

Γ

eiz

sinh z
2

dz = 0



New Trends In Laplace Type Integral Transforms 183

Figure 3:

It means that

∫ R

ε
eix

sinh x
2
dx +

∫ 2π

0
ei(R+iy)

sinh (R+iy)
2

idy +
∫ ε

R
ei(x+2πi)

sinh (x+2πi)
2

dx+
∫ −π

2

0
ei(2πi+εeiθ)

sinh
(2πi+εeiθ)

2

iεeiθdθ

−
∫ 2π−ε

ε
ei(iy)

sinh (iy)
2

idy +
∫ 0

π
2

ei(εe
iθ)

sinh (εeiθ)
2

iεeiθdθ = 0,

which by manipulating can be rewritten as below

(1 + e−2π)
∫ +∞
0

eix

sinh x
2
dx = iπ 1−e−2π

1+e−2π − 1
1+e−2π

∫ 2π

0
e−y

sin y
2
dy,

taking the imaginary part of the above relationship one gets

∑∞
n=1

8
(2n−1)2+4 =

∫ +∞
0

sinw
sinh w

2
dw = π 1−e−2π

1+e−2π = π tanhπ.

Example 3.3. Consider the following alternative series
∑∞

n=1
(−1)n4(2n−1)
(2n−1)2+4 .

For evaluating the above series, we use again Laplace transform of the function

f(t) = 2e
t
2 cos t.

It is clear that F (s) = 2s−1
(s− 1

2 )
2+1

is the Laplace transform of the function f(t).

Therefore substituting in (??) we get the following result

∞
∑

n=1

(−1)n(2n− 1)

(n− 1
2 )

2 + 1
=

∫ ∞

0

cos t

cosh t
2

dt,

By using the table of integrals or as previous example by complex integration around
rectangle, we get the following

∞
∑

n=1

(−1)n(2n− 1)

(n− 1
2 )

2 + 1
=

∫ ∞

0

cos t

cosh t
2

dt =
π

cosh 0.5π
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4. Evaluation of certain series containing Legendre polynomials

Definition 4.1. Legendre polynomials are the solutions of the following ordinary
differential equation called Legendre differential equation

d

dx

[

(1− x2)
d

dx
Pn(x)

]

+ n(n+ 1)Pn(x) = 0.

Lemma 4.2. The Legendre polynomials are orthogonal, it means that

∫ 1

−1

Pn(x)Pm(x)dx =
2

2n+ 1
δmn,

or in other words

‖Pn(x)‖ =

√

2

2n+ 1
.

Proof: See [19]. ✷

Theorem 4.3. The following relationship holds true

∞
∑

n=0

(−1)nLn(t)Ln(ξ)

n+ 1
2

= e
t+ξ
2

∫ +∞

0

J0(
tu

2
)J0(

ξ

2u
)

du

u2 + 1
.

Proof. It is well known that the generating function of Legendre polynomials is as
below

∞
∑

n=0

tnPn(x) =
1√

1− 2tx+ t2
,

substituting t = 1− 1
p
in the above relationship we obtain

∞
∑

n=0

(1− 1

p
)nPn(x) =

1
√

1− 2x(1 − 1
p
) + (1− 1

p
)2

=
p

√

p2 − 2xp(p− 1) + (p− 1)2
,

one can rewrite the above relationship as below

∞
∑

n=0

1

p
(1 − 1

p
)nPn(x) =

1
√

2(1− x)
· 1
√

(p− 1
2 )

2 + 1+x
4(1−x)

,

on the other hand we know that L{Ln(t); p} = 1
p
(1− 1

p
)nand

L{J0(
1

2

√

1 + x

1− x
t); p} =

e−
t
2

√

(p− 1
2 )

2 + 1+x
4(1−x)

,
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therefore, if we take inverse Laplace transform of both sides of the above equation,
we get

∞
∑

n=0

Ln(t)Pn(x) =
e

t
2

√

2(1− x)
J0(

t

2

√

1 + x

1− x
).

Hence we can write
( ∞
∑

n=0

Ln(t)Pn(x)

)( ∞
∑

m=0

Lm(ξ)Pm(−x)

)

=
e

t+ξ
2

2
√
1− x2

J0(
t

2

√

1 + x

1− x
)J0(

ξ

2

√

1− x

1 + x
),

in other words

∞
∑

n=0

∞
∑

m=0

(−1)m(Ln(t)Lm(ξ))Pn(x)Pm(x) =
e

t+ξ
2

2
√
1− x2

J0(
t

2

√

1 + x

1− x
)J0(

ξ

2

√

1− x

1 + x
).

If we integrate both sides of the above equation with respect to the variable x from
-1 to 1, because of the orthogonality of the Legendre functions, we get the following
result

∞
∑

n=0

(−1)nLn(t)Ln(ξ)

n+ 1
2

=
1

2
e

t+ξ
2

∫ 1

−1

J0(
t

2

√

1 + x

1− x
)J0(

ξ

2

√

1− x

1 + x
)

dx√
1− x2

.

Making a change of variable u =
√

1+x
1−x

, yields

∞
∑

n=0

(−1)nLn(t)Ln(ξ)

n+ 1
2

= e
t+ξ
2

∫ +∞

0

J0(
tu

2
)J0(

ξ

2u
)

du

u2 + 1
.

Special case: Let t = ξ = 0in the previous lemma then regarding Ln(0) = J0(0) = 1
we will have ∞

∑

n=0

(−1)n

n+ 1
2

=

∫ +∞

0

du

u2 + 1
=

π

2
.

5. Two dimensional Laplace transform

Definition 5.1. Two dimensional Laplace transform of the function f(x, y) is
defined as

F (p, q) =

∫ +∞

0

∫ +∞

0

e−px−qyf(x, y)dxdy, (5.1)

while its inverse is given by

f(x, y) =
1

2πi

∫ c+i∞

c−i∞

∫ c′+i∞

c′−i∞
F (p, q)epx+qydpdq, (5.2)

where F (p, q) is analytic in the regions Rep > c,Req > c′ ( [9], [10], [11] , [16]).



186 A. Aghili
∗

and H. Zeinali

Lemma 5.2. The following relationship holds true

L
p,q
2 {ber(

4
√
xy)

√
xy

} =
π√
pq

J0(
1

8
√
pq

).

Proof: By series expansion of Kelvin function of order zero we have

ber(x) = 1− (x2 )
4

(2!)2
+

(x2 )
8

(4!)2
− · · · =

∞
∑

k=0

(−1)k(x2 )
4k

(2k!)2
,

hence
ber( 4

√
xy)

√
xy

=

∞
∑

k=0

(−1)k(xy)k−
1
2

24k(2k!)2
,

now we take Laplace transform of the above relationship with respect to the vari-
ables x, y

L
p,q
2 {ber(

4
√
xy)

√
xy

} =

∞
∑

k=0

(−1)k

24k(2k!)2
Γ(k + 1

2 )Γ(k + 1
2 )

(pq)k+
1
2

.

Using the elementary relation Γ(m+ 1
2 ) =

(2m)!
√
π

22mm! we obtain

L
p,q
2 {ber(

4
√
xy)

√
xy

} =

∞
∑

k=0

(−1)k

28k
π

(k!)2(pq)k+
1
2

.

on the other hand we have also the following expansion for Bessel’s function

J0(x) = 1− (x2 )
2

12
+

(x2 )
4

12 × 22
− (x2 )

6

12 × 22 × 32
+ · · · =

∞
∑

k=0

(−1)k(x2 )
2k

(k!)2
.

Hence one has

π√
pq

J0(
1

8
√
pq

) = π

∞
∑

k=0

(−1)k( 1√
pq
)2k+1

28k(k!)2
=

∞
∑

k=0

(−1)kπ

28k(k!)2(pq)k+
1
2

,

and finally we get the following result

L
p,q
2 {ber(

4
√
xy)

√
xy

} =
π√
pq

J0(
1

8
√
pq

).

✷

6. Stieltjes transform

Definition 6.1. The generalized Stieltjes transform is defined as follows

F (y) = Sρ{f(t); t toy} =

∫ ∞

0

f(t)

(t+ y)ρ
dt, |argy| < π
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and its inverse is as below [21]

S−1
ρ {F (y); y → t} = − 1

2πi
tρ
∫

C

(1 + y)ρ−1F ′(ty)dy; ρ > 0

In the special case of ρ=1, the above relationship leads to the ordinary Stieltjes
transform

S{f(t); t → y} =

∫ ∞

0

f(t)

t+ y
. (6.1)

Example 6.2. Find the inverse Stieltjes transform of the function 1√
s(s+a)

for

a ∈ R .
Solution. Considering the inverse Stietjes transform of convolution of functions we
have

S−1

{

1√
s(s+ a)

; s → t

}

= S−1

{

1√
s

}

⊗ S−1

{

1

s+ a

}

on the other hand Stieltjes transform is the second iterate of the Laplace transform
hence

S−1

{

1√
s

}

=
1

π
√
t
, S−1

{

1

s+ a

}

= δ(t− a)

therefore the final result will be

S−1

{

1√
s(s+ a)

; s → t

}

= δ(t− a)

∫ ∞

0

1

π
√
u(u− t)

du +
1

π
√
t

∫ ∞

0

δ(u− a)

(u− t)
du

making a change of variable u = w2

S−1

(

1√
s(s− t)

; s → t

)

=
1

π
√
t(a− t)

Lemma 6.3. Assume that S{f(x);x → s} = F (s) then the following relationship
holds true

f(x) =
1

2πi
{F (xe−iπ)− F (xeiπ)} (6.2)

Proof: By definition of inverse Stieltjes transform we have

S−1{F (s); s → x} = − s

2πi

∫

C

F ′(sw)dw

making a change of variable F (sw) = η we will have

S−1{F (s); s → x} = − 1

2πi

∫

C

dη (6.3)
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in which C is a closed simple path avoiding the origin and a branch cut on the
negative x-axis. Therefore we obtain

S−1{F (s); s → x} =
1

2πi
{F (xe−iπ)− F (xeiπ)}

In special case, for q(s) =
√
s one has

L−1{F (
√
s); s → t} =

1

2t
√
πt

∫ ∞

0

τf(τ) exp

(

−τ3

4t

)

dτ

✷

Corollary 6.4. The following relationship holds true

S{sin(a
√
t)J0(b

√
t)} = πe−a

√
sI0(b

√
s)

Proof: Taking inverse Stieltjes transform we have
which could be rewritten as below

S−1{F (s)} =
1

2i

{

eia
√
tI0(ib

√
t)− e−ia

√
tI0(ib

√
t)
}

= sin(a
√
t)J0(b

√
t)

✷

Theorem 6.5 (Schouten-Vanderpol for Stieltjes transform ). Consider the func-
tion f(t) and its Stieltjes transform F (s) which are analytic over the region Res >
s0. If q(s) is another analytic function over Res > s0. Then the inverse Stieltjes
transform of the function F (q(s)) will be obtained as below

S−1{F (q(s))} =
1

2πi
{F (q(te−iπ))− F (q(teiπ))}

Proof: Assume that G(s) = F (q(s)) then from the previous lemma we have

g(t) = S−1{G(s)} =
1

2πi
{G(te−iπ)−G(teiπ)}

it means that

S−1{F (q(s))} =
1

2πi
{F (q(te−iπ))− F (q(teiπ))}

✷

Example 6.6. Solve the following Stieltjes type singular integral equation

∫ ∞

0

φ(t)

t+ s
dt = G(η(s))
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Solution. The above integral equation is indeed the definition of Stieltjes trans-
form, therefore by using the inverse of Stieltjes transform and Schouten-Vanderpol
theorem we can write

φ(t) =
1

2πi
{G(η(te−iπ))−G(η(teiπ))}

Special case: Let us consider the following integral equation

∫ ∞

0

φ(t)

t+ s
dt =

1

s
√
s

therefore, we have

φ(t) =
1

2πi

{

1

(te−iπ)
3
2

− 1

(teiπ)
3
2

}

=
1

πt
√
t

Definition 6.7. Elliptic integrals were first investigated by Giulio Fagnano and
Leonhard Euler. Generally any function f which could be expressed as below is
called an elliptic function

f(x) =

∫ x

c

R(t, P (t))dt,

in which R is a rational function of its two arguments, P is a polynomial of degree
3 or 4 with no repeated roots, and c is a constant.

In general, integrals in this form cannot be expressed in terms of elementary
functions. Exceptions to this general rule are when P has repeated roots, or when
R(x, y) contains no odd powers of y. However, with the appropriate reduction
formula, every elliptic integral can be brought into a form that involves integrals
over rational functions and the three Legendre canonical forms (i.e. the elliptic
integrals of the first, second and third kind).But complete elliptic functions of the
first and second kind can be written as follows

K(k2) =
∫ π

2

0 (1− k2 sin2 θ)−
1
2 dθ = π

2 2F1

(

1
2 ,

1
2 ; 1; k

2
)

,

E(k2) =
∫ π

2

0
(1 − k2 sin θ)

1
2 dθ = π

2 2F1

(

1
2 ,− 1

2 ; 1; k
2
)

.

Example 6.8. The following relationship holds true

Sρ

{

1

1 + t

}

= 2F1

(

1, ρ; ρ+ 1,

(

1− 1

s

))

Solution. Considering the definition of the generalized Stieltjes transform and
changing the variables t+ s = w we have

Sρ

{

1

1 + t

}

=

∫ +∞

0

dt

(t+ s)ρ(1 + t)
=

∫ +∞

s

w−ρ

(w + 1− s)
dw
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which can be rewritten as follows

Sρ

{

1

1 + t

}

=

∫ +∞

s

w−(ρ+1)

{

1− 1− s

w
+

(1− s)2

w2
− . . .

}

=

∫ +∞

s

∞
∑

n=0

(−1)n(1 − s)n

wn+ρ+1
dw

We can rewrite the above relationship by using hyper-geometric functions

Sρ

{

1

1 + t

}

=
1

sρ

∞
∑

n=0

1

n+ ρ

(

1− 1

s

)n

= 2F1

(

1, ρ; ρ+ 1,

(

1− 1

s

))

7. Airy functions

George Biddell Airy (1801–1892) was particularly involved in optics for this rea-
son, he was also interested in the calculation of light intensity in the neighborhood
of a caustic (see [12,13]). For this purpose, he introduced the function defined by
the integral

W (m) =

∫ +∞

0

cos
[π

2
(w3 −mw)

]

dw,

which is the solution of the following differential equation

W ′′ +
π2

12
mW = 0.

In 1928 Jeffreys introduced the notation used nowadays

Ai(x) =
1

2π

∫ ∞

−∞
eit(x+

t2

3 )dt =
1

π

∫ +∞

0

cos

(

t3

3
+ xt

)

dt, (7.1)

which is the solution of the the following homogeneous ODE called Airy ODE

y′′ − xy = 0. (7.2)

7.1. Solution to non homogenous linear KdV via Joint Laplace – Fourier

transforms.

The KdV equations are attracting many researchers, and a great deal of works
has already been done in some of these equations. In this section, we will implement
the joint Laplace – Fourier transforms to construct exact solution for a variant of
the KdV equation.

Problem 1. Solving the following non homogenous linear Kdv.

ut + αu+ βux + γuxxx = Ai(x),
u(x, 0) = f(x).

Solution. By taking joint Laplace – Fourier transform of equation and using bound-
ary condition, we get the following transformed equation
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ˆ̄U(w, s) =
F (w)

s− (iγw3 − iwβ − α)
+

G(w)

s{s− (iγw3 − iwβ − α)} .

For the sake of simplicity, let us assume thatτ = iγw3− iwβ−α, and using inverse
Laplace transform of transformed equation to obtain

Û(w, t)=L−1{F (w)

s− τ
; s− > t}+L−1{ G(w)

s(s− τ)
; s−> t}=F (w)eτt+G(w)

∫ t

0

eτudu.

At this point, inverting Fourier transform to get

u(x, t) =
1√
2π

∫ +∞

−∞
exp(−ixw){F (w)eτ t +G(w)

∫ t

0

eτudu}dw.

By setting back τ = iγw3 − iwβ − α, and changing the order of integration, to get

u(x, t)=
1√
2π

∫ +∞

−∞
exp(−ixw){F (w)e(iγw

3−iwβ−α)t+G(w)

∫ t

0

e(iγw
3−iwβ−α)udu}dw,

or

u(x, t) =
1√
2π

∫ +∞

−∞
exp(−ixw){F (w)e(iγw

3−iwβ−α)t

+
1√
2π

∫ +∞

−∞
exp(−ixw)G(w){

∫ t

0

e(iγw
3−iwβ−α)udu}dw,

equivalently

u(x, t) =
e−αt

√
2π

∫ +∞

−∞
e−i(β+x)wF (w)ei(−γt)w3

+

∫ t

0

e−αu{ 1√
2π

∫ +∞

−∞
e−i(β+x)wG(w)ei(−γu)w3

dw}du.

The inner integrals can be evaluated by convolution for Fourier transform as
below

u(x, t) = e−αt{f(x+ β) ∗Ai( x+ β
3
√−3γt

)} +
∫ t

0

e−αuAi(x+ β) ∗Ai( x+ β
3
√−3γu

) du.

Note. Where * denotes convolution for Fourier transform.

8. Conclusion

The paper is devoted to study Laplace, Stieltjes integral transforms and their
applications in evaluating integrals and series. The authors also discussed La-
guerre series as well. The one dimensional Laplace and Fourier Transforms provide
powerful method for analyzing linear systems. The main purpose of this work is
to develop methods for evaluating some special integrals, series and solution to a
variant of non- homogenous KdV equation.
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