On the second eigencurve for the p-laplacian operator with weight

A.DAKKAK⁽¹⁾, M.MOUSSAOUI⁽²⁾

- $1.\ Laboratory-LSI-\ sidi\ Mohamed\ ben\ Abdellah\ University,\ polydisciplinary,\ Faculty\ of\ TAZA,\ MOROCCO$
- $2. \ Regional \ Center \ of \ Trads \ Education \ and \ Training, \ TAZA, \ MOROCCO$ dakkakahmed@hotmail.com $mmoussaoui_2@yahoo.fr$

Abstract. In this paper we establish the existence of the second eigencurves of the p-laplacian with indefinite weights. we obtain also their asymptotic behavior and variational formulation.

Submitted August 2015.

2000 Mathematic Subject Classification 35j48; 35j65; 35j60; 47j30; 58E05.....

Key words: eigencurves; p-laplacian; asymptotic behavior; variational formulation. ¹

1 Introduction

We consider the nonlinear eigenvalue problem

$$\begin{cases}
-\Delta_p u = \lambda m(x)|u|^{p-2}u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where Ω is a smooth bounded domain in \mathbb{R}^N , $-\Delta_p u = -div(|\nabla u|^{p-2}\nabla u)$ is the p-laplacian, $1 and <math>m(.) \in M^+(\Omega) = \{u \in L^\infty(\Omega) : \text{meas}\{x \in \Omega : m(x) > 0\} > 0\}$ is a weight function which can change sign.

The spectrum of p-laplacian operator with indefinite weight is defined as the set $\sigma_p(-\Delta_p, m, \Omega)$ of $\lambda = \lambda(m, \Omega)$ for which there exists a nontrivial solution $u \in W_0^{1,p}(\Omega)$ of problem (1.1), this values are called eigenvalues and

^{1. 2000} Mathematic Subject Classification $35j48\,;\,35j65\,;\,35j60\,;\,47j30\,;\,58E05.....$

the corresponding solutions are called eigenfunctions.

We will denote $\sigma_p^+(-\Delta_p, m, \Omega)$ the set of all positive eigenvalues.

For p = 2 ($\Delta_p = \Delta$ Laplacian Operator) it is well known (see [11]) that $\sigma_p^+(-\Delta_p, m, \Omega) = \{\mu_k(m, \Omega), k = 1, 2...\}$, with $0 < \mu_1(m, \Omega) < \mu_2(m, \Omega) \le \mu_3(m, \Omega) ... \to +\infty$, $\mu_k(m, \Omega)$ repeated according to its multiplicity.

For $p \neq 2$ (nonlinear problem), the critical point theory of Ljusternik Schnirelman (see [12]) provides that $\sigma_p^+(-\Delta_p, m, \Omega)$ contains an infinite sequence of eigenvalues for these problems given by $\lambda_1(m,\Omega) < \lambda_2(m,\Omega) \leq \lambda_3(m,\Omega) \dots \lambda_n(m,\Omega) \to +\infty$ and formulated as follows

$$\frac{1}{\lambda_n(m)} = \sup_{K \in \Gamma_n} \min_{u \in K} \int_{\Omega} m|u|^p \tag{1}$$

where Γ_n is defined by :

$$\Gamma_n = \{ K \subset S : K \text{ is symmetrical, compact and } \xi(K) \ge n \},$$

S is the sphere unity of $W_0^{1,p}(\Omega)$ and ξ is the genus function.

We may also define the negative spectrum when $-m \in M^+(\Omega)$ by $-\sigma^+(-\Delta_p, -m, \Omega)$ which contains an infinite sequence $\lambda_{-1}(m,\Omega) > \lambda_{-2}(m,\Omega) \geq \lambda_{-3}(m,\Omega) \dots \geq \lambda_{-n}(m,\Omega) \rightarrow -\infty$, such that $\lambda_{-n}(m,\Omega) = -\lambda_n(-m,\Omega)$ (See [1], [2], [3], [7]...).

Whether or not this sequence denoted $\lambda_k(m,\Omega)$ constitutes the set of all eigenvalues is an open question when N > 1, $m \neq 1$ and $p \neq 2$.

The purpose of this article is to study the following problem: Find the real numbers α , $\beta_2(\alpha)$ such that $\lambda_2(\alpha m_1 + \beta_2(\alpha)m_2) = 1$ and the asymptotic behavior of the eigencurve $C_2 = \{(\alpha, \beta_2(\alpha)) : \lambda_2(\alpha m_1 + \beta_2(\alpha)m_2) = 1\}$, where m_1 and m_2 satisfies only the condition:

$$(H_0)$$
 $m_1, m_2 \in M^+(\Omega) \text{ and } m_2 \geq 0 \text{ in } \Omega.$

Several applications can be found in the bifurcation domain, we refer the reader to [6].

Many results have been obtained on this kind of problems (see;[4], [5], [8], [9]), in [5] the authors proved some properties related to the first eigencurve C_1 such as concavity, defferentiability and the asymptotic behavior, this last property can not be adapted to the other eigencurves, in [8] the authors have studied this class of problems under the following assumptions

$$(H')$$
 $m_1, m_2 \in M^+(\Omega)$ and ess $\inf_{\Omega} m_2 > 0$.

In [9], the authors proved some results under the assumptions :

$$(H'')$$
 $m_1, m_2 \in M^+(\Omega) \text{ and ess inf } \Omega_{m_1}^{\star} m_2 > 0,$

where
$$\Omega_{m_1}^* = \{ x \in \Omega : m_1(x) \neq 0 \}.$$

This article is organized as follows, in section 2 we recall some basic result, in section 3 we study the existence of the eigencurve C_2 and in section 4 we study the asymptotic behavior of C_2 .

2 Preliminary results

Firstly we recall the following results which will be used later.

Proposition 2.1 ([3], [8])

- 1. Let $m, m' \in M^+(\Omega)$. If $m \leq m'$ (resp m < m'), then $\lambda_n(m) \geq \lambda_n(m')$ (resp $\lambda_n(m) > \lambda_n(m')$).
- 2. $\lambda_n: m \to \lambda_n(m)$ is continuous in $(M^+(\Omega), ||.||_{\infty})$.

Proposition 2.2 Let (m_k) be a sequence in $M^+(\Omega)$ such that $m_k \to m$ in $L^{\infty}(\Omega)$, then we have :

$$\lim_{k \to +\infty} \lambda_n(m_k) = +\infty \text{ if and only if } m \leq 0 \text{ almost everywhere in } \Omega.$$

Proof.

Let (m_k) be a sequence in $M^+(\Omega)$ such that $m_k \to m$ in $L^{\infty}(\Omega)$. Assume first that $\lim_{k \to +\infty} \lambda_n(m_k) = +\infty$, we claim that $m \le 0$ almost everywhere in Ω , indeed, if meas $\{x \in \Omega : m(x) > 0\} \ne 0$, we get

$$\lim_{k \to +\infty} \lambda_n(m_k) = \lambda_n(m)$$

is a finite, which gives a contradiction.

Inversely, if $m \leq 0$ almost everywhere in Ω , suppose by contradiction that there exists $\lambda > 0$ such that

$$\lambda_n(m_k) \le \lambda \quad \forall k \in \mathbb{N}^*$$

Let $r = \frac{2\lambda}{\lambda_n(2)}$, Since $m_k \to m$ in $L^{\infty}(\Omega)$, there exists $N \in \mathbb{N}$, such that $\forall k \geq N$, we have:

$$||m_k - m||_{\infty} \le \frac{2}{r},$$

hence

$$m_k \le m + \frac{2}{r} \quad p.p.x \in \Omega.$$

So, using the fact that $m \leq 0$ $p.p.x \in \Omega$, we conclude that

$$m_k \le \frac{2}{r} \quad p.p.x \in \Omega.$$

It follows that

$$\lambda_n(m_k) \ge \lambda_n(\frac{2}{r}) = r\lambda_n(2) = 2\lambda.$$

Which is a contradiction. The proof is complete.

3 Existence of the eigencurve C_2

For $m \in M^+(\Omega)$, we denote by $\Omega_m^- = \{x \in \Omega : m(x) < 0\}$ and $\Omega_m^+ = \{x \in \Omega : m(x) > 0\}$.

Theorem 3.1 Assume (H_0) holds, then we have :

- 1. For all $\alpha \in [0, \lambda_2(m_1)]$, there exists $\beta_2(\alpha) \in \mathbb{R}^+$ such that $\lambda_2(\alpha m_1 + \beta_2(\alpha)m_2) = 1$.
- 2. If $\alpha > \lambda_2(m_1)$, we have,

$$\lambda_2(\alpha m_1 + \beta m_2) = 1 \Rightarrow \beta < 0.$$

- 3. for all $\beta < 0$ there exists $\alpha_2^+(\beta) > 0$ such that :
 - (i) $\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2) = 1.$
 - (ii) if $\gamma > 0$ and $\lambda_2(\gamma m_1 + \beta m_2) = 1$ then $\gamma = \alpha_2^+(\beta)$.
- 4. Assume meas $(\Omega_{m_1}^-) > 0$, we have :
 - (i) if $\alpha < \lambda_{-2}(m_1)$ then, $\lambda_2(\alpha m_1 + \beta m_2) = 1 \Rightarrow \beta < 0$.
 - (ii) For all $\beta < 0$ there exists $\alpha_2^-(\beta)$ such that :
 - (a) $\lambda_2(\alpha_2^-(\beta)m_1 + \beta m_2) = 1.$
 - (b) if $\gamma < 0$ and $\lambda_2(\gamma m_1 + \beta m_2) = 1$ then $\gamma = \alpha_2^-(\beta)$.
- 5. Assume meas $(\Omega_{m_1}^-) = 0$, then for all $\alpha < 0$ there exists $\beta^+(\alpha)$ such that

$$\lambda_2(\alpha m_1 + \beta m_2) = 1 \Leftrightarrow \beta = \beta^+(\alpha).$$

Proof.

1. We consider the real function $h_{\alpha}(.)$ defined by $h_{\alpha}(t) = \lambda_2(\alpha m_1 + t m_2), h_{\alpha}(.)$

is decreasing and continuous in $[0, +\infty[$ (see proposition 2.1), in other hand : If $\alpha \in]0, \lambda_2(m_1)]$, we have :

$$h_{\alpha}(0) = \lambda_{2}(\alpha m_{1})$$

$$= \frac{\lambda_{2}(m_{1})}{\alpha}$$

$$> 1.$$

and for t > 0, we have :

$$h_{\alpha}(t) = \lambda_{2}(\alpha m_{1} + t m_{2})$$
$$= \frac{1}{t}\lambda_{2}(\frac{\alpha m_{1}}{t} + m_{2}),$$

hence

$$\lim_{t \to +\infty} h_{\alpha}(t) = 0.$$

Thus, since h_{α} is continuous, we deduce that there exists a real $\beta_2(\alpha) \in [0, +\infty[$ such that $h_{\alpha}(\beta_2(\alpha)) = 1$.

If $\alpha = 0$, we take $\beta_2(\alpha) = \lambda_2(m_2)$.

2. Assume that $\alpha > \lambda_2(m_1)$.

For $\beta \geq 0$, we have :

$$\alpha m_1 \leq \alpha m_1 + \beta m_2$$

SO

$$\lambda_2(\alpha m_1 + \beta m_2) \le \lambda_2(\alpha m_1) = \frac{\lambda_2(m_1)}{\alpha} < 1,$$

hence, if $\lambda_2(\alpha m_1 + \beta m_2) = 1$ necessarily we have $\beta < 0$.

3. (i). We denote by $\Gamma_2 = \{K \in S, K \text{ is compact, symmetric and } \xi(K) \geq 2\}$, where ξ is the genus function and $S = \{u \in W_0^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^p = 1\}$. For $\beta < 0$ we define $\alpha_2^+(\beta)$ as follows:

$$\frac{1}{\alpha_2^+(\beta)} = \sup_{K \in \Gamma_2} \inf_{u \in K} \frac{\int_{\Omega} m_1 |u|^p}{1 - \beta \int_{\Omega} m_2 |u|^p}.$$

By definition of $\alpha_2^+(\beta)$ and the property of $\lambda_2(m)$ (see [3]), we deduce that there exists eigenfunction u which change sign in Ω such that:

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w - \beta m_2 |u|^{p-2} uw = \int_{\Omega} \alpha_2^+(\beta) m_1 |u|^{p-2} uw \quad \forall w \in W_0^{1,p}(\Omega),$$

we deduce also that, if $\varphi \in W_0^{1,p}(\Omega)$ is eigenfunction of $-\Delta_p - \beta m_2$, change singe in Ω with the corresponding eigenvalue $\lambda > 0$ that is:

$$\int_{\Omega} |\nabla \varphi|^{p-2} \nabla \varphi \nabla w - \beta m_2 |\varphi|^{p-2} \varphi w = \lambda \int_{\Omega} m_1 |\varphi|^{p-2} \varphi w \quad \forall w \in W_0^{1,p}(\Omega), (3)$$

then $\lambda \geq \alpha_2^+(\beta)$. From (2), we get

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w = \int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2) |u|^{p-2} u w \quad \forall w \in W_0^{1,p}(\Omega), \quad (4)$$

hence the real 1 is eigenvalue of $-\Delta_p$ with weight $(\alpha_2^+(\beta)m_1 + \beta m_2)$, since the corresponding eigenfunction u change singe in Ω , we conclude that :

$$\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2) \le 1. \tag{5}$$

In other hand, let $K \in \Gamma_2$, we have

$$\min_{v \in K} \frac{\int_{\Omega} m_1 |v|^p}{1 - \beta \int_{\Omega} m_2 |v|^p} \le \frac{1}{\alpha_2^+(\beta)},$$

and

$$\min_{v \in K} \frac{\int_{\Omega} m_1 |v|^p}{1 - \beta \int_{\Omega} m_2 |v|^p} = \frac{\int_{\Omega} m_1 |v_k|^p}{1 - \beta \int_{\Omega} m_2 |v_k|^p} \quad \text{ for some } v_k \in K,$$

so we deduce:

$$\min_{v \in K} \int_{\Omega} (\alpha_2^+(\beta) m_1 |v|^p + \beta m_2 |v|^p) \le 1,$$

taking cont that $K \in \Gamma_2$ is arbitrary, we get

$$\frac{1}{\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2)} = \sup_{K \in \Gamma_2} \min_{v \in K} \int_{\Omega} (\alpha_2^+(\beta)m_1 + \beta m_2) |v|^p \le 1,$$

SO

$$\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2) \ge 1 \tag{6}$$

(5) and (6) gives

$$\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2) = 1.$$

3. (ii). Let $\gamma > 0$ such that $\lambda_2(\gamma m_1 + \beta m_2) = 1$, there exists eigenfunction θ change singe in Ω and

$$\int_{\Omega} |\nabla \theta|^{p-2} \nabla \theta \nabla w = \int_{\Omega} (\gamma m_1 + \beta m_2) |\theta|^{p-2} \theta w \quad \forall w \in W_0^{1,p}(\Omega),$$

hence

$$\int_{\Omega} |\nabla \theta|^{p-2} \nabla \theta \nabla w - \beta m_2 |\theta|^{p-2} \theta w = \gamma \int_{\Omega} m_1 |\theta|^{p-2} \theta w \quad \forall w \in W_0^{1,p}(\Omega), \quad (7)$$

from (7), we conclude that γ is eigenfunction of the operator $(-\Delta_p - \beta m_2)$ with weight m_1 , since the eigenfunction θ change singe, we conclude that:

$$\gamma \ge \alpha_2^+(\beta).$$

Assume by contradiction that $\gamma > \alpha_2^+(\beta)$.

$$\frac{1}{\gamma} < \frac{1}{\alpha_2^+(\beta)} = \sup_{K \in \Gamma_2} \min_{v \in K} \frac{\int_{\Omega} m_1 |v|^p}{1 - \beta \int_{\Omega} m_2 |v|^p},$$

by the inequality above we deduce that there exists $K_0 \in \Gamma_2$ such that

$$\frac{1}{\gamma} < \min_{v \in K_0} \frac{\int_{\Omega} m_1 |v|^p}{1 - \beta \int_{\Omega} m_2 |v|^p},$$

since K_0 is compact, we conclude that

$$\frac{1}{\gamma} < \frac{\int_{\Omega} m_1 |v_0|^p}{1 - \beta \int_{\Omega} m_2 |v_0|^p}, \text{ for some } v_0 \in K_0,$$

hence

$$1 < \min_{K_0} \int_{\Omega} (\gamma m_1 + \beta m_2) |v|^p,$$

it follows that

$$1 < \sup_{K \in \Gamma_2} \min_{v \in K} \int_{\Omega} (\gamma m_1 + \beta m_2) |v|^p = \frac{1}{\lambda_2 (\gamma m_1 + \beta m_2)} = 1,$$

which is a contradiction, hence we have $\gamma = \alpha_2^+(\beta)$.

 $\mathbf{4}(\mathbf{i})$ $\alpha < \lambda_{-2}(\mathbf{m_1})$. We consider the real function $h_{\alpha}(.)$ defined by $h_{\alpha}(t) = \lambda_2(\alpha m_1 + t m_2)$, since $h_{\alpha}(0) = \frac{\lambda_{-2}(m_1)}{\alpha} < 1$, then necessarily we have

$$h_{\alpha}(\beta) = 1 \Rightarrow \beta < 0,$$

that is

$$\lambda_2(\alpha m_1 + \beta m_2) = 1 \Rightarrow \beta < 0.$$

4 (ii). We define $\alpha_2^-(\beta)$ as follows

$$\frac{1}{\alpha_2^-(\beta)} = \inf_{K \in \Gamma_2} \max_{u \in K} \frac{\int_{\Omega} m_1 |u|^p}{1 - \beta \int_{\Omega} m_2 |u|^p},$$

the proof is similar to that of 3.

5. In this case we consider the coercive operator $-\Delta_p - \alpha m_1$, we define $\beta^+(\alpha)$ as follows

$$\beta^{+}(\alpha) = \sup_{K \in \Gamma_2} \inf_{u \in K} \frac{\int_{\Omega} m_2 |u|^p}{1 - \alpha \int_{\Omega} m_1 |u|^p},$$

taking cont that, for $\beta < 0$, $\alpha m_1 + \beta m_2 \notin M^+(\Omega)$, by the same proof as 3 of theorem, we deduce the result.

4 Asymptotic behavior of C_2

Theorem 4.1 Assume (H_0) holds, then we have :

1.
$$\lim_{\beta \to -\infty} \frac{\alpha_2^+(\beta)}{\beta} = -\inf ess_{\Omega_{m_1}^+} \frac{m_2}{m_1}$$
.

2. If
$$mes(\Omega_{m_1}^-) > 0$$
, then
$$\lim_{\beta \to -\infty} \frac{\alpha_2^-(\beta)}{\beta} = -\sup ess_{\Omega_{m_1}^-} \frac{m_2}{m_1}.$$

Proof.

1. For each $\beta < 0$ there exists $\alpha_2^+(\beta) > 0$ such that :

$$\lambda_2(\alpha_2^+(\beta)m_1 + \beta m_2) = 1,$$

so we have

$$\alpha_2^+(\beta)m_1 + \beta m_2 > 0 \text{ in } \Omega_\alpha \subset \Omega \text{ with meas } (\Omega_\alpha) > 0,$$

hence necessarily $\Omega_{\alpha} \subset \Omega_{m_1}^+$, if follows that :

$$\frac{-\alpha_2^+(\beta)}{\beta} > \frac{m_2}{m_1} \quad \text{in } \Omega_\alpha \subset \Omega_{m_1}^+,$$

thus

$$\liminf_{\beta \to -\infty} \frac{-\alpha_2^+(\beta)}{\beta} \ge \inf \operatorname{ess}_{\Omega_{m_1}^+} \frac{m_2}{m_1}.$$
(8)

Let $k = \limsup_{\beta \to -\infty} \frac{-\alpha_2^+(\beta)}{\beta}$, for a subsequence (β_n) $(\beta_n \to -\infty)$, we have :

$$\lim_{n \to +\infty} \frac{-\alpha_2^+(\beta_n)}{\beta_n} = k,$$

and

$$\lambda_2(\alpha_2^+(\beta_n)m_1 + \beta_n m_2) = 1,$$

then

$$\lambda_2(\frac{-\alpha_2^+(\beta_n)m_1}{\beta_n} - m_2) = -\beta_n,$$

since $\frac{-\alpha_2^+(\beta_n)m_1}{\beta_n} - m_2 \to km_1 - m_2$ in $L^{\infty}(\Omega)$, and $-\beta_n \to +\infty$, from proposition 2.2 we conclude that:

 $km_1 - m_2 \le 0$ almost every where in Ω ,

hence

$$k \le \inf \operatorname{ess}_{\Omega_{m_1}^+} \frac{m_2}{m_1} \tag{9}$$

By (8) and (9), we deduce that

$$\lim_{\beta \to -\infty} \frac{\alpha_2^+(\beta)}{\beta} = -\inf \operatorname{ess}_{\Omega_{m_1}^+} \frac{m_2}{m_1}.$$

The proof of 2) is similar to that of the previous.

Theorem 4.2 Assume (H_0) and $m_1 \ge 0$ in Ω , then we have :

$$\lim_{\alpha \to -\infty} \frac{\beta_2^+(\alpha)}{\alpha} = -\inf ess_{\Omega_{m_2}^*} \frac{m_1}{m_2}.$$

Proof.

For each $\alpha < 0$ there exists $\beta_2^+(\alpha) > 0$ such that $\lambda_2(\alpha m_1 + \beta_2^+(\alpha)m_2) = 1$ (see theorem 3.1), thus we have

$$\alpha m_1 + \beta_2^+(\alpha) m_2 > 0$$
 in Ω_α with meas $(\Omega_\alpha) > 0$,

so necessarily $\Omega_{\alpha} \subset \Omega_{m_2}^{\star},$ hence we deduce that :

$$\liminf_{\alpha \to -\infty} \frac{-\beta_2^+(\alpha)}{\alpha} \ge \inf \operatorname{ess}_{\Omega_{m_2}^*} \frac{m_1}{m_2}.$$
(10)

Let $k = \limsup_{\alpha \to -\infty} \frac{-\beta_2^+(\alpha)}{\alpha}$.

Using the same argument as in the proof of theorem 4.2, we get

$$k \le \inf \operatorname{ess}_{\Omega_{m_2}^{\star}} \frac{m_1}{m_2}.$$

So by (10), we conclude that:

$$\lim_{\alpha \to -\infty} \frac{-\beta_2^+(\alpha)}{\alpha} = \inf \operatorname{ess}_{\Omega_{m_2}^*} \frac{m_1}{m_2}.$$

Acknowledjement. The authors wish to think the knowledjeable referees for their corrections and remarks.

Références

[1] A.Anane. O.Chakrone. M.Moussa, Spectrum of one dimensional plaplacian operator with indefinite weight, EJQTDE, (2002), No 17, p1-11.

- [2] A.Anane, Simplicité et isolation de la première valeur propre du plaplacen avec poids, C.R.A.S, Paris, t. 305(1987), pp. 725-728.
- [3] A.Anane. N.Tsouli, On the second eigenvalue of the p-laplacian, Non-linear Partial Differential Equations, Pitman Research, Notes 343(1996), 1-9.
- [4] P. A. Binding. P. J. Browne. Y. X. Huang. R. H. Picard, On eigencurves of elliptic boundary value problems, Proc. Roy. Soc. Edim. 118A, (1991) pp. 161-171
- [5] P. A. Binding. Y. X. Huang, The principal eigenvalue of the plaplacian, Diff. Int. Equs. 8(1995), 405-414.
- [6] P. A. Binding. Y. X. Huang, Bifurcation from eigencurves of the plaplacian, Diff. Int. Equs. 8(1995), 415-428.
- [7] M. Cuesta. Eigenvalue problems for the p-laplcian with indefinite weights. EJDE, V(2001), 33, PP. 1-9. (2001).
- [8] A. Dakkak. M. Hadda, Eigencurves of the p-laplacian weights and their asymptotic behavior, EJDE. 35(2007), pp. 1-7.
- [9] A. Dakkak. M. Moussaoui, Existence and asymptotic behavior of the eigencurves for the p-laplacian operator with weight, submitted.
- [10] D.G. De Figueiredo, Positive solution of semi-linear elliptic equation, Lecture Notes in Mathematics, 957, (1982), pp 34-87.
- [11] D.G. De Figueiredo and J.P.Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Par. Diff. Equat, 17,(1992), pp 339-346.
- [12] A. Szulkin, Ljusternik-Schnirelmann theory on C^1 -manifolds, Ann. I. H. Poincaré, Anal. non linéaire, 5,(1988), pp.119-139.
- [13] N. Tsouli, Etude de l'ensemble nodal des fonctions propres et de la nonrésonance por l'opérateur p-laplacien, Tèse de Doctorat d'Etat Es-sciences, Faculté des sciences Oujda Maroc, (1995).