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1 Introduction

We consider the nonlinear eigenvalue problem{
−∆pu = λm(x)|u|p−2u in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN , −∆pu = −div(|∇u|p−2∇u) is
the p-laplacian, 1 < p < +∞ and m(.) ∈ M+(Ω) = {u ∈ L∞(Ω) : meas{x ∈
Ω : m(x) > 0} > 0} is a weight function which can change sign.

The spectrum of p-laplacian operator with indefinite weight is defined
as the set σp(−∆p,m,Ω) of λ = λ(m,Ω) for which there exists a nontrivial
solution u ∈ W 1,p

0 (Ω) of problem (1.1), this values are called eigenvalues and
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the corresponding solutions are called eigenfunctions.
We will denote σ+

p (−∆p,m,Ω) the set of all positive eigenvalues.
For p = 2 (∆p = ∆ Laplacian Operator) it is well known ( see [11]) that

σ+
p (−∆p,m,Ω) = {µk(m,Ω), k = 1, 2 . . .}, with 0 < µ1(m,Ω) < µ2(m,Ω) ≤
µ3(m,Ω) . . .→ +∞, µk(m,Ω) repeated according to its multiplicity.

For p 6= 2 (nonlinear problem), the critical point theory of Ljusternik
Schnirelman ( see [12]) provides that σ+

p (−∆p,m,Ω) contains an infinite se-
quence of eigenvalues for these problems given by λ1(m,Ω) < λ2(m,Ω) ≤
λ3(m,Ω) . . . λn(m,Ω)→ +∞ and formulated as follows

1

λn(m)
= sup

K∈Γn

min
u∈K

∫
Ω

m|u|p (1)

where Γn is defined by :

Γn = {K ⊂ S : K is symmetrical, compact and ξ(K) ≥ n},

S is the sphere unity of W 1,p
0 (Ω) and ξ is the genus function.

We may also define the negative spectrum when−m ∈M+(Ω) by−σ+(−∆p,−m,Ω)
which contains an infinite sequence λ−1(m,Ω) > λ−2(m,Ω) ≥ λ−3(m,Ω) . . . ≥
λ−n(m,Ω) → −∞, such that λ−n(m,Ω) = −λn(−m,Ω) (See [1], [2], [3],
[7]. . . ).
Whether or not this sequence denoted λk(m,Ω) constitutes the set of all ei-
genvalues is an open question when N > 1, m 6= 1 and p 6= 2.

The purpose of this article is to study the following problem :
Find the real numbers α, β2(α) such that λ2(αm1 + β2(α)m2) = 1 and
the asymptotic behavior of the eigencurve C2 = {(α, β2(α)) : λ2(αm1 +
β2(α)m2) = 1 }, where m1 and m2 satisfies only the condition :

(H0) m1,m2 ∈M+(Ω) and m2 ≥ 0 in Ω.

Several applications can be found in the bifurcation domain, we refer the
reader to [6].
Many results have been obtained on this kind of problems (see ;[4], [5], [8],
[9]), in [5] the authors proved some properties related to the first eigencurve
C1 such as concavity, defferentiability and the asymptotic behavior, this last
property can not be adapted to the other eigencurves, in [8] the authors have
studied this class of problems under the following assumptions

(H
′
) m1,m2 ∈M+(Ω) and ess infΩm2 > 0.
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In [9], the authors proved some results under the assumptions :

(H
′′
) m1,m2 ∈M+(Ω) and ess inf Ω?

m1
m2 > 0,

where Ω?
m1

= {x ∈ Ω : m1(x) 6= 0}.
This article is organized as follows, in section 2 we recall some basic result,

in section 3 we study the existence of the eigencurve C2 and in section 4 we
study the asymptotic behavior of C2.

2 Preliminary results

Firstly we recall the following results which will be used later.

Proposition 2.1 ([3], [8])

1. Let m, m
′ ∈ M+(Ω). If m ≤ m

′
(resp m < m

′
), then λn(m) ≥ λn(m

′
)

(resp λn(m) > λn(m
′
)).

2. λn : m→ λn(m) is continuous in (M+(Ω), ||.||∞).

Proposition 2.2 Let (mk) be a sequence in M+(Ω) such that mk → m in
L∞(Ω), then we have :

lim
k→+∞

λn(mk) = +∞ if and only if m ≤ 0 almost everywhere in Ω.

Proof.
Let (mk) be a sequence in M+(Ω) such that mk → m in L∞(Ω).
Assume first that lim

k→+∞
λn(mk) = +∞, we claim that m ≤ 0 almost everyw-

here in Ω, indeed, if meas{x ∈ Ω : m(x) > 0} 6= 0, we get

lim
k→+∞

λn(mk) = λn(m)

is a finite, which gives a contradiction.
Inversely, if m ≤ 0 almost everywhere in Ω, suppose by contradiction that
there exists λ > 0 such that

λn(mk) ≤ λ ∀k ∈ N?

Let r =
2λ

λn(2)
, Since mk → m in L∞(Ω), there exists N ∈ N, such that

∀k ≥ N , we have :

||mk −m||∞ ≤
2

r
,



4

hence

mk ≤ m+
2

r
p.p.x ∈ Ω.

So, using the fact that m ≤ 0 p.p.x ∈ Ω, we conclude that

mk ≤
2

r
p.p.x ∈ Ω.

It follows that

λn(mk) ≥ λn(
2

r
) = rλn(2) = 2λ.

Which is a contradiction. The proof is complete.

3 Existence of the eigencurve C2

For m ∈ M+(Ω), we denote by Ω−m = {x ∈ Ω : m(x) < 0} and Ω+
m =

{x ∈ Ω : m(x) > 0}.

Theorem 3.1 Assume (H0) holds, then we have :

1. For all α ∈ [0, λ2(m1)], there exists β2(α) ∈ R+ such that λ2(αm1 +
β2(α)m2) = 1.

2. If α > λ2(m1), we have,

λ2(αm1 + βm2) = 1⇒ β < 0.

3. for all β < 0 there exists α+
2 (β) > 0 such that :

(i) λ2(α+
2 (β)m1 + βm2) = 1.

(ii) if γ > 0 and λ2(γm1 + βm2) = 1 then γ = α+
2 (β).

4. Assume meas (Ω−m1
) > 0, we have :

(i) if α < λ−2(m1) then, λ2(αm1 + βm2) = 1⇒ β < 0.
(ii) For all β < 0 there exists α−2 (β) such that :
(a) λ2(α−2 (β)m1 + βm2) = 1.
(b) if γ < 0 and λ2(γm1 + βm2) = 1 then γ = α−2 (β).

5. Assume meas (Ω−m1
) = 0, then for all α < 0 there exists β+(α) such

that
λ2(αm1 + βm2) = 1⇔ β = β+(α).

Proof.
1. We consider the real function hα(.) defined by hα(t) = λ2(αm1 + tm2), hα



5

is decreasing and continuous in [0,+∞[ (see proposition 2.1), in other hand :
If α ∈]0, λ2(m1)], we have :

hα(0) = λ2(αm1)

= λ2(m1)
α

≥ 1.

and for t > 0, we have :

hα(t) = λ2(αm1 + tm2)
= 1

t
λ2(αm1

t
+m2),

hence
lim
t→+∞

hα(t) = 0.

Thus, since hα is continuous, we deduce that there exists a real β2(α) ∈
[0,+∞[ such that hα(β2(α)) = 1.
If α = 0, we take β2(α) = λ2(m2).
2. Assume that α > λ2(m1).
For β ≥ 0, we have :

αm1 ≤ αm1 + βm2,

so

λ2(αm1 + βm2) ≤ λ2(αm1) =
λ2(m1)

α
< 1,

hence, if λ2(αm1 + βm2) = 1 necessarily we have β < 0.
3. (i). We denote by Γ2 = {K ∈ S, K is compact, symmetric and ξ(K) ≥
2}, where ξ is the genus function and S = {u ∈ W 1,p

0 (Ω) :
∫

Ω
|∇u|p = 1}.

For β < 0 we define α+
2 (β) as follows :

1

α+
2 (β)

= sup
K∈Γ2

inf
u∈K

∫
Ω
m1|u|p

1− β
∫

Ω
m2|u|p

.

By definition of α+
2 (β) and the property of λ2(m) (see [3]), we deduce that

there exists eigenfunction u which change sign in Ω such that :∫
Ω

|∇u|p−2∇u∇w − βm2|u|p−2uw =

∫
Ω

α+
2 (β)m1|u|p−2uw ∀w ∈ W 1,p

0 (Ω),

(2)
we deduce also that, if ϕ ∈ W 1,p

0 (Ω) is eigenfunction of −∆p − βm2, change
singe in Ω with the corresponding eigenvalue λ > 0 that is :∫

Ω

|∇ϕ|p−2∇ϕ∇w− βm2|ϕ|p−2ϕw = λ

∫
Ω

m1|ϕ|p−2ϕw ∀w ∈ W 1,p
0 (Ω), (3)
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then λ ≥ α+
2 (β).

From (2), we get∫
Ω

|∇u|p−2∇u∇w =

∫
Ω

(α+
2 (β)m1 + βm2)|u|p−2uw ∀w ∈ W 1,p

0 (Ω), (4)

hence the real 1 is eigenvalue of −∆p with weight (α+
2 (β)m1 + βm2), since

the corresponding eigenfunction u change singe in Ω, we conclude that :

λ2(α+
2 (β)m1 + βm2) ≤ 1. (5)

In other hand, let K ∈ Γ2, we have

min
v∈K

∫
Ω
m1|v|p

1− β
∫

Ω
m2|v|p

≤ 1

α+
2 (β)

,

and

min
v∈K

∫
Ω
m1|v|p

1− β
∫

Ω
m2|v|p

=

∫
Ω
m1|vk|p

1− β
∫

Ω
m2|vk|p

for some vk ∈ K,

so we deduce :

min
v∈K

∫
Ω

(α+
2 (β)m1|v|p + βm2|v|p) ≤ 1,

taking cont that K ∈ Γ2 is arbitrary, we get

1

λ2(α+
2 (β)m1 + βm2)

= sup
K∈Γ2

min
v∈K

∫
Ω

(α+
2 (β)m1 + βm2)|v|p ≤ 1,

so
λ2(α+

2 (β)m1 + βm2) ≥ 1 (6)

(5) and (6) gives
λ2(α+

2 (β)m1 + βm2) = 1.

3. (ii). Let γ > 0 such that λ2(γm1 + βm2) = 1, there exists eigenfunction θ
change singe in Ω and∫

Ω

|∇θ|p−2∇θ∇w =

∫
Ω

(γm1 + βm2)|θ|p−2θw ∀w ∈ W 1,p
0 (Ω),

hence∫
Ω

|∇θ|p−2∇θ∇w − βm2|θ|p−2θw = γ

∫
Ω

m1|θ|p−2θw ∀w ∈ W 1,p
0 (Ω), (7)

from (7), we conclude that γ is eigenfunction of the operator (−∆p − βm2)
with weight m1, since the eigenfunction θ change singe, we conclude that :

γ ≥ α+
2 (β).
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Assume by contradiction that γ > α+
2 (β).

So
1

γ
<

1

α+
2 (β)

= sup
K∈Γ2

min
v∈K

∫
Ω
m1|v|p

1− β
∫

Ω
m2|v|p

,

by the inequality above we deduce that there exists K0 ∈ Γ2 such that

1

γ
< min

v∈K0

∫
Ω
m1|v|p

1− β
∫

Ω
m2|v|p

,

since K0 is compact, we conclude that

1

γ
<

∫
Ω
m1|v0|p

1− β
∫

Ω
m2|v0|p

, for some v0 ∈ K0,

hence

1 < min
K0

∫
Ω

(γm1 + βm2)|v|p,

it follows that

1 < sup
K∈Γ2

min
v∈K

∫
Ω

(γm1 + βm2)|v|p =
1

λ2(γm1 + βm2)
= 1,

which is a contradiction, hence we have γ = α+
2 (β).

4 (i) α < λ−2(m1). We consider the real function hα(.) defined by hα(t) =

λ2(αm1 + tm2), since hα(0) = λ−2(m1)
α

< 1, then necessarily we have

hα(β) = 1⇒ β < 0,

that is
λ2(αm1 + βm2) = 1⇒ β < 0.

4 (ii). We define α−2 (β) as follows

1

α−2 (β)
= inf

K∈Γ2

max
u∈K

∫
Ω
m1|u|p

1− β
∫

Ω
m2|u|p

,

the proof is similar to that of 3.
5. In this case we consider the coercive operator −∆p−αm1, we define β+(α)
as follows

β+(α) = sup
K∈Γ2

inf
u∈K

∫
Ω
m2|u|p

1− α
∫

Ω
m1|u|p

,

taking cont that, for β < 0, αm1 + βm2 /∈M+(Ω), by the same proof as 3 of
theorem , we deduce the result.
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4 Asymptotic behavior of C2

Theorem 4.1 Assume (H0) holds, then we have :

1. limβ→−∞
α+
2 (β)

β
= −inf essΩ+

m1

m2

m1
.

2. If mes(Ω−m1
) > 0, then

limβ→−∞
α−2 (β)

β
= −sup essΩ−m1

m2

m1
.

Proof.
1. For each β < 0 there exists α+

2 (β) > 0 such that :

λ2(α+
2 (β)m1 + βm2) = 1,

so we have

α+
2 (β)m1 + βm2 > 0 in Ωα ⊂ Ω with meas (Ωα) > 0,

hence necessarily Ωα ⊂ Ω+
m1

, if follows that :

−α+
2 (β)

β
>
m2

m1

in Ωα ⊂ Ω+
m1
,

thus

lim inf
β→−∞

−α+
2 (β)

β
≥ inf essΩ+

m1

m2

m1

. (8)

Let k = lim supβ→−∞
−α+

2 (β)

β
, for a subsequence (βn) (βn → −∞), we have :

lim
n→+∞

−α+
2 (βn)

βn
= k,

and
λ2(α+

2 (βn)m1 + βnm2) = 1,

then

λ2(
−α+

2 (βn)m1

βn
−m2) = −βn,

since
−α+

2 (βn)m1

βn
−m2 → km1 −m2 in L∞(Ω), and −βn → +∞, from propo-

sition 2.2 we conclude that :

km1 −m2 ≤ 0 almost every where in Ω,

hence
k ≤ inf essΩ+

m1

m2

m1

(9)
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By (8) and (9), we deduce that

lim
β→−∞

α+
2 (β)

β
= −inf essΩ+

m1

m2

m1

.

The proof of 2) is similar to that of the previous.

Theorem 4.2 Assume (H0) and m1 ≥ 0 in Ω, then we have :

lim
α→−∞

β+
2 (α)

α
= −inf essΩ?

m2

m1

m2

.

Proof.
For each α < 0 there exists β+

2 (α) > 0 such that λ2(αm1 + β+
2 (α)m2) = 1

(see theorem 3.1), thus we have

αm1 + β+
2 (α)m2 > 0 in Ωα with meas (Ωα) > 0,

so necessarily Ωα ⊂ Ω?
m2

, hence we deduce that :

lim inf
α→−∞

−β+
2 (α)

α
≥ inf ess Ω?

m2

m1

m2

. (10)

Let k = lim supα→−∞
−β+

2 (α)

α
.

Using the same argument as in the proof of theorem4.2, we get

k ≤ inf ess Ω?
m2

m1

m2

.

So by (10), we conclude that :

lim
α→−∞

−β+
2 (α)

α
= inf ess Ω?

m2

m1

m2

.
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Poincaré, Anal. non linéaire, 5,(1988), pp.119-139.

[13] N. Tsouli, Etude de l’ensemble nodal des fonctions propres et de la non-
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