
Bol. Soc. Paran. Mat. (3s.) v. 35 2 (2017): 19–37.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v35i2.29077

On generalized difference Zweier ideal convergent sequences space

defined by Musielak-Orlicz functions

Karan Tamang and Bipan Hazarika

abstract: Let M = (Mk) be a Musielak-Orlicz function. In this article, we
introduce a new class of ideal convergent sequence spaces defined by Musielak-
Orlicz function, using an infinite matrix, and a generalized difference Zweier matrix
operator B

p

(i)
. We investigate some topological structures and algebraic properties

of these spaces. We obtain some relations related to these sequence spaces.
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1. Introduction

The notion of the ideal convergence is the dual (equivelant) to the notion of
filter convergence introduced by Cartan in 1937 [4]. The notion of the filter conver-
gence is a generalization of the classical notion of convergence of a sequence and it
has been an important tool in general topology and functional analysis. Nowadays
many authors to use an equivalent dual notion of the ideal convergence. Kostyrko
et al. [24] and Nuray and Ruckle [30] independently studied in detalis about the
notion of ideal convergence which is based on the structure of the admissible ideal
I of subsets of natural numbers N. Later on it was further investigated by many
authors, e.g. Tripathy and Hazarika [36,37], Hazarika [12], Hazarika and Savaş
[11] and references therein. Hazarika [14] introduced the concept of generalized
difference ideal convergent sequences of fuzzy numbers and studied some interest-
ing properties. Esi [6] introduced strongly almost summable sequence spaces in
2-normed spaces defined by ideal convergence and an Orlicz function and proved
some interesting results.

Before proceeding let us recall a few concepts, which we shall use throughout
this paper.
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Let X be a non-empty set, then a family of sets I ⊂ 2X (the class of all subsets
of X) is called an ideal if and only if for each A,B ∈ I we have A ∪B ∈ I and for
each A ∈ I and each B ⊂ A we have B ∈ I. A non-empty family of sets F ⊂ 2X

is a filter on X if and only if φ /∈ F , for each A,B ∈ F we have A ∩ B ∈ F and
each A ∈ F and each B ⊃ A we have B ∈ F . An ideal I is called non-trivial
ideal if I 6= φ and X /∈ I. Clearly I ⊂ 2X is a non-trivial ideal if and only if
F = F (I) = {X −A : A ∈ I} is a filter on X . A non-trivial ideal I ⊂ 2X is called
admissible if and only if {{x} : x ∈ X} ⊂ I. A non-trivial ideal I is maximal if
there cannot exists any non-trivial ideal J 6= I containing I as a subset. Recall that
a sequence x = (xk) of points in R is said to be I-convergent to a real number ℓ if
{k ∈ N : |xk−ℓ| ≥ ε} ∈ I for every ε > 0 ( [24]). In this case we write I−limxk = ℓ.

Throughout the article w, ℓ∞, c, c0, denote for the classes of all, bounded, con-
vergent, null sequences of complex numbers, respectively.

The notion of difference sequence space was introduced by Kizmaz [23], who
studied the difference sequence spaces ℓ∞(∆), c(∆), c0(∆). The notion was further
generalized by Et and Colak [8] introducing the sequence spaces ℓ∞(∆p), c(∆p),
c0(∆

p). For a non negative integer p, the generalized difference sequence spaces are
defined as follows. For a given sequence space Z we have

Z(∆p) = {x = (xk) ∈ w : (∆pxk) ∈ Z},

where ∆pxk = ∆p−1xk − ∆p−1xk+1, ∆
0xk = xk, for all k ∈ N, the difference

operator is equivalent to the following binomial representation:

∆pxk =

p
∑

ν=0

(−1)
ν

(

p

ν

)

xk+ν for all k ∈ N.

Taking p = 1, we get the spaces ℓ∞(∆), c(∆), c0(∆), introduced and studied
by Kizmaz [23]. Tripathy and Esi [34] introduced and studied the new type of
generalized difference sequence spaces

Z(∆i) = {(xk) ∈ w : ∆ixk ∈ Z},

for Z = ℓ∞, c, c0 where ∆ix = (∆ixk) = (xk − xk+i) for all k, i ∈ N.

Tripathy, et al [35] further generalized this notion and introduced the following
sequence spaces. For p ≥ 1 and i ≥ 1,

Z(∆p
i ) = {(xk) ∈ w : ∆p

i xk ∈ Z},

for Z = ℓ∞, c, c0.This generalized difference has the following binomial representa-
tion,

∆p
i xk =

n
∑

ν=0

(−1)ν
(

p

ν

)

xk+iν for all k ∈ N.
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Dutta [5] introduced the following difference sequence spaces

Z(∆p
(i)) = {(xk) ∈ w : ∆p

(i)xk ∈ Z} for all p, i ∈ N,

for Z = ℓ∞, c, c0 where c, c0 are the sets of statistically convergent and statistically
null sequences, respectively, and ∆p

(i)x = (∆p
(i)xk) = (∆p−1

(i) xk − ∆p−1
(i) xk−i) and

∆0
(i)xk = xk for all k ∈ N, which is equivalent to the following binomial represen-

tation:

∆p
(i)xk =

p
∑

ν=0

(−1)
ν

(

p

ν

)

xk−iν .

Basar and Altay [1] introduced the generalized difference matrix B(r, s)=(bpk(r, s))
which is a generalization of ∆1

(1)-difference operator as follows:

bpk(r, s) =







r, if k = p;
s, if k = p− 1;
0, if 0 ≤ k < p− 1 or k > p.

for all k, p ∈ N, r, s ∈ R− {0}.
Basarir and Kayikci [2] have defined the generalized difference matrix Bp of order p,
which reduced the difference operator ∆p

(1) in case r = 1, s = −1 and the binomial

representation of this operator is

Bpxk =

p
∑

ν=0

(

p

ν

)

rp−νsνxk−ν ,

where r, s ∈ R− {0} and p ∈ N.
Recently Basarir et al., [3] introduced the following generalized difference sequence
spaces

Z(Bp
(i)) = {(xk) ∈ w : Bp

(i)xk ∈ Z} for all p, i ∈ N,

for Z = ℓ∞, c, c0 where c, c0 are the sets of statistically convergent and statistically
null sequences, respectively, and Bp

(i)x = (Bp
(i)xk) = (rBp−1

(i) xk + sBp−1
(i) xk−i) and

B0
(i)xk = xk for all k ∈ N, which is equivalent to the following binomial represen-

tation:

Bp
(i)xk =

p
∑

ν=0

(

p

ν

)

rp−νsνxk−iν .

Let X and Y be two nonempty subsets of the space w of complex sequences.
Let A = (ank), (n, k = 1, 2, 3, ...) be an infinite matrix of complex numbers. We

write Ax = (An(x)) if An(x) =
∞
∑

k=1

ankxk converges for each n. If x = (xk) ∈ X ⇒

Ax = (An(x)) ∈ Y we say that A defines a (matrix) transformation from X to Y
and we denote it by A : X → Y.
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Şengönül [33] defined the sequence y = (yk) which is frequently used as the
Z-transformation of the sequence x = (xk) i.e.

yk = αxk + (1− α)xk−1

where x−1 = 0, k 6= 0, 1 < k < ∞ and Z denotes the matrix Z = (znk) defined by

znk =







α, if n = k;
1− α, if n− 1 = k;
0, otherwise.

Şengönül [33] introduced the Zweier sequence spaces Z and Z0 as follows

Z = {x = (xk) ∈ w : Z(x) ∈ c}

and

Z0 = {x = (xk) ∈ w : Z(x) ∈ c0}.

For details on Zweier sequence spaces we refer to [7,15,16,18,19,21,22].

A function M : [0,∞) → [0,∞) is called an Orlicz function if it is continuous,
non-decreasing and convex with M(0) = 0,M(x) > 0 as x > 0 and M(x) → ∞ as
x → ∞ (see [25]). An Orlicz function M can always be represented in the following
integral form:

M(x) =

∫ x

0

p(t)dt

where p is the known kernel of M, right differentiable for t ≥ 0, p(0) = 0, p(t) > 0
for t > 0 and p(t) → ∞ as t → ∞. If convexity of Orlicz function is replaced by
M(x + y) ≤ M(x) +M(y) then this function is called the modulus function and
characterized by Nakano [29], followed by Ruckle [32]. An Orlicz function M is
said to satisfy ∆2 − condition for all values of u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Two Orlicz functions M1 and M2 are said to be equivalent if there exist positive
constants α, β and x0 such that

M1(α) ≤ M2(x) ≤ M1(β)

for all x with 0 ≤ x < x0.

Lindenstrauss and Tzafriri [27] studied some Orlicz type sequence spaces defined
as follows:

ℓM =

{

(xk) ∈ w :
∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

.
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The space ℓM with the norm

||x|| = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space ℓM is
closely related to the space ℓp which is an Orlicz sequence space with M(t) = |t|p

for 1 ≤ p < ∞.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function
(for details see [10,13,17,20]). Also a Musielak-Orlicz function φ = (φk) is called a
complementary function of a Musielak-Orlicz function M if

φk(t) = sup{| t|s−Mk(s) : s ≥ 0}, for k = 1, 2, 3, ....

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space lM
and its subspace hM are defined as follows:

lM = {x = (xk) ∈ w : IM(cx) < ∞, for some c > 0};

hM = {x = (xk) ∈ w : IM(cx) < ∞, for all c > 0},

where IM is a convex modular defined by

IM =
∞
∑

k=1

Mk(xk), x = (xk) ∈ lM.

We consider lM equipped with the Luxemburg norm

|| x || = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

or equipped with the Orlicz norm

|| x ||0 = inf

{

1

k
(1 + IM(kx)) : k > 0

}

.

The following well-known inequality will be used throughout the article. Let
p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,
D = max{1, 2G−1} then

|ak + bk|
pk ≤ D(|ak|

pk + |bk|
pk)

for all k ∈ N and ak, bk ∈ C. Also |a|pk ≤ max{1, |a|G} for all a ∈ C.

Subsequently Orlicz function was used to define sequence spaces by Parashar
and Choudhary [31] and many others (see [9,26,28,38]).

Remark 1.1. It is well known if M is a convex function and M(0) = 0, then
M(λx) ≤ λM(x), for all λ with 0 < λ < 1.

Throughout the paper X we denote a locally convex Hausdorff topological linear
space whose topology is determined by a set Q of continuous seminorms q. Also we
denote I is an non-trivial admissible ideal of N.
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2. Ideal convergence in a locally convex space

In this section we define I-convergence in a locally convex space X and inves-
tigate some basic properties.

Definition 2.1. A sequence x = (xk) in X is said to be Iq-convergent to ℓ ∈ X if
for all q ∈ Q and all ε > 0,

{k ∈ N : q(xk − ℓ) ≥ ε} ∈ I.

In this case we can write Iq − lim xk = ℓ. We denote Iq = {{k ∈ N : q(xk − ℓ) ≥
ε} ∈ I}.

Further, since X is Hausdorff, the limit of ideal convergent sequence is unique.

Definition 2.2. A sequence x = (xk) in X is said to be Bp
(i)(Iq)-convergent to

ℓ ∈ X if for all q ∈ Q and all ε > 0,

{k ∈ N : q(Bp
(i)xk − ℓ) ≥ ε} ∈ I.

In this case we can write Iq − limBp
(i)(x) = ℓ. We denote

Bp
(i)(Iq) = {{k ∈ N : q(Bp

(i)xk − ℓ) ≥ ε} ∈ I}.,

where

Bp
(i)xk =

p
∑

ν=0

(

p

ν

)

αp−ν(1− α)νxk−iν .

Definition 2.3. Let M be a Musielak-Orlicz function. We say that a sequence
x = (xk) in wI(Bp

(i),M) if and only if there exists ℓ ∈ X such that for all q ∈ Q

and for every ε > 0,

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

q(Bp
(i)xk − ℓ)

ρ

)]

≥ ε

}

∈ I for ρ > 0. (2.1)

When (2.1) holds we write

xk → ℓ(wI(Bp
(i),M)).

The condition (2.1) provides a definition of ideal summability for a sequence in a
locally convex space.

Theorem 2.1. Let A = (ank) be a non-negative reguler matrix and u = (uk) be a
bounded sequence of positive real numbers. Let M be a Musielak-Orlicz function.
Then xk → ℓ(w(M, A, u)) implies that xk → ℓ(Bp

(i)(Iq)(A)).
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Proof: Let q ∈ Q. Assume that xk → ℓ(w(M, A, u)), then for ρ > 0 we have

lim
n→∞

∞
∑

k=1

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

ρ

)]uk

= 0 for ℓ ∈ C.

Let ε > 0 be given. We define

K(ε) =
{

k ∈ N : q(Bp
(i)xk − ℓ) ≥ ε

}

and we write
∞
∑

k=1

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

=
∑

k∈K(ε)

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

+
∑

k/∈K(ε)

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

≥





∑

k∈K(ε)

ank





[

Mk

(ε

r

)]uk

.

Then we have xk → ℓ(Bp
(i)(Iq)(A)). ✷

Theorem 2.2. Let A = (ank) be a non-negative reguler matrix and u = (uk) be a
bounded sequence of positive real numbers. Let M be a Musielak-Orlicz function.
If x = (xk) ∈ ℓ∞(Bp

(i)) and xk → ℓ(Bp
(i)(Iq)(A)), then xk → ℓ(w(M, A, u)).

Proof: Suppose that x = (xk) ∈ ℓ∞(Bp
(i)) and xk → ℓ((Bp

(i)(Iq))(A)). Then there

is a set K ∈ F (Bp
(i)(Iq)) such that

lim
k∈K

q(Bp
(i)xk − ℓ) = 0.

Now
∞
∑

k=1

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

=
∑

k∈K(ε)

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

+
∑

k/∈K(ε)

ank

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

=

∞
∑

k=1

ankχK(k)

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

+

∞
∑

k=1

ankχKc(k)

[

Mk

(

q(Bp
(i)xk − ℓ)

r

)]uk

.

If we consider the regularity of A, Kc ∈ Bp
(i)(Iq) and boundedness of (xk) right

side tends to zero. Hence xk → ℓ(w(M, A, u)). ✷
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3. Difference Zweier ideal convergent sequences in a locally convex

space

In this section we define some new classes of difference ideal convergent se-
quences by using infinite matrix and investigate their linear topological structures.
Also we find out some relations related to these spaces.

Let I be an admissible ideal of N, u = (uk) be a bounded sequence of positive
real numbers and A = (ank) be an infinite matrix. Let M be a Musielak-Orlicz
function. Further w(X) denotes the space of all X-valued sequences. For each
ε > 0, for all q ∈ Q and for ρ > 0 we define the following sequence spaces.

[Z(A,Bp
(i),M, u, q)]I =







x = (xk) ∈ w(X) :







n ∈ N :
∞
∑

k=1

ank



Mk





q
(

B
p

(i)xk − ℓ
)

ρ









uk

≥ ε







∈ I for ℓ ∈ X







,

[Z0(A,B
p
(i), M, u, q)]I =







x = (xk) ∈ w(X) :







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ









uk

≥ ε







∈ I







,

[Z∞(A,Bp
(i), M, u, q)]I =







x = (xk) ∈ w(X) : ∃K > 0s.t.







n ∈ N :
∞
∑

k=1

ank



Mk





q
(

B
p

(i)xk

)

ρ









uk

≥ K







∈ I







,

[Z∞(A,Bp
(i),M, u, q)] =







x = (xk) ∈ w(X) : sup
n∈N

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ









uk

< ∞







.

Particular cases:

(i) If p = 1, then above spaces are denoted by [Z(A,B(i),M, u, q)]I , [Z0(A,B(i),
M, u, q)]I , [Z∞(A,B(i),M, u, q)]I and [Z∞(A,B(i),M, u, q)].

(ii) If i = 1 then above spaces are denoted by [Z(A,Bp,M, u, q)]I , [Z0(A,B
p,M,

u, q)]I , [Z∞(A,Bp,M, u, q)]I and [Z∞(A,Bp,M, u, q)].

(iii) If Mk(x) = x for all x ∈ [0,∞), k ∈ N then we obtain the above spaces as
[Z(A,Bp

(i), u, q)]
I, [Z0(A,B

p
(i), u, q)]

I, [Z∞(A,Bp
(i), u, q)]

I and [Z∞(A,Bp
(i), u, q)].
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(iv) If u = (uk) = (1, 1, 1...), then above spaces are denoted by [Z(A,Bp
(i),M, q)]I ,

[Z0(A,B
p
(i),M, q)]I , [Z∞(A,Bp

(i),M, q)]I and [Z∞(A,Bp
(i),M, q)].

(v) If we take A = (C, 1) ), i.e., the Cesàro matrix, then the above classes of se-
quences are denoted by [Z(Bp

(i),M, u, q)]I , [Z0(B
p
(i),M, u, q)]I , [Z∞(Bp

(i),M,

u, q)]I and [Z∞(Bp
(i),M, u, q)].

(vi) If we take A = (ank) is a de la Vallée Poussin mean, i.e.,

ank =

{

1
λn

, if k ∈ In = [n− λn + 1, n];

0, otherwise.

where (λn) is a non-decreasing sequence of positive numbers tending to ∞
and λn+1 ≤ λn + 1, λ1 = 1, then the above classes of sequences are de-
noted by [Z(λ,Bp

(i),M, u, q)]I , [Z0(λ,B
p
(i),M, u, q)]I , [Z∞(λ,Bp

(i),M, u, q)]I

and [Z∞(λ,Bp
(i),M, u, q)].

(vii) By a lacunary sequence θ = (kr), where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The
intervals determined by θ will be denoted by Jr = (kr−1, kr] and we let
hr = kr − kr−1. As a final illustration let

ank =

{

1
hr
, if k ∈ Ir = (kr−1, kr];

0, otherwise.

Then the above classes of sequences are denoted by [Z(θ,Bp
(i),M, u, q)]I ,

[Z0(θ,B
p
(i),M, u, q)]I , [Z∞(θ,Bp

(i),M, u, q)]I and [Z∞(θ,Bp
(i),M, u, q)].

Theorem 3.1. [Z(A,Bp
(i),M, u, q)]I , [Z0(A,B

p
(i),M, u, q)]I and [Z∞(A,Bp

(i),M, u,

q)]I are linear spaces.

Proof: We will proved the result for the space [Z0(A,B
p
(i),M, u, q)]I only and the

others can be proved in similar way. Let x = (xk) and y = (yk) be two elements in
[Z0(A,B

p
(i),M, u, q)]I . Then there exist ρ1 > 0 and ρ2 > 0 such that

A ε
2
=







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ1









uk

≥
ε

2







∈ I

and

B ε
2
=







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)yk

)

ρ2









uk

≥
ε

2







∈ I.

Let α, β be two scalars in R. Since Bp
(i) is linear and the continuity of the

Musielak-Orlicz function M, the following inequality holds:

∞
∑

k=1

ank



Mk





q
(

Bp
(i)(αxk + βyk)

)

|α|ρ1 + |β|ρ2









uk
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≤ D

∞
∑

k=1

ank





|α|

|α|ρ1 + |β|ρ2
Mk





q
(

Bp
(i)xk

)

ρ1









uk

+D

∞
∑

k=1

ank





|β|

|α|ρ1 + |β|ρ2
Mk





q
(

Bp
(i)yk

)

ρ2









uk

≤ DK

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ1









pk

+DK

∞
∑

k=1

ank



Mk





q
(

Bp
(i)yk

)

ρ2









uk

,

where K = max{1,
(

|α|ρ
1

|α|ρ
1
+|β|ρ

2

)

,
(

|β|ρ
2

|α|ρ
1
+|β|ρ

2

)

}.

From the above relation we get







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)(αxk + βyk)

)

(|α|ρ1 + |β|ρ2)









uk

≥ ε







⊆







n ∈ N : DK

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ1









uk

≥
ε

2







∪







n ∈ N : DK

∞
∑

k=1

ank



Mk





q
(

Bp
(i)yk

)

ρ2









uk

≥
ε

2







. (3.1)

Since both of the sets on the right hand of (3.1) are belong to I, this completes the
proof of the theorem. ✷

Remark 3.1. It is easy to verify that the space [Z∞(A,Bp
(i),M, u, q)] is a linear

space.

Theorem 3.2. Let S = (Sk) and T = (Tk) be Musielak-Orlicz functions. Then
the following holds:

[Z0(A,B
p
(i),S, u, q)]

I ∩ [Z0(A,B
p
(i),T, u, q)]I ⊆ [Z0(A,B

p
(i),S+T, u, q)]I .

Proof: Let x = (xk) ∈ [Z0(A,B
p
(i),S, u, q)]

I∩[Z0(A,B
p
(i),T, u, q)]I . Then the result

follows from the inequality

∞
∑

k=1

ank



(Sk + Tk)





q
(

Bp
(i)xk

)

ρ









uk
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≤ D

∞
∑

k=1

ank



Sk





q
(

Bp
(i)xk

)

ρ









uk

+D

∞
∑

k=1

ank



Tk





q
(

Bp
(i)xk

)

ρ









pk

.

✷

Theorem 3.3. Let S = (Sk) and T = (Tk) be Musielak-Orlicz functions. Then
the following holds:

[Z0(A,B
p
(i),T, u, q)]I ⊆ [Z0(A,B

p
(i),ST, u, q)]I

provided h = inf uk > 0.

Proof: For a given ε>0, we first choose ε0 > 0 such that supn (
∑n

k=1 ank)max{εh0 ,
εH0 } < ε. Using the continuity of M, choose 0 < δ < 1 such that 0 < δ < t implies
that Sk(t) < ε0 for all k ∈ N. Let x = (xk) ∈ [Z0(A,B

p
(i),T, u, q)]I . For some ρ > 0

we denote

A5 =







n ∈ N :

n
∑

k=1

ank



Tk





q
(

Bp
(i)xk

)

ρ









uk

≥ δH







∈ I.

If n /∈ A5, then we have

n
∑

k=1

ank



Tk





q
(

Bp
(i)xk

)

ρ









uk

< δH

i.e.



Tk





q
(

Bp
(i)xk

)

ρ









uk

< δH for all k ∈ N

i.e.Tk





q
(

Bp
(i)xk

)

ρ



 < δ for all k ∈ N

i.e.Sk



Tk





q
(

Bp
(i)xk

)

ρ







 < ε0 for all k ∈ N.

Consequently, we get

n
∑

k=1

ank



Sk



Tk





q
(

Bp
(i)xk

)

ρ













uk

< sup
n

(

n
∑

k=1

ank

)

max{εh0 , ε
H
0 } < ε.

i.e.
n
∑

k=1

ank



Sk



Tk





q
(

Bp
(i)xk

)

ρ













uk

< ε.
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This shows that






n ∈ N :

n
∑

k=1

ank



Sk



Tk





q
(

Bp
(i)xk

)

ρ













uk

≥ ε







⊂ A5 ∈ I.

This completes the proof. ✷

Theorem 3.4. The inclusions [Y (A,Bp−1
(i) ,M, u, q)]I ⊂ [Y (A,Bp

(i),M, u, q)]I , are

strict for p ≥ 1. In general [Y (A,Bj
(i),M, u, q)]I ⊂ [Y (A,Bp

(i),M, u, q)]I , for j =

0, 1, 2, . . . , p− 1 and the inclusions are strict, where Y = Z0,Z,Z∞.

Proof: We shall give the proof for [Z0(A,B
p−1
(i) ,M, u, q)]I only. The others can

be proved by similar arguments. Let x = (xk) be any element in the space
[Z0(A,B

p−1
(i) ,M, u, q)]I . Let ε > 0 be given. Then there exists δ > 0 such that

the set






n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk

)

ρ









pk

≥ ε







∈ I.

Since M is non-decreasing and convex, it follows that

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

2ρ









pk

=

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk+1 −Bp−1

(i) xk

)

2ρ









pk

≤ D

∞
∑

k=1





1

2
Mk





q
(

Bp−1
(i) xk+1

)

ρ









pk

+D

∞
∑

k=1

ank





1

2
Mk





q
(

Bp−1
(i) xk

)

ρ









pk

≤ DH

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk+1

)

ρ









pk

+DH

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk

)

ρ









pk

,

where H = max{1, (12 )
G}. Thus we have







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

2ρ









pk

≥ ε







⊆







n ∈ N : DH

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk+1

)

ρ









pk

≥
ε

2







∪







n ∈ N : DH

∞
∑

k=1

ank



Mk





q
(

Bp−1
(i) xk

)

ρ









pk

≥
ε

2







(3.2)
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Since both the sets in the right side of (3.2) belongs to I, we get







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

2ρ









pk

≥ ε







∈ I.

If follow from the following example that the inclusion is strict.

Example 3.1. Let A = (C, 1), Mk(x) = x, for all x ∈ [0,∞), uk = 1 for all
k ∈ N and r = 1, s = −1. Consider a sequence x = (xk) = (kp). Then x =
(xk) belongs to [Z0(A,B

p
(i),M, u, q)]I but does not belong to [Z0(A,B

p−1
(i) ,M, u, q)]I ,

because Bp
(i)xk = 0 and Bp−1

(i) xk = (−1)p−1(p− 1)!.

✷

Theorem 3.5. (a) Let 0 < inf uk ≤ uk ≤ 1, then [Z(A,Bp
(i),M, u, q)]I ⊂ [Z(A,

Bp
(i),M, q)]I and [Z0(A,B

p
(i),M, u, q)]I ⊂ [Z0(A,B

p
(i),M, q)]I .

(b) If 1 < uk ≤ supuk < ∞, then [Z(A,Bp
(i),M, q)]I ⊂ [Z(A,Bp

(i),M, u, q)]I and

[Z0(A,B
p
(i),M, q)]I ⊂ [Z0(A,B

p
(i),M, u, q)]I .

Proof: (a) Let x = (xk) ∈ [Z(A,Bp
(i),M, u, q)]I . Since 0 < inf uk ≤ uk ≤ 1, we

have

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ







 ≤

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ









pk

and therefore






n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ







 ≥ ε







⊆







n ∈ N :

∞
∑

k=1

ank



M





q
(

Bp
(i)xk − ℓ

)

ρ









pk

≥ ε







∈ I.

(b) Let 1 < uk ≤ supuk < ∞ and let x = (xk) ∈ [Z(A,Bp
(i),M, q)]I . Then for each

0 < ε < 1 there exists a positive integer N such that

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ







 ≤ ε < 1

for all n ≥ N. This implies that

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ









pk

≤

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ







 .
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Thus we have






n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ









pk

≥ ε







⊆







n ∈ N :
∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − ℓ

)

ρ







 ≥ ε







∈ I.

This completes the proof of the theorem. ✷

Corollary 3.1. Let A = (C, 1) Cesáro matrix and let M = (Mk) be a Musielak-
Orlicz function.

(a) If 0 < inf uk ≤ uk ≤ 1, then

(i) [Z(Bp
(i),M, u, q)]I ⊂ [Z(Bp

(i),M, q)]I ;

(ii) [Z0(B
p
(i),M, u, q)]I ⊂ [Z0(B

p
(i),M, q)]I .

(b) If 1 < uk ≤ supuk < ∞, then

(i) [Z(Bp
(i),M, q)]I ⊂ [Z(Bp

(i),M, u, q)]I ;

(ii) [Z0(B
p
(i),M, q)]I ⊂ [Z0(B

p
(i),M, u, q)]I .

Theorem 3.6. Let 0 < uk ≤ vk for all k ∈ N and
(

vk
uk

)

is bounded, then

[Z(A,Bp
(i),M, v, q)]I ⊆ [Z(A,Bp

(i),M, u, q)]I .

Proof: The proof of the theorem is straightforward, so we should omitted here.✷

Theorem 3.7. If limk uk > 0 and x = (xk) → x0([Z(A,B
p
(i),M, u, q))]I , then x0

is unique.

Proof: Let limk uk = u0 > 0. Suppose that (xk) → x0([Z(A,B
p
(i),M, u, q)]I) and

(xk) → y0([Z(A,B
p
(i),M, u, q)]I).

Then there exist ρ1, ρ2 > 0 such that

B1 =







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − x0

)

ρ1









uk

≥
ε

2







∈ I (3.3)

and

B2 =







n ∈ N :

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − y0

)

ρ1









uk

≥
ε

2







∈ I. (3.4)
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Let ρ = max{2ρ1, 2ρ2}. Then we have

∞
∑

k=1

ank

[

Mk

(

q (x0 − y0)

ρ

)]uk

≤

D

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − x0

)

ρ1









uk

+D

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − y0

)

ρ1









uk

.

Thus from (3.3) and (3.4) we have

{

n ∈ N :
∞
∑

k=1

ank

[

Mk

(

q (x0 − y0)

ρ

)]uk

≥ ε

}

⊆







n ∈ N : D

∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − x0

)

ρ1









uk

≥
ε

2







∪







n ∈ N : D
∞
∑

k=1

ank



Mk





q
(

Bp
(i)xk − y0

)

ρ1









uk

≥
ε

2







⊆ B1 ∪B2 ∈ I.

Also we have

[

Mk

(

q (x0 − y0)

ρ

)]uk

→

[

Mk

(

q (x0 − y0)

ρ

)]u0

as k → ∞.

Therefore we have

[

Mk

(

q (x0 − y0)

ρ

)]uk

→

[

Mk

(

q (x0 − y0)

ρ

)]u0

= 0.

Hence x0 = y0. ✷

Theorem 3.8. Let M = (Mk) be a Musielak-Orlicz function. Then the following
statements are equivalent:

(i) [Z∞(A,Bp
(i), u, q)]

I ⊆ [Z∞(A,Bp
(i),M, u, q)]I

(ii) [Z0(A,B
p
(i), u, q)]

I ⊆ [Z∞(A,Bp
(i),M, u, q)]I

(iii) supn
∑n

k=1 ank

[

Mk

(

t
ρ

)]uk

< ∞ (t, ρ > 0).

Proof: (i)⇒(ii) is obvious, because [Z0(A,B
p
(i), u, q)]

I ⊆ [Z∞(A,Bp
(i), u, q)]

I .
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(ii)⇒(iii). Suppose [Z0(A,B
p
(i), u, q)]

I ⊆ [Z∞(A,Bp
(i),M, u, q)]I . We assume

that (iii) is not satisfied. Then for some t, ρ > 0

sup
n

n
∑

k=1

ank

[

Mk

(

t

ρ

)]uk

= ∞,

and therefore there exists a sequence (nj) of positive integers such that

nj
∑

k=1

anjk

[

Mk

(

j−1

ρ

)]uk

> j, j = 1, 2, 3, .... (3.5)

Define a sequence x = (xk) by

Bp
(i)xk =

{ 1
j , if 1 ≤ k ≤ nj, j = 1, 2, 3, ...;

0, if k > nj

Then x = (xk) ∈ [Z0(A,B
p
(i), u, q)]

I but by equation (3.5) we have x = (xk) /∈

[Z∞(A,Bp
(i),M, u, q)]I which contradicts (ii). Hence (iii) must hold.

(iii)⇒(i) Suppose (iii) is satisfied and x ∈ [Z∞(A,Bp
(i), u, q)]

I . Suppose that

x /∈ [Z∞(A,Bp
(i),M, u, q)]I . Then

sup
n

n
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ









uk

= ∞. (3.6)

Put t = q
(

Z(Bp
(i)xk)

)

for all k ∈ N. Then by the equation (3.6) we have

sup
n

n
∑

k=1

ank

[

Mk

(

t

ρ

)]uk

= ∞

which contradicts (iii). Hence (i) must hold. ✷

Theorem 3.9. Let M = (Mk) be a Musielak-Orlicz function. Let 1 ≤ uk ≤
supkuk < ∞. Then the following statements are equivalent:

(i) [Z0(A,B
p
(i),M, q)]I ⊆ [Z0(A,B

p
(i), u, q)]

I

(ii) [Z0(A,B
p
(i),M, u, q)]I ⊆ [Z∞(A,Bp

(i), u, q)]
I

(iii) infn
∑n

k=1 ank

[

Mk

(

t
ρ

)]uk

> 0 (t, ρ > 0).

Proof: (i)⇒(ii) is obvious.
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(ii)⇒(iii). Suppose [Z0(A,B
p
(i),M, u, q)]I ⊆ [Z∞(A,Bp

(i), u, q)]
I . We assume

that (iii) does not hold. Then for some t, ρ > 0

inf
n

n
∑

k=1

ank

[

Mk

(

t

ρ

)]uk

= 0.

We can choose an index sequence (nj) of positive integers such that

nj
∑

k=1

anjk

[

Mk

(

i

ρ

)]uk

>
1

j
, j = 1, 2, 3, .... (3.7)

Define a sequence x = (xk) by

Bp
(i)xk =

{

j, if 1 ≤ k ≤ nj , j = 1, 2, 3, ...;
0, if k > nj

Then by equation (3.7) we have x = (xk) ∈ [Z0(A,B
p
(i),M, u, q)]I but x = (xk) /∈

[Z∞(A,Bp
(i), u, q)]

I which contradicts (ii). Hence (iii) must hold.

(iii)⇒(i) Let (iii) hold and x ∈ [Z0(A,B
p
(i),M, u, q)]I . Then for every ε > 0, we

have






n ∈ N :

n
∑

k=1

ank



Mk





q
(

Bp
(i)xk

)

ρ









uk

≥ ε







∈ I. (3.8)

Suppose that x /∈ [Z0(A,B
p
(i), u, q)]

I . Then for some integer ε0 > 0, we have

{

n ∈ N :

n
∑

k=1

ank

[

q
(

Bp
(i)xk

)]uk

≥ ε0

}

/∈ I.

Therefore we have

[

Mk

(

ε0
ρ

)]uk

≤



Mk





q
(

Bp
(i)xk

)

ρ









uk

and consequently by the relation (3.8) we have

inf
n

n
∑

k=1

ank

[

Mk

(

ε0
ρ

)]uk

= 0

which contradicts (iii). Hence [Z0(A,B
p
(i),M, q)]I ⊆ [Z0(A,B

p
(i), u, q)]

I . ✷
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