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Approximate mixed type additive and quartic functional equation

Abasalt Bodaghi

abstract: In the current work, we introduce a general form of a mixed additive
and quartic functional equation. We determine all solutions of this functional equa-
tion. We also establish the generalized Hyers-Ulam stability of this new functional
equation in quasi-β-normed spaces.
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1. Introduction

In 1940, Ulam [26] proposed the following stability problem:
“When is it true that by slightly changing the hypotheses of a theorem one can

still assert that the thesis of the theorem remains true or approximately true?”.
Hyers [16] has given an affirmative answer to a question of Ulam by proving the
stability of additive Cauchy equations in Banach spaces. Then, Aoki [1] and Th. M.
Rassias [22] considered the stability problem with unbounded Cauchy differences
for additive and linear mappings, respectively (see also [15]. This phenomenon is
called generalized Ulam-Hyers stability and has been extensively investigated for
different functional equations (for instance, [5], [7], [11] and [24]). It is worth
mentioning that almost all proofs used the idea conceived by Hyers which is called
the direct method or Hyers method. Cădariu and Radu noticed that a fixed point
alternative method is very important for the solution of the Ulam problem. In
other words, they employed this fixed point method to the investigation of the
Cauchy functional equation [10] and for the quadratic functional equation [9] (for
more applications of this method, refer to [6], [8] and [20]).

The quartic functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) + 24f(y) (1.1)

was introduced by J. M. Rassias in [21], and then was studied by other authors.
Rassias [21] investigated stability properties of the quartic functional equation
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(1.1). Other versions of a quartic functional equation can be found in [3], [17], [18]
and [19].

In [14], Eshaghi Gordji introduced and obtained the general solution of the
following mixed type additive and quartic functional equation

f(2x+ y) + f(2x− y) = 4{(f(x+ y) + f(x− y)}

−
3

7
(f(2y)− 2f(y)) + 2f(2x)− 8f(x). (1.2)

He also proved the Hyers-Ulam Rassias stability of the functional equation (1.2) in
real normed spaces. Recently, Bodaghi [4] presented a new form of the additive-
quartic functional equation which is different from (1.2) as follows:

f(x+ 2y)− 4f(x+ y)− 4f(x− y) + f(x− 2y) =
12

7
(f(2y)− 2f(y))− 6f(x) (1.3)

In this paper, we consider the following functional equation which is a general
form of (1.3):

f(x+ ny) + f(x− ny) = n2{f(x+ y) + f(x− y)}

+
1

7
n2(n2 − 1)(f(2y)− 2f(y))− 2(n2 − 1)f(x) (1.4)

It is easily verified that the function f(x) = αx+βx4 is a solution of the functional
equation (1.4). Our aim is to highlight generalized Ulam-Hyers stability results for
the functional equation (1.4) in a single variable for mappings with values in quasi-
β-normed spaces, obtained by a result of Xu et al. (Lemma 3.2 of this writing)
based on the fixed point alternative theorem.

2. Solution of Equation (1.4)

To achieve our aim in this section, we need the following result.

Theorem 2.1. Let X and Y be real vector spaces. Then, the mapping f : X −→
Y satisfies the functional equation (1.3) if and only if it satisfies the functional
equation (1.4) for all n ≥ 3.

Proof: Assume that f : X −→ Y satisfies the functional equation (1.3). Putting
x = y = 0 in (1.3), we have f(0) = 0. Replacing x by x + y and x − y in (1.3),
respectively, and adding those equations, we obtain

f(x+ 3y) + f(x− 3y) = 9{f(x+ y) + f(x− y)}+
72

7
(f(2y)− 2f(y))− 16f(x).

Similar to the above, we can deduce that

f(x+ 4y) + f(x− 4y) = 16{f(x+ y) + f(x− y)}+
240

7
(f(2y)− 2f(y))− 30f(x).
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Using the above method, we get

f(x+ ny) + f(x− ny) = n2{f(x+ y) + f(x− y)}+ an(f(2y)− 2f(y))− bnf(x)

where {
an = 2an−1 − an−2 +

12
7 (n− 1)2, a2 = 12

7 , a3 = 72
7 ,

bn = −bn−2 + 4(n− 1)2, b2 = 6, b3 = 16.

Solving the above recurrence equations, we have

an =
1

7
n2(n2 − 1) and bn = 2(n2 − 1)

for all x, y ∈ X and all positive integers n ≥ 2.
Conversely, suppose that f satisfies the functional equation (1.4) for any positive

integer n ≥ n0 where n0 is a fixed integer with n0 > 2. So, f satisfies (1.4) for every
positive integer k ≥ n0, in particular for k = n(n− 1). In other words, replacing y
by (n− 1)y in (1.4), we have

f(x+ n(n− 1)y) + f(x− n(n− 1)y) = n2{f(x+ (n− 1)y) + f(x− (n− 1)y)}

+
1

7
n2(n2 − 1)(f(2(n− 1)y)− 2f((n− 1)y))

− 2(n2 − 1)f(x) (2.1)

for all x, y ∈ X . On the other hand, replacing n by n2 − n in (1.4), we arrive at

f(x+ (n2 − n)y) + f(x− (n2 − n)x) = (n2 − n)2{f(x+ y) + f(x− y)}

+
1

7
(n2 − n)2((n2 − n)2 − 1)(f(2y)− 2f(y))

− 2((n2 − n)2 − 1)f(x) (2.2)

for all x, y ∈ X . Using (2.1) and (2.2), we get

1

7
n2(n2 − 1)(f(2(n− 1)y)− 2f((n− 1)y)) = (n2 − n)2{f(x+ y) + f(x− y)}

+
1

7
(n2 − n)2((n2 − n)2 − 1)(f(2y)− 2f(y))− 2((n2 − n)2 − 1)f(x)

− n2{f(x+ (n− 1)y) + f(x− (n− 1)y)}+ 2(n2 − 1)f(x) (2.3)

for all x, y ∈ X . We have

f(x+ (n+ 1)(n− 1)y) + f(x− (n+ 1)(n− 1)y) = (n+ 1)2{f(x+ (n− 1)y)

+ f(x− (n− 1)y)}

+
1

7
(n+ 1)2((n+ 1)2 − 1)(f(2(n− 1)y)− 2f((n− 1)y))

− 2((n+ 1)2 − 1)f(x) (2.4)
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for all x, y ∈ X . Also,

f(x+ (n2 − 1)y) + f(x− (n2 − 1)x) = (n2 − 1)2{f(x+ y) + f(x− y)}

+
1

7
(n2 − 1)2((n2 − 1)2 − 1)(f(2y)− 2f(y))

− 2((n2 − 1)2 − 1)f(x) (2.5)

for all x, y ∈ X . Plugging (2.4) into (2.5), and using (2.3), we get

f(x+ (n− 1)y) + f(x− (n− 1)y) = (n− 1)2{f(x+ y) + f(x− y)}

+
1

7
(n− 1)2((n− 1)2 − 1)(f(2y)− 2f(y))

− 2((n− 1)2 − 1)f(x)

This means that f fulfilling (1.4) for all n ≥ n0 − 1. This completes the proof. ✷

Remark 2.2. Let n be a positive integer. Then, the functional equation (1.4) holds
if we replae n by −n. So, the mapping f : X −→ Y satisfies the functional equation
(1.3) if and only if it satisfies the functional equation (1.4) for all integer numbers
n.

Lemma 2.3. Let X and Y be real vector spaces.

(i) If an odd function f : X −→ Y satisfies the functional equation (1.4), then
f is additive;

(ii) If an even function f : X −→ Y satisfies the functional equation (1.4), then
f is quartic.

Proof: The result follows from Theorem 2.1 and [4, Lemma 2.1]. ✷

3. Stability of (1.4) in quasi-β normed spaces

We recall some basic facts concerning quasi-β-normed space.

Definition 3.1. Let β be a fix real number with 0 < β ≤ 1, and let K denote either
R or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued
function on X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(ii) ‖tx‖ = |t|β |‖x‖ for all x ∈ X and t ∈ K;

(iii) There is a constant K ≥ 1 such that ‖x+y‖ ≤ K(‖x‖+‖y‖) for all x, y ∈ X.
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Note that the condition (iii) imlies that

∥∥∥∥∥∥

2n∑

j=1

xj

∥∥∥∥∥∥
≤ Kn

2n∑

j=1

‖xj‖ and

∥∥∥∥∥∥

2n+1∑

j=1

xj

∥∥∥∥∥∥
≤ Kn+1

2n+1∑

j=1

‖xj‖ ,

for all n ≥ 1 and x1, x2, ..., x2n+1 ∈ X .
The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm

on X . The smallest possible M is called the modulus of concavity of ‖ · ‖. A
quasi-β-normed space is a complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is
called a (β, p)-norm (0 < p ≤ 1) if ‖x+ y‖p ≤ ‖x‖p + ‖y‖p, for all x, y ∈ X . In this
case, a quasi-β-Banach space is called a (β, p)-Banach space.

Given a p-norm, the formula d(x, y) := ‖x− y‖p gives us a translation invariant
metric on X . By the Aoki-Rolewicz Theorem [23] (see also [2]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms, here
and subsequently, we restrict our attention mainly to p-norms. Moreover in [25],
Tabor has investigated a version of Hyers-Rassias-Gajda Theorem in quasi-Banach
spaces.

From now on, let X be a linear space with norm ‖·‖X and Y be a (β, p)-Banach
space with (β, p)-norm ‖ · ‖Y and K be the modulus of concavity of ‖ · ‖Y , unless
otherwise explicitly stated. In this section, by using an idea of Găvruta [12] we
prove the stability of (1.4) in the spirit of Hyers, Ulam, and Rassias.

For notational convenience, given a function f : X −→ Y , we define the differ-
ence operator

∆a,qf(x, y) = f(x+ ny) + f(x− ny)− n2{f(x+ y) + f(x− y)}

−
1

7
n2(n2 − 1)(f(2y)− 2f(y)) + 2(n2 − 1)f(x)

for all x, y ∈ X .
Before obtaining the main results in this section, we bring the following lemma

which is proved in [27, Lemma 3.1] (see also the fixed point alternative of [13]).

Lemma 3.2. Let j ∈ {−1, 1} be fixed, a, s ∈ N with a ≥ 2 and ψ : X −→ [0,∞) a
function such that there exists an L < 1 with ψ(ajx) < Lajsβψ(x) for all x ∈ X.
If f : X −→ Y is a mapping satisfying

‖f(ax)− asf(x)‖Y ≤ ψ(x)

for all x ∈ X, then there exists a uniquely determined mapping F : X −→ Y such
that F (ax) = asF (x) and

‖f(x)− F (x)‖Y ≤
1

asβ |1− Lj |
ψ(x)

for all x ∈ X.

In the upcoming result, we prove the stability for (1.4) in quasi-β-normed spaces.
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Theorem 3.3. Let j ∈ {−1, 1} be fixed, and let ϕ : X×X −→ [0,∞) be a function
such that there exists an 0 < L < 1 with ϕ(2jx, 2jy) 6 2jβLϕ(x, y) for all x ∈ X.
Let f : X −→ Y be a odd mapping satisfying

‖∆a,qf(x, y)‖Y ≤ ϕ(x, y) (3.1)

for all x, y ∈ X. Then there exists a unique additive mapping A : X −→ Y such
that

‖f(x)−A(x)‖Y ≤
1

2β|1− Lj|

(
7

n2(n2 − 1)

)β

ϕ(0, x) (3.2)

for all x ∈ X.

Proof: Replacing (x, y) by (0, x) in (3.1), we get

‖f(2x)− 2f(x)‖Y 6

(
7

n2(n2 − 1)

)β

ϕ(0, x) (3.3)

for all x ∈ X . By Lemma 3.2, there exists a unique mapping A : X → Y such that
A(2x) = 2A(x) and

‖f(x)−A(x)‖Y 6
1

2β|1− Lj|

(
7

n2(n2 − 1)

)β

ϕ(0, x) (3.4)

for all x ∈ X . It remains to show that A is an additive mapping. By (3.1), we have
∥∥∥∥
∆a,qf(2

jnx, 2jny)

2jn

∥∥∥∥
Y

6 2−jnβϕ(2jnx, 2jny)

6 2−jnβ(2jβL)nϕ(x, y) = Lnϕ(x, y)

for all x, y ∈ X and n ∈ N. Letting n → ∞ in the above inequality, we observe
that ∆a,qA(x, y) = 0 for all x, y ∈ X . It follows from Lemma 2.3 that the mapping
A is additive, as required. ✷

The following corollary is the direct consequence of Theorem 3.3 concerning the
stability of (1.4).

Corollary 3.4. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ be a positive number
with λ 6= β

α
. If f : X −→ Y be an odd mapping satisfying

‖∆a,qf(x, y)‖Y ≤ θ(‖x‖λX + ‖y‖λX)

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y such
that

‖f(x)− A(x)‖Y ≤





(
7

n2(n2−1)

)β
θ

2β−2αλ ‖x‖
λ
X λ ∈

(
0, β

α

)

(
7

n2(n2−1)

)β
2αλθ

2αλ−2β
‖x‖λX λ ∈

(
β
α
,∞

)

for all x ∈ X.
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Proof: Taking ϕ(x, y) = θ(‖x‖λX+‖y‖λX) in Theorem 3.3, we can obtain the desired
result. ✷

In the next result, we indicate the hyperstability of the functional equation (1.4)
under some conditions. Recall that a functional equation is called hyperstable if
every approximately solution is an exact solution of it.

Corollary 3.5. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ, r and s be positive
numbers with λ := r + s 6= β

α
. If f : X −→ Y be an odd mapping satisfying

‖∆a,qf(x, y)‖Y 6 θ‖x‖rX‖y‖sX

for all x, y ∈ X, then f is an additive mapping.

We have the following result which is analogous to Theorem 3.3 for the func-
tional equation (1.4). We include the proof.

Theorem 3.6. Let j ∈ {−1, 1} be fixed, and let ϕ : X×X −→ [0,∞) be a function
such that there exists an 0 < L < 1 with ϕ(2jx, 2jy) 6 24jβLϕ(x, y) for all x ∈ X.
Let f : X −→ Y be an even mapping satisfying

‖∆a,qf(x, y)‖Y ≤ ϕ(x, y) (3.5)

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X −→ Y such
that

‖f(2x)− 4f(x)−Q(x)‖Y ≤
1

24β|1 − Lj|
ϕ̃(x) (3.6)

for all x ∈ X where

ϕ̃(x) : = K6

(
7

n2(n2 − 1)

)β

[ϕ(nx, x) + n2βϕ(x, x)]

+K5

(
49(n2 + 1)

n4(n2 − 1)

)β

ϕ(0, 0) +K4

(
7

n2

)β

ϕ(0, x) +K3

(
98

n4

)β

ϕ(0, 0)

+K

(
98

n4(n2 − 1)

)β

ϕ(0, 0) (3.7)

Proof: Putting x = y = 0 in (3.5), we have

‖f(0)‖Y 6

(
7

n2(n2 − 1)

)β

ϕ(0, 0). (3.8)

Replacing (x, y) by (0, x) in (3.5) and using eveness of f , we get
∥∥∥∥2f(nx)−

1

7
n2(n2 − 1)f(2x) +

2

7
n2(n2 − 8)f(x) + 2(n2 − 1)f(0)

∥∥∥∥
Y

6 ϕ(0, x)

(3.9)
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for all x ∈ X . Interchanging (x, y) into (nx, x) in (3.5), we deduce that

‖f(2nx) + 2(n2 − 1)f(nx)− n2[f((n+ 1)x) + f((n− 1)x)]

−
1

7
n2(n2 − 1)f(2x) +

2

7
n2(n2 − 1)f(x) + f(0)‖Y 6 ϕ(nx, x) (3.10)

for all x ∈ X . Putting x = y in (3.5), we obtain

‖f((n+ 1)x) + f((n− 1)x)−
1

7
n2(n2 + 6)f(2x)

+
2

7
(n2 − 1)(n2 + 7)f(x)− n2f(0)‖Y 6 ϕ(x, x)

(3.11)

for all x ∈ X . Thus, multiply n2 on both sides, we find

‖n2[f((n+ 1)x) + f((n− 1)x)]−
1

7
n4(n2 + 6)f(2x)

+
2

7
n2(n2 − 1)(n2 + 7)f(x)− n4f(0)‖Y 6 n2βϕ(x, x) (3.12)

for all x ∈ X . It follows from (3.8), (3.10) and (3.12) that

‖f(2nx) + 2(n2 − 1)f(nx)−
1

7
n2(n4 + 7n2 − 1)f(2x)

+
2

7
n2(n2 − 1)(n2 + 8)f(x)‖Y

6 K2[ϕ(nx, x) + n2βϕ(x, x)] +K

(
7(n2 + 1)

n2

)β

ϕ(0, 0) (3.13)

for all x ∈ X . Multiplying both sides of (3.9) by (n2 − 1)β, we get

‖2(n2 − 1)f(nx)−
1

7
n2(n2 − 1)2f(2x) +

2

7
n2(n2 − 1)(n2 − 8)f(x)

+ 2(n2 − 1)2f(0)‖Y 6 (n2 − 1)βϕ(0, x) (3.14)

for all x ∈ X . By (3.8), (3.13) and (3.14), we have

‖f(2nx)−
1

7
n2(9n2 − 2)f(2x) +

32

7
n2(n2 − 1)f(x)‖Y

6 K4[ϕ(nx, x) + n2βϕ(x, x)] +K3

(
7(n2 + 1)

n2

)β

ϕ(0, 0)

+K2(n2 − 1)βϕ(0, x) +K

(
14(n2 − 1)

n2

)β

ϕ(0, 0) (3.15)

for all x ∈ X . On the other hand, (3.9) implies that
∥∥∥∥2f(2nx)−

1

7
n2(n2 − 1)f(4x) +

2

7
n2(n2 − 8)f(2x) + 2(n2 − 1)f(0)

∥∥∥∥
Y

6 ϕ(0, 2x)

(3.16)
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for all x ∈ X . Multiplying both sides of (3.15) by 2β and then adding the result to
(3.16), we obtain

(
1

7
n2(n2 − 1)

)β

‖f(4x)− 20f(2x) + 64f(x)‖Y

≤ K6[ϕ(nx, x) + n2βϕ(x, x)] +K5

(
7(n2 + 1)

n2

)β

ϕ(0, 0)

+K4(n2 − 1)βϕ(0, x) +K3

(
14(n2 − 1)

n2

)β

ϕ(0, 0)

+K

(
14

n2

)β

ϕ(0, 0) (3.17)

for all x ∈ X . Therefore

‖f(4x)− 20f(2x) + 64f(x)‖Y ≤ ϕ̃(x)

for all x ∈ X . The above relation implies that

‖g(2x)− 16g(x)‖Y ≤ ϕ̃(x)

for all x ∈ X in which g(x) = f(2x)− 4f(x). By Lemma 3.2, there exists a unique
mapping Q : X −→ Y such that Q(2x) = 16Q(x) and

‖g(x)−Q(x)‖Y ≤
1

24β|1− Lj|
ϕ̃(x) (3.18)

for all x ∈ X . The rest of the proof is similar to the proof of Theorem 3.3. ✷

In the next corollaries, we bring some consequences of Theorem 3.3 concerning
the stability of (1.4) when f is an even mapping. Since the proofs are similar to
the previous corollaries, we omit them.

Corollary 3.7. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ be a positive number
with λ 6= 4 β

α
. If f : X −→ Y be an even mapping satisfying

‖∆a,qf(x, y)‖Y ≤ θ(‖x‖λX + ‖y‖λX)

for all x, y ∈ X, then there exists a unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)‖Y ≤





θΛλ

24β−2αλ ‖x‖
λ
X λ ∈

(
0, 4 β

α

)

2αλθΛλ

2αλ−24β ‖x‖
λ
X λ ∈

(
4 β
α
,∞

)

for all x ∈ X where

Λλ = K6

(
7

n2(n2 − 1)

)β

[nαλ + 2 · n2β + 1] +K4

(
7

n2

)β

. (3.19)
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Corollary 3.8. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ, r and s be positive
numbers with λ := r + s 6= 4 β

α
. If f : X −→ Y be an even mapping satisfying

‖∆a,qf(x, y)‖Y 6 θ‖x‖rX‖y‖sX

for all x, y ∈ X, then there exists a unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)‖Y ≤






θΓλ

24β−2αλ ‖x‖
λ
X λ ∈

(
0, 4 β

α

)

2αλθΓλ

2αλ−24β
‖x‖λX λ ∈

(
4 β
α
,∞

)

for all x ∈ X where

Γλ = K6

(
7

n2(n2 − 1)

)β

[nαr + n2β]. (3.20)

Corollary 3.9. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ, r and s be positive
numbers with λ := r + s 6= 4 β

α
. If f : X −→ Y be an even mapping satisfying

‖∆a,qf(x, y)‖Y 6 θ(‖x‖λX + ‖y‖λX + ‖x‖rX‖y‖sX)

for all x, y ∈ X, then there exists a unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)‖Y ≤





θ(Λλ+Γλ)
24β−2αλ ‖x‖λX λ ∈

(
0, 4 β

α

)

2αλθ(Λλ+Γλ)
2αλ−24β ‖x‖λX λ ∈

(
4 β
α
,∞

)

for all x ∈ X where Λλ and Γλ are defined in (3.19) and (3.20), respetively.

Theorem 3.10. Let ϕ : X ×X −→ [0,∞) be a function such that there exists an
0 < L < 1 with ϕ(2x, 2y) ≤ 2βLϕ(x, y) and ϕ

(
x
2 ,

y
2

)
≤ 2−4βLϕ(x, y) for all x ∈ X.

Let f : X −→ Y be a mapping satisfying

‖∆a,qf(x, y)‖Y ≤ ϕ(x, y) (3.21)

for all x, y ∈ X. Then there exist a unique additive mapping A : X −→ Y and a
unique quartic mapping Q : X −→ Y such that

‖f(2x)− 4f(x)−Q(x)−A(x)‖Y ≤ Φ̃(x)

for all x ∈ X where

Φ̃(x) :=
1

24β+1|1− Lj|
(ϕ̃(x) + ϕ̃(−x))

+
1

2β+1|1− Lj |

(
7

n2(n2 − 1)

)β

(ϕ(0, 2x) + ϕ(0,−2x))

2

2β |1− Lj|

(
7

n2(n2 − 1)

)β

(ϕ(0, x) + ϕ(0,−x)). (3.22)
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in which j ∈ {−1, 1}.

Proof: We decompose f into the even part and odd part by setting

fe(x) =
f(x) + f(−x)

2
, fo(x) =

f(x)− f(−x)

2
.

for all x ∈ X . Clearly, f(x) = fe(x) + fo(x) for all x ∈ X . Then

‖∆a,qfe(x, y)‖Y =
1

2
‖∆a,qf(x, y) + ∆a,qf(−x,−y)‖Y

≤
1

2

(
‖∆a,qf(x, y)‖Y + ‖∆a,qf(−x,−y)‖Y

)

≤
1

2

(
ϕ(x, y) + ϕ(−x,−y)

)

for all x ∈ X . Similarly,

‖∆a,qfo(x, y)‖Y ≤
1

2

(
ϕ(x, y) + ϕ(−x,−y)

)

for all x ∈ X. By Theorems 3.3 and 3.6, there exists a unique additive function
A0 : X −→ Y and a unique quratic function Q0 : X −→ Y such that

‖fo(x)−A0(x)‖Y ≤
1

2β+1|1− Lj|

(
7

n2(n2 − 1)

)β

(ϕ(0, x) + ϕ(0,−x)) (3.23)

and

‖fe(2x)− 4fe(x) −Q0(x)‖Y ≤
1

24β+1|1− Lj |
(ϕ̃(x) + ϕ̃(−x)) (3.24)

for all x ∈ X where ϕ̃(x) is defined in (3.7). Put Q(x) = Q0(x) and A(x) =
−2A0(x). Since A0(x) is odd and satisfies the equation (1.4), it is easy to check
that A0(2x) = 2A0(x). Thus we have

‖f(2x)− 4f(x)−Q(x)−A(x)‖Y = ‖f(2x)− 4f(x)−Q0(x) + 2A0(x)‖Y

= ‖(fe(2x)− 4fe(x) −Q0(x))

+ (fo(2x)− 4fo(x) + 2A0(x))‖Y
≤ ‖fe(2x)− 4fe(x)−Q0(x)‖Y

+ ‖fo(2x)− 2A0(x)‖ + 4‖fo(x) −A0(x)‖Y

= ‖fe(2x)− 4fe(x)−Q0(x)‖Y

+ ‖fo(2x)− A0(2x)‖Y + 4‖fo(x)−A0(x)‖Y

≤ Φ̃(x).

This finishes the proof. ✷
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Corollary 3.11. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ be a positive number
with λ 6= β

α
, 4 β

α
. If f : X −→ Y be a mapping satisfying

‖∆a,qf(x, y)‖Y ≤ θ(‖x‖λX + ‖y‖λX)

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y and a
unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)−A(x)‖Y≤





[(
7

n2(n2−1)

)β
4+2αλ

2β−2αλ +
Λλ

24β−2αλ

]
θ‖x‖λX λ∈

(
0, 4 β

α

)

[(
7

n2(n2−1)

)β
(4+2αλ)2αλ

2αλ−2β
+ Λλ

24β−2αλ

]
θ‖x‖λX λ∈

(
β
α
, 4 β

α

)

[(
7

n2(n2−1)

)β
4+2αλ

2αλ−2β
+ Λλ

2αλ−24β

]
θ2αλ‖x‖λX λ∈

(
4 β
α
,∞

)

for all x ∈ X where Λλ is defined in (3.19).

Corollary 3.12. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ, r and s be positive
numbers with λ := r + s 6= β

α
, 4 β

α
. If f : X −→ Y be a mapping satisfying

‖∆a,qf(x, y)‖Y 6 θ‖x‖rX‖y‖sX

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y and a
unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)−A(x)‖Y ≤





θΓλ

24β−2αλ ‖x‖
λ
X λ ∈

(
0, β

α

)⋃(
β
α
, 4 β

α

)

2αλθΓλ

2αλ−24β
‖x‖λX λ ∈

(
4 β
α
,∞

)

for all x ∈ X where Γλ is defined in (3.20).

Corollary 3.13. Let X be a quasi-α-normed space with quasi-α-norm ‖ · ‖X, and
let Y be a (β, p)-Banach space with (β, p)-norm ‖ · ‖Y . Let θ, r and s be positive
numbers with λ := r + s 6= β

α
, 4 β

α
. If f : X −→ Y be a mapping satisfying

‖∆a,qf(x, y)‖Y 6 θ(‖x‖λX + ‖y‖λX + ‖x‖rX‖y‖sX)

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y and a
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unique quartic mapping Q : X −→ Y such that

‖f(2x)−4f(x)−Q(x)−A(x)‖Y≤





[(
7

n2(n2−1)

)β
4+2αλ

2β−2αλ +
Λλ+Γλ

24β−2αλ

]
θ‖x‖λX λ∈

(
0, β

α

)

[(
7

n2(n2−1)

)β
(4+2αλ)2αλ

2αλ−2β
+ Λλ+Γλ

24β−2αλ

]
θ‖x‖λX λ∈

(
β
α
,4 β

α

)

[(
7

n2(n2−1)

)β
4+2αλ

2αλ−2β+
Λλ+Γλ

2αλ−24β

]
θ2αλ‖x‖λX λ∈

(
4 β
α
,∞

)

for all x ∈ X where Λλ and Γλ are defined in (3.19) and (3.20), respetively.
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