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On the second eigencurve for the p-laplacian operator with weight

A. Dakkak and M. Moussaoui

ABSTRACT: In this paper we establish the existence of the second eigencurves of
the p-laplacian with indefinite weights. we obtain also their asymptotic behavior
and variational formulation.
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1. Introduction

We consider the nonlinear eigenvalue problem

—Apu = dm(z)|[ulP7?u in Q,
{ U = 0 on 090 (1.1)

where Q is a smooth bounded domain in RY, —A,u = —div(|Vul|’">Vu) is the
p-laplacian, 1 < p < +oco and m(.) € MT(Q) = {u € L>®(Q) : meas{z € Q :
m(z) > 0} > 0} is a weight function which can change sign.

The spectrum of p-laplacian operator with indefinite weight is defined as the
set op(—Ap, m, Q) of X = A(m, Q) for which there exists a nontrivial solution u €
WP (€) of problem (1.1), this values are called eigenvalues and the corresponding
solutions are called eigenfunctions.

We will denote a;;(—Ap, m, ) the set of all positive eigenvalues.

For p = 2 (A, = A Laplacian Operator) it is well known (see [10]) that
od (=A,m, Q) = {p(m,Q),k = 1,2...}, with 0 < py(m, Q) < py(m,Q) <
ps(m, ) ... — 400, puy,(m, Q) repeated according to its multiplicity.

For p # 2 (nonlinear problem), the critical point theory of Ljusternik Schnirel-
man (see [11]) provides that o} (=Ap,m, ) contains an infinite sequence of eigen-
values for these problems given by A1 (m, Q) < Aa(m, Q) < A3(m, Q) ... A\ (m, Q) —
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400 and formulated as follows

1
= sup mln/ mlul? (1.1)
)\n(m Kel, ucK

where I',, = {K C S : K is symmetrical, compact and ¢(K) > n}, S is the sphere
unity of WO1 "P(Q) and ¢ is the genus function.
We may also define the negative spectrum when —m € M*(Q) by —o*(=A,, —m,
) which contains an infinite sequence A_j(m, Q) > A_a(m, Q) > A_3(m,Q)... >
A_n(m, Q) — —oo, such that A_,,(m, Q) = =\, (—m, Q) (See [1], [2], [3], [7].-..)-
Whether or not this sequence denoted Ag(m, 2) constitutes the set of all eigenvalues
is an open question when N > 1 and p # 2.
We denote Cy = {(a, ) € R : Xy(am + fm’) = 1}, where m and m’ satisfies the
condition:

m,m € Mt(Q)and m >0 a.e, x €. (Hop)

The purpose of this article is to study the following problem: For o« € R Find
the existence of real numbers S(«) such that (a, f(a)) € Co and the asymptotic
behavior of S(a) as |a| = 400,

Many results have been obtained on this kind of problems (see;[4], [5], [8], in
[5] the authors proved some properties related to the first eigencurve C; such as
concavity, differentiability and the asymptotic behavior, this last property can not
be adapted to the other eigencurves, in [8] the authors have studied this class of
problems under the following assumptions

’

m,m’ € M*(Q)and ess infom > 0. (H)

Several applications can be found in the bifurcation domain, we refer the reader to
[6].

This article is organized as follows, in section 2 we recall some basic result, in
section 3 we study the existence of the eigencurve Cs and in section 4 we study the
asymptotic behavior of Cj.

2. Preliminary results
Firstly we recall the following results which will be used later.
Proposition 2.1. ([3/, [8]). Let n € {1,2,3...}.

1. Form, m € MT(Q), if m <m' (respm <m’), then Ap(m) > Ao (m) (resp

An(m) > Ap(m)).
2. An i m = Ap(m) is continuous in (M*(Q),d(m,m’) = [jm —m'||s) .

Proposition 2.2. . Let (my) be a sequence in MT(Q) such that my — m in
L>(Q), then we have for every n € N*, we have:

lim A, (mg) =400 < m <0a.ex €.

k——+oo
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Proof: Let (mg) be a sequence in MT(Q) such that my — m in L>(£).
Assume first that klim An(my) = 400, we claim that m < 0 almost everywhere
— 400

in §, indeed, if meas{z € Q : m(x) > 0} # 0, we get by proposition2.1

lm A, (mg) = Ap(m)

k— o0
is a finite, which gives a contradiction. Inversely, if m < 0 almost everywhere in
Q, suppose by contradiction that there exists A > 0 and a subsequence (m;)) of

(my) such that
An (M) < A

2\
Let r = )\—(2), Since m;(yy — m in L>(€2), there exists N € N, such that Yk > N,
we have: !
2
My — mlleo < =,

<

hence

2
MRy <M+ - a.e.x € (L.

So, using the fact that m <0 a.e.x € €, we conclude that

2
my < — a.e.x €.
r

It follows that 5

An(migg) = Mn(5) = rAa(2) = 21

Which is a contradiction. The proof is complete. a

3. Existence of the eigencurve Cs

For m € M*(Q), we denote by Q,, = {z € Q: m(z) < 0}, Qf ={z € Q:
m(z) > 0} and QF, = {x € Q:m(x) # 0}.

Theorem 3.1. . Assume (Hp) holds, then we have:
1. For all o € [0, \2(m)], there exists () € RT such that (a, B(a)) € Cs.

2. If meas (Q,,,) > 0, then for all o € [A_2(m), 0], there exists B(a) € RT such
that (o, B(a)) € Ch.

Proof: To prove the first result, we consider the real function h,(.) defined by
ha(t) = Aa(am-+tm ), h, is well defined and continuous in [0, +00[ (see proposition
2.1), on the other hand, if a €]0, A\a(m)], we have:

ha(0) = /\i(?n;’)

L.

IVl
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and for t > 0, we have:

ho(t) = /\g(am+tm:)
= %/\2(%+m)a

hence lim;_, 4o ho(t) = 0, since h, is continuous, we deduce that there exists a

real B(a) € [0,400[ such that h,(B(a)) = 1 that is (o, () € Cy. If @ = 0, we

take B,(a) = Aa(m).

The proof of the second result is similar to the first: For A_s(m) < a < 0, hy is
A—2(m)

well defined, continuous in [0, +oo|, in other hand we have: h,(0) = =2 > 1
and lim;_, ¢ ha () = 0, so we conclude the existence of a real f(a) € [0, +o0] such
that (a, f(a)) € Cy. If @ = A_3(m) we take f(a) = 0. O

Remark 3.2. . Let (o, 8) € Cs
1. If a > Ay(m) then we have 5 < 0.
2. If meas (Q,,) >0 and a < A_2(m) then we have B < 0.

Indeed, if & > A2(m) and S > 0, we have:
am < am + ﬁm,,
SO

Az(m)

«

)\g(am—i—ﬁm/) < Aa(am) = <1,

hence, if Ap(am + Bm’) = 1 necessarily we have § < 0. The case a < A_o(m) is
similar.

Theorem 3.3. . Assume Hy, we have:

1. For each B € R*~, there exists a unique of () in R** such that (af (B),B) €
Cs.

2. If meas (Q,,) > 0, then for each € R*~, there exists a unique oy (B) € R*~
such that (a5 (8), ) € Cs.

3. If meas (§2,,,) = 0, then for each o € R*~, there exists a unique By(a) € R
such that (a, By(r)) € Ca.

Proof: To prove the first result, we take 8 < 0 and we define o (3) as follows:

1 m|u|P
- = sup inf fQ—",
a3 (B)  Ker,uek 1—f [om'|ulp

By definition of a5 (8) and the property of A\a(m) (see [3]), we deduce that there
exists eigenfunction u which change sign in 2 such that:

/(|Vu|p72Vqu—ﬂm/|u|p72uw) = / ag (B)m|ulP~uw, (3.1)
Q Q
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Yw € W, P(Q), we deduce also that, if ¢ € WyP(Q) is eigenfunction of —A,(.) —
Bm’|()|P~2(.) which change singe in © with the corresponding eigenvalue A > 0
then \ > ag (8). From (3.1), we get

/ |VuP~2VuVw = / (af (B)ym + Bm))|ulP"2uw  Vw € WP (), (3.2)
Q Q

hence the real 1 is eigenvalue of —A, with weight (aj (8)m + ﬂm/), since the
corresponding eigenfunction u change singe in {2, we conclude that:

ooz (B)m + m’) < 1. (3.3)
In other hand, let K € I'y, we have

m|v|P
min fQ | |/ < — 0
vekK 1 — ﬂfQ m'|[v|P T ag (B)

and

. me|v|p B fQ m|vg|P
min y = ;
ueKl—ﬂme|v|P 1fﬂf9m|vk|p

so we deduce

for some vy, € K,

min/(a;(ﬁ)mw + BmolP) < 1,
Q

veK

taking account that K € I's is arbitrary, we get

1 B _ . ,
Xo(ag (B)ym + Bm') ;‘611132 min /Q(ozz (BYm + Pm )|v]P <1,

Aa(af (B)ym + Bm') > 1 (3.4)

(3.3) and (3.4) gives
ooz (B)m + pm’) = 1.

Let v > 0 such that Ao(ym + ﬂm/) = 1, there exists eigenfunction 6 change singe
in Q and

/ |VO|P2VOVw = /('mer Bm)0P20w Yw e WyP(Q),
Q Q
hence

- w— Bm’ ||P~ w=-7 [ m0F 0w Ywe ’ , 3.5
VO[P2VoVw — fm 0]P~20 0P 20w  Yw € WyP(Q
Q Q

from (3.5), we conclude that ~ is eigenvalue of the operator —A,(.) — Bm'|(.)[?~2(.)
with weight m, since the eigenfunction 6 change singe, we conclude that:

7> a3(B).
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Assume by contradiction that v > ag (8).
So

1_ 1 . Jomlv[?
— = sup min ——=—————,
v af(B)  Ker,vek 1—p [om/|v|p

by the inequality above we deduce that there exists Ky € I's such that

since K is compact, we conclude that

1 fQ m|vo|P

e €K
~ 1 —ﬂfﬂm |’U0|p7 Oor some vg 05

hence
1< n}l(igl/g(vm + Bm ) ul?,
it follows that
1

1< su min/ m—l—ﬁm, =" =1,
KelEZUGK sz(7 el A2(ym + Bm”)

which is a contradiction, hence we have v = of (3).
The conclusion (2) of the theorem is similar to that of 1, we define a; () as follows

P
_1 = inf max —fQ m|u|/ .
a; (B) Kersuek 1—f [m'[ulp

To prove conclusion (3), we consider the coercive operator —A,(.) —am|(.)[P~2(.),
we define 5, («) as follows

1 ul?
P i
Bola)  Ker,uek 1 — ozfﬂ m|ulP

by the same proof as the first, we deduce the result, taking account that, for 5 < 0,
am + fm & MT(Q). O
4. Asymptotic behavior of (5

Theorem 4.1. . Assume (Hp) holds, then we have:

2. If mes(2;,,) > 0, then

limg_, oo %(ﬁ) = —esssupg - %
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Proof: Verification of the first result, indeed for each 8 < 0 there exists ag (8) > 0
such that: ,
Aa(ag (B)m + pm ) = 1,

so we have
af (Bym+Bm’ >0inQ, CQ  with meas (24) > 0,

hence necessarily €, C Q| if follows that:

_at ’
M > m inQ, c Qf,
B m
thus
o —ag (B) oom
léglirg QT > ess mfgm%. (4.1)
ot
Let k = limsupg_, _, QQT(M, for a subsequence (f,,) (8,, = —o0), we have:
_a;(ﬁn) —CY;_ Bn)m !

n—-+o0o ﬂn

—m' = km—min L>(Q), and —f,, — +00, from proposition 2.2

+

. — m

since —2—"— (Bn)
n

we conclude that: km —m <0 almost every where in €2, hence

, m
k < essinfy+ P (4.2)
By (4.1) and (4.2), we deduce that

lim —OZ;— ﬁ(ﬂ>

B——o00

’

L
= —essinf,+ —.

L
The proof of conclusion 2 is similar to that of the previous. O

Theorem 4.2. . Assume (Hp) and m > 0 in Q, then we have:

o , m
lim Bale) = —essinfor —.
a——00 « m’ m

Proof: For each a < 0 there exists 85(c) > 0 such that Ay(am + By(a)m’) =1
(see theorem 3.3), thus we have

am + By(e)m’ > 0 in Qq with meas (Q24) > 0,
so necessarily {2, C 2* ,, hence we deduce that:

lim inf M > essinfo-  —. (4.3)

3
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Let k = limsup,,_,_ . Using the same argument as in the proof of theo-

—Bs(a)
Q@
rem4.1, we get

. m
k < essinf o+ ~.
’
m MM

So by (4.3), we conclude that:

lim M = essinfg- m,
a——00 o m
O
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