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On generalized difference Zweier ideal convergent sequences space
defined by Musielak-Orlicz functions

Karan Tamang and Bipan Hazarika

ABSTRACT: Let M = (M) be a Musielak-Orlicz function. In this article, we
introduce a new class of ideal convergent sequence spaces defined by Musielak-
Orlicz function, using an infinite matrix, and a generalized difference Zweier matrix
operator Bﬁ.). We investigate some topological structures and algebraic properties
of these spaces. We obtain some relations related to these sequence spaces.
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1. Introduction

The notion of the ideal convergence is the dual (equivelant) to the notion of
filter convergence introduced by Cartan in 1937 [4]. The notion of the filter conver-
gence is a generalization of the classical notion of convergence of a sequence and it
has been an important tool in general topology and functional analysis. Nowadays
many authors to use an equivalent dual notion of the ideal convergence. Kostyrko
et al. [24] and Nuray and Ruckle [30] independently studied in detalis about the
notion of ideal convergence which is based on the structure of the admissible ideal
I of subsets of natural numbers N. Later on it was further investigated by many
authors, e.g. Tripathy and Hazarika [36,37], Hazarika [12], Hazarika and Savag
[11] and references therein. Hazarika [14] introduced the concept of generalized
difference ideal convergent sequences of fuzzy numbers and studied some interest-
ing properties. Esi [6] introduced strongly almost summable sequence spaces in
2-normed spaces defined by ideal convergence and an Orlicz function and proved
some interesting results.

Before proceeding let us recall a few concepts, which we shall use throughout
this paper.
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Let X be a non-empty set, then a family of sets I C 2% (the class of all subsets
of X) is called an ideal if and only if for each A, B € I we have AU B € I and for
each A € I and each B C A we have B € I. A non-empty family of sets F' C 2%
is a filter on X if and only if ¢ ¢ F, for each A, B € F we have AN B € F and
each A € F and each B D A we have B € F. An ideal I is called non-trivial
ideal if I # ¢ and X ¢ I. Clearly I C 2% is a non-trivial ideal if and only if
F=F()={X—A:AcI}isafilter on X. A non-trivial ideal I C 2% is called
admissible if and only if {{z} : 2 € X} C I. A non-trivial ideal I is maximal if
there cannot exists any non-trivial ideal J # I containing I as a subset. Recall that
a sequence x = (xy) of points in R is said to be I-convergent to a real number ¢ if
{k eN: |z, —L] > e} €I forevery e > 0 (]24]). In this case we write [ —lim aj, = /.

Throughout the article w, £, ¢, cg, denote for the classes of all, bounded, con-
vergent, null sequences of complex numbers, respectively.

The notion of difference sequence space was introduced by Kizmaz [23], who
studied the difference sequence spaces o (A), ¢(A), ¢o(A). The notion was further
generalized by Et and Colak [8] introducing the sequence spaces {oo(AP), ¢(AP),
¢o(AP). For a non negative integer p, the generalized difference sequence spaces are
defined as follows. For a given sequence space Z we have

Z(AP) ={z = (zx) € w: (APxy) € Z},

where APz = AP 1z, — AP~ 1oy, Az, = ap, for all k € N, the difference
operator is equivalent to the following binomial representation:

P

APz =3 (1) <p) Ty for all k € N.
v

v=0

Taking p = 1, we get the spaces loo(A), c(A), co(A), introduced and studied
by Kizmaz [23]. Tripathy and Esi [34] introduced and studied the new type of
generalized difference sequence spaces

Z(A;) ={(zr) Ew: Ay, € Z},
for Z = U, ¢, co where Ajx = (Ajx) = (v — xp;) for all ki € N.

Tripathy, et al [35] further generalized this notion and introduced the following
sequence spaces. For p > 1 and ¢ > 1,

Z(AY) ={(x) € w: Alxy, € Z},

for Z =, ¢, co. This generalized difference has the following binomial representa-

tion,
n

Af:ck = Z (*1)1/ (p) Lhtiv for all £ € N.
v

v=0
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Dutta [5] introduced the following difference sequence spaces

Z(A

(i)) ={(x) e w: A’(Di)zk € Z} for all p,i € N,

for Z = (., ¢, ¢y where ¢, ¢y are the sets of statistically convergent and statistically
null sequences, respectively, and A’(Di)z = (Aﬁ.)zk) = (A’(Dglxk - A’(Dglxk,i) and

A?i)zk = xy, for all £ € N, which is equivalent to the following binomial represen-

tation:
p
v (P
Sy =3 (1) (o

v=0

Basar and Altay [1] introduced the generalized difference matrix B(r, s) = (bpr (7, s))
which is a generalization of A%l)—difference operator as follows:

T if k= p;
bpe(r,s) =1 s, ifk=p—1;
0, if0<k<p—1lork>np.

for all k,p e N;r;s € R — {0}.

Basarir and Kayikci [2] have defined the generalized difference matrix B? of order p,
which reduced the difference operator A’()l) in case r = 1, s = —1 and the binomial
representation of this operator is

p
BPyy, = Z (p) PV s
v

v=0

where 7, s € R — {0} and p € N.
Recently Basarir et al., [3] introduced the following generalized difference sequence
spaces

Z(BZ.)) ={(z) e w: Bz)zk € Z} for all p,i € N,
for Z = (., ¢, ¢y where ¢, ¢y are the sets of statistically convergent and statistically
null sequences, respectively, and Bﬁ.)x = (Bf’i):ck) = (rBfglxk + st’i;lxk,i) and

B?i)zk = xy, for all £ € N, which is equivalent to the following binomial represen-

tation:
P
p —V VvV
Bﬁ)xk = Z (1/) rPTV s  Tp_i.
v=0

Let X and Y be two nonempty subsets of the space w of complex sequences.
Let A = (ank), (n,k = 1,2,3,...) be an infinite matrix of complex numbers. We
write Az = (A, (2)) if An(z) = > apgxy converges for each n. If x = (z1,) € X =

k=1
Ax = (A, (z)) € Y we say that A defines a (matrix) transformation from X to Y
and we denote it by A: X — Y.
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Sengoniil [33] defined the sequence y = (yx) which is frequently used as the
Z-transformation of the sequence x = (zy,) i.e.
Yy = axg + (1 — @)z

where x_1 =0,k # 0,1 < k < 0o and Z denotes the matrix Z = (z,;) defined by

«Q, if n==k;
Znk = l—a, ifn—1=%k
0, otherwise.

Sengoniil [33] introduced the Zweier sequence spaces Z and Z as follows
Z=A{x=(xx) cw: Z(x) € c}

and
Zo ={z = (z1) € w: Z(x) € co}.

For details on Zweier sequence spaces we refer to [7,15,16,18,19,21,22].

A function M : [0,00) — [0, 00) is called an Orlicz function if it is continuous,
non-decreasing and convex with M (0) = 0, M(x) > 0 as z > 0 and M (z) — oo as
x — 00 (see [25]). An Orlicz function M can always be represented in the following
integral form:

M(z) = /0z p(t)dt

where p is the known kernel of M, right differentiable for ¢ > 0,p(0) = 0,p(¢) > 0
for t > 0 and p(t) — oo as t — oo. If convexity of Orlicz function is replaced by
M(x+y) < M(xz) + M(y) then this function is called the modulus function and
characterized by Nakano [29], followed by Ruckle [32]. An Orlicz function M is
said to satisfy Ay — condition for all values of w, if there exists K > 0 such that
M(2u) < KM (u),u > 0.

Two Orlicz functions M7 and M> are said to be equivalent if there exist positive
constants «, 3 and g such that

Mi(a) < Ma(x) < Myi(B)
for all z with 0 < z < zg.

Lindenstrauss and Tzafriri [27] studied some Orlicz type sequence spaces defined
as follows:

EM:{(wk)Gw:ZM(%) < 00, forsomep>0}.

k=1
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The space £;; with the norm
[|z]| :inf{p> 0: ZM (M) < 1}
k=1 P

becomes a Banach space which is called an Orlicz sequence space. The space £,/ is
closely related to the space £, which is an Orlicz sequence space with M (t) = [¢|P
for 1 <p < o0.

A sequence M = (Mj,) of Orlicz functions is called a Musielak-Orlicz function
(for details see [10,13,17,20]). Also a Musielak-Orlicz function ¢ = (¢,,) is called a
complementary function of a Musielak-Orlicz function M if

¢ (t) = sup{| t|s — My(s) : s > 0},for k =1,2,3,....

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space Iy
and its subspace hng are defined as follows:

Im ={z = (2) € w: Im(cx) < oo, for some ¢ > 0};
hyv = {x = (z1) € w: Im(cx) < oo, for all ¢ > 0},
where Ipg is a convex modular defined by
In = ZMk(ZEk),:C = (ZL'k) € lm-
k=1

We consider Iy equipped with the Luxemburg norm

||z||:inf{k>0:IM(%)§1}

or equipped with the Orlicz norm
1
||z ||°= inf{E(l + Iv(kx)) : k> 0} )

The following well-known inequality will be used throughout the article. Let
p = (pr) be any sequence of positive real numbers with 0 < p, < sup, pr = G,
D = max{1,29~'} then

lak + be|"* < D(Jar™* + |be]™)
for all k € N and ay, by € C. Also |a|P* < max{1,|a|®} for all a € C.

Subsequently Orlicz function was used to define sequence spaces by Parashar
and Choudhary [31] and many others (see [9,26,28,38]).

Remark 1.1. It is well known if M is a convexr function and M(0) = 0, then
M(Ax) < AM(x), for all X with 0 < X < 1.

Throughout the paper X we denote a locally convex Hausdorff topological linear
space whose topology is determined by a set @ of continuous seminorms ¢q. Also we
denote [ is an non-trivial admissible ideal of N.
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2. Ideal convergence in a locally convex space

In this section we define I-convergence in a locally convex space X and inves-
tigate some basic properties.

Definition 2.1. A sequence x = (x1) in X is said to be I,-convergent to { € X if
for all g € Q and all € > 0,

{keN:q(xy—¥¢)>e} el

In this case we can write I, —limxy, = £. We denote I, = {{k € N : q(xy, — () >
e} el}.

Further, since X is Hausdorff, the limit of ideal convergent sequence is unique.

Definition 2.2. A sequence x = (xy) in X is said to be BZ) (I4)-convergent to
te X if for all g € Q and all e > 0,

{kJEN:q(BZ)xk—E) >el el

In this case we can write I, — lim BZ) (x) = ¢. We denote
B (1) = {{k € N: q(BYay — 0) > e} € I}.,

where
p
p —v v
Bg)xk = Z <1/> a7 (1 — @) wp—iy.
v=0

Definition 2.3. Let M be a Musielak-Orlicz function. We say that a sequence
x = (x) in wI(BZ), M) if and only if there exists £ € X such that for all ¢ € Q
and for every e > 0,

{nEN:%ile<w>125}6[f0rp>0. (2.1)

k=1 p
When (2.1) holds we write

= L(w' (Bf,), M)).

The condition (2.1) provides a definition of ideal summability for a sequence in a
locally convex space.

Theorem 2.1. Let A = (ank) be a non-negative requler matriz and v = (ug) be a
bounded sequence of positive real numbers. Let M be a Musielak-Orlicz function.
Then xy, — ((w(M, A,u)) implies that xy — E(BZ)(LZ)(A)).
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Proof: Let ¢ € Q. Assume that x;, — £(w(M, A, u)), then for p > 0 we have

> q(Bfyxr —0) uk
lim > an [Mk <# —0for (€ C.
n—oo p
k=1
Let € > 0 be given. We define
K(e) = {k eN: q(BZ.)xk —0) > 5}

and we write

k=1
q(B(,x —£) e q(B(,yxr — L) o
- Zank[Mk< © + >k | My L
r r
kEK(e) k¢ (<)
£\ ur
> z
SESPRINE;
keK (e)
Then we have z; — E(BZ.) (I)(A)). O

Theorem 2.2. Let A = (ani) be a non-negative requler matriz and v = (ug) be a
bounded sequence of positive real numbers. Let M be a Musielak-Orlicz function.

If v = () € EOO(BZ.)) and xp — E(BZ.) (I,)(A)), then x), — L(w(M, A, u)).

Proof: Suppose that z = (z) € EOO(BZ)) and zj — E((BZ) (I;))(A)). Then there
isaset K € F(BZ.) (I,)) such that

- P _
%1611;1( q(Bgyzr —£) = 0.

ia k le <_q(B€i)xk _€)>]u,€

q(Bfyxr — 1) e q(Bfyxr — 1) e
(M) (2
r r
K¢ (e)
q(BZ)wk — f))

keK (e)
o'} Uk o P Uk
q(Bi T — f)
k=1 k=1

If we consider the regularity of A, K¢ € Bﬁ.) (I;) and boundedness of (x) right
side tends to zero. Hence x — £(w(M, A, u)). O
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3. Difference Zweier ideal convergent sequences in a locally convex
space

In this section we define some new classes of difference ideal convergent se-
quences by using infinite matrix and investigate their linear topological structures.
Also we find out some relations related to these spaces.

Let I be an admissible ideal of N, u = (uy) be a bounded sequence of positive
real numbers and A = (anx) be an infinite matrix. Let M be a Musielak-Orlicz
function. Further w(X) denotes the space of all X-valued sequences. For each
e >0, for all ¢ € Q and for p > 0 we define the following sequence spaces.

[Z’(A7 BZ)) Ma u, q)]I =

o0 B2 ar—0)\]""
{x—(xk)Ew(X):{nEN:Zank[Mk(W)} zs}elforéeX},

[Z’O(A7 Bﬁ)a Ma u, q)]I =

g,
> a (Byre)

= (zr) € w(X): nGN:Zank M;y, -,
k=1

[Z’OO (A7 BZ)) Ma u, Q)]I =

0 B?. Tk "
{x:(xk) 6w(X):3K>034t.{neN: Zank [Mk (M)} >K} 6[},
k=1

[Z’OO (A7 BZ)) M) u7 q)] =

uy,
= a (Blyo)

x:(xk)Ew(X):supZank M, - < o0
k=1

Particular cases:

(i) If p = 1, then above spaces are denoted by [Z(A4, B(;y, M, u, )], [Zo(A, By,
M, u, Q)]Iv [Z'OO (Aa B(z) M, u, q)]l and [Z’OO (Av B(z)v M, u, Q)]

(i) If i = 1 then above spaces are denoted by [Z(A, B?, M, u, q)]’, [Zo(A, B?, M,
u, )], [Zoo(A, BP, M, u,q)]" and [Zoc(A, B?, M, u, q)].

(iil) If My(z) = « for all € [0,00),k € N then we obtain the above spaces as
[Z’(Aa BZ')’ u, Q)]Ia [Z’O(Aa BZ-) y Uy Q)]Iv [Z’OO (A7 BZ’)? U, Q)]I and [Z’OO (A7 BZ’)? U, Q)]
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(iv) Ifu = (ug) = (1,1, 1...), then above spaces are denoted by [Z(A, BZ.), M, q)]’,

[Z'O(Aa B(pz) ’ Ma q)]la [Z’OO (Av Bﬁ)v Ma q)]l and [Z'OO(Aa B(pz) ’ Mv Q)]

(v) If we take A = (C,1) ), i.e., the Cesaro matrix, then the above classes of se-
quences are denoted by [Z(BZ),M,u,q)]I, [ZO(BZ),M,u,q)]I, [ZOO(BZ),M,
u, ) and [Zoo (BF), M, 4, ).

(vi) If we take A = (an) is a de la Vallée Poussin mean, i.e.,

+, ifkel,=[n—-X +1,n];
ank — n .
0, otherwise.

where ()\,,) is a non-decreasing sequence of positive numbers tending to oo
and A,+1 < A\, + 1,A\; = 1, then the above classes of sequences are de-
noted by [Z(A,BZ),M,u,q)]I, [ZO(A,BZ),M,u,q)]I, [ZOO()\,BZ),M,U,(])]I
and [ZOO()\,BZ.),M,u,q)].

(vii) By a lacunary sequence 6 = (k; ), where ko = 0, we shall mean an increasing
sequence of non-negative integers with k. — k._1 — oo as r — oo. The
intervals determined by € will be denoted by J, = (k,.—1,k,] and we let
h, = k, — k,._1. As a final illustration let

Loifkel = (ke—1, k;
ank = b .
0, otherwise.

Then the above classes of sequences are denoted by [Z(G,BZ),M,u,q)]I,
Theorem 3.1. [Z,(A,BZ.),M,u,q)]I, [ZO(A,BZ.),M,u,q)]I and [ZOO(A,BZ),M,U,

q))! are linear spaces.

Proof: We will proved the result for the space [Zo(A, BZ.) ,M, u, q)]" only and the
others can be proved in similar way. Let © = (x) and y = (yx) be two elements in

[Zo(A, B[}y, M, u, q)]'. Then there exist p; > 0 and p, > 0 such that

Uk
- 4 (Bfwx’“) €
and s
Be ={neN:S an | M, | 772 >-%el
2 ; P2 2

Let o, be two scalars in R. Since Bpi is linear and the continuity of the
Musielak-Orlicz function M, the following inequality holds:

> q (BZ (azy + ﬁyk))
> ank | My )
Pt lalpy + 18]p2

U
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U
1 (57,7)
< DZank oy, [ A0
lalpy + [Blps 1
U
BY
18 a(Bu)
+D Qnk M
Z lalpy + |B]p2 P2
Pk Uk
< DK ank | My O +DKZank My |~ ;
k=1 1 k=1 P2

_ |O“P1 ‘B‘Pz
where K = max{l, (\a|p1+|ﬂ|pz) ) (Ia\p1+\5\p2)}'

From the above relation we get

> q (Bf’i) (v, +Byk))
neN: Ank | My,
; (lalpy +181p2)

uy
- nEN:DKZank My, O >

€
1 P1 2
Uk
e q (Bpi yk)
USn eN: DK an | My + = (3.1)
k=1 2

Since both of the sets on the right hand of (3.1) are belong to I, this completes the
proof of the theorem. O

Remark 3.1. It is easy to verify that the space [Zoo(A, B (i)’ M, u,q)| is a linear
space.

Theorem 3.2. Let S = (S;) and T = (T}) be Musielak-Orlicz functions. Then
the following holds:

[Zo(A,BZ),S,U,q)]Iﬁ [Z'O(AvBZ)vTauv(I)] [Z'O(A By, S+Tau7Q)]I

(@)

Proof: Let z = (x1) € [Zo(4, Bﬁ.), S, u, q)] N[Zo (A, Bﬁ.), T, u,q)]’. Then the result
follows from the inequality

Uk

iank (Sk +Tk) M

k=1 P
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U Pk
o[ (el )\ [ (ol
§D2ank Sk # +DZank Th # .
k=1 p k=1 P
O

Theorem 3.3. Let S = (S;) and T = (T}) be Musielak-Orlicz functions. Then
the following holds:

[Zo(A, BY), T,u,q)" C [Z0(A, B,), ST, u,q)]"
provided h = inf ug > 0.

Proof: For a given e >0, we first choose £y > 0 such that sup,, (3_j_, anx) max{el,
ell} < e. Using the continuity of M, choose 0 < § < 1 such that 0 < § < ¢ implies
that Sy (t) < &g for all k € N. Let 2 = (x) € [ZO(A,BZ),T,u,q)]I. For some p > 0
we denote

Uk

& q (sz')xk) "
As = nGN:Zank T, | ———~% >4 el
k=1
If n ¢ As, then we have
u
(o1
(4) L

n
E ank | Tk
k=1

Uk

q (Bfiﬂk)

i.e. [Ty < 6" forall k € N
p
a ()
el | ————= | <dforall ke N
q (BZW)
1.e.Sy | T | ————=% < gg for all k € N.

p

Consequently, we get

Zank S| T | ——————= < sup Zank maX{&?g,Eé{}<€.
k=1 P " \k=1
i.e.
Uk
: (Bt
Zank Sp | T | ———=
k=1
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This shows that

Uk

& a (Byee)
nGN:Zank Se | T | —————= >ep CAs5€l.
k=1 P
This completes the proof. O
Theorem 3.4. The inclusions [Y(A,Bg;l,M,u,q)]I C [Y(A,BZ),M,u,q)]I7 are
strict for p > 1. In general [Y (A, B M, u,q)]! C [Y(A, B" ,M,u,q)|’, for j =

(@) (@)

0,1,2,....,p— 1 and the inclusions are strict, where Y = Z¢, 2, Zo.

Proof: We shall give the proof for [ZO(A,BZ;I,M,u,q)]I only. The others can

be proved by similar arguments. Let z = (z3) be any element in the space
[Z.O(A,Bfgl,M,u,q)]l. Let € > 0 be given. Then there exists § > 0 such that
the set o

HEN:Zank M, f >ep el

k=1
Since M is non-decreasing and convex, it follows that

Pk

a (B over — B o)

Pk
- q (Bfnxk) -
Zank M, — 2, = Zank My, %
k=1 k=1
o1 Pk o1 - Pk
= [1, (9B o) = i (a(Bl )
SDZ §Mk +Dzank §Mk ﬁ
k=1 k=1 )
_ Pk _ Pk
- q (Bfw 1xk+1) > q (Bfi) ll‘k)
<DHY au | My +DHY an, | My, | ——= ||
k=1 k=1 P
where H = max{1, (3)“}. Thus we have
Pk
> a (Byee)
n e N : Z Ank Mk T Z g
k=1
BP- Pk
o[ ()
- TLENSDHZank M;, ® ZE
p 2
k=1
P
o] q (Bﬁ;lxk) ’ €
USneN:DHY  ank | My - > 5 (3.2)

k=1
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Since both the sets in the right side of (3.2) belongs to I, we get

q (BZ')“)
2p

Pk

HEN:Zank M, >ey el
k=1
If follow from the following example that the inclusion is strict.
Example 3.1. Let A = (C,1), My(x) = x, for all x € [0,00),ur, = 1 for all
k€ Nandr = 1,8 = —1. Consider a sequence x = (x) = (kP). Then © =
(zr) belongs to [Zo(A, BZ.),M, u, q)]! but does not belong to [Zo(A, Bﬁ;l, M, u,q)]t,
because B(,yxy, =0 and Bfglxk = (=1)P~t(p— 1)
|

Theorem 3.5. (a) Let 0 < infuy < uy < 1, then [Z(A, BY,, M, u,q)]! C [Z(A,

(i)°
BZ)) Ma q)]I and [Z’O(Aa BZ) ) Ma u, Q)]I C [Z’O(Aa BZ) ) Ma q)]I

(b) If 1 < uyp, < supuy < 0o, then [Z(A,BZ),M,q)]I C [Z(A,BZ),M,u,q)]I and
[Z’O(AaBZ)aMaq)]I C [Z’O(AaBZ')aMaan)]I'
Proof: (a) Let # = (z3) € [Z(A,BZ),M,U,Q)]I. Since 0 < infuy, < up < 1, we
have

Pk

00 q(BpZ. xk—ﬁ) 00 q(BpZ. xk—ﬁ)
Zank Mk # < Zank Mk #
k=1 P k=1 P

and therefore

© q(Bfi)xka)
SSTD SN YA A SaChlanio |
k=1 P
P
0 q(BZ.)wk—f) '
- nEN:Zank M| — >ep el

P

k=1

(b) Let 1 < uy < supug < oo and let x = (z) € [Z(A,BZ),M,q)]I. Then for each
0 < e < 1 there exists a positive integer N such that

© q (Bfi):ck — 6)

DL R (i Sl e

k=1 P

for all n > N. This implies that

00 q (Bz.)xk — f) >
Zank My | ———= < Zank M,
k=1 P k=1 P



32 KARAN TAMANG AND BIPAN HAZARIKA

Thus we have

r 1Pk
© q (sz Tk f)
ST T EYAN i ) |
k=1 i P ]
o I q (Bpl Tl — f)
- nEN:Zank M;, ® >epel
k=1 i P }
This completes the proof of the theorem. O

Corollary 3.1. Let A = (C,1) Cesdro matriz and let M = (My,) be a Musielak-
Orlicz function.

(a) If 0 < infuy, < up <1, then

(Z) [Z(BZ),M,U,(])]I C [Z’(BZ))Maq)]I;
(”) [Z'O(B:(Di)aMauv(I)]I c [ZO(BZ)vaan

(b) If 1 < up < supug < oo, then

(i) [2(Bl, M. q))! © [R(B, M,u,q))s
(”) [Z'O(Bp Maq)]lc [Z'O(Bp Ma“v‘l)]]-

(@) (@)

Theorem 3.6. Let 0 < up < v for all k € N and (Z—Z) is bounded, then
[Z’(A5 BZ) ) Ma v, q)]I g [Z’(A5 BZ) ) Ma u, q)]I

Proof: The proof of the theorem is straightforward, so we should omitted here.O
Theorem 3.7. If lim,uy > 0 and z = (z1) — xo([Z(A,BZ),M,u,q))]I, then xg
1S unique.

Proof: Let limy ur, = up > 0. Suppose that (z3) — zo([Z(A,BZ.),M,u,q)]I) and
(21) = yol[2(A, BY) M, u,q)]1).

Then there exist p;, p, > 0 such that

U
00 q (Bpi T — :co)
By=4neN:Y an | M O T >sber @3
1 P1 2
and
U
>© q (Bpi Tp — yo)
By={neN:Y au | M O s 2% el (3.4)
P1
k=1
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Let p = max{2py,2p,}. Then we have

gank [Mk <M)]uk _

p
s Q(Bpac :c) o o0 Q(Bpx y) "
i k — 40 i k — Yo
DZank M;, © +DZank M;, ()— .
k=1 P1 k=1 P1
Thus from (3.3) and (3.4) we have
o0 o Uk
{nGN:Zank |:Mk (7(](:60 y0)>:| ZE}
k=1 P
B? "
g TLGN:DZank Mk ()— 2 E
p 2
k=1 1
BP o
e q( ifEk*yO)
U nGN:DZank M, e ) 2% CBiUByel.
P1
k=1

Also we have

(1272 (220

Therefore we have

(222 o 2720

Hence zy = yo- |
Theorem 3.8. Let M = (My,) be a Musielak-Orlicz function. Then the following
statements are equivalent:

(Z) [Z’OO(Aa BZ) y Uy Q)]I g [Z’OO (Aa Bﬁ)a Ma u, q)]l

(“) [Z’O(Aa BZ) y Uy q)]I g [Z’OO(A5 BZ) ) Ma u, q)]I
(iii) sup,, > p_y ank [Mk (%)] " <0 (t,p > 0).

Proof: (i)=(ii) is obvious, because [ZO(A,BZ.),u,q)]I C [ZOO(A,BZ),u,q)]I.
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(i)=(iii). Suppose [ZO(A,BZ),u,q)]I C [ZOO(A,BZ.),M,U,(])]I. We assume
that (iil) is not satisfied. Then for some ¢, p > 0

n t Uk
Sup » ank |:Mk (—)} = 00,
k=1 P

and therefore there exists a sequence (n;) of positive integers such that

T .1 Uk
> ann [Mk <]—>} >, =1,2,3, .. (3.5)
k=1 p

Define a sequence x = (z) by

Looif1<k<ng,j=1,23, .
Bp — ‘7’ — p— ]) b b b b
(i) { 0, if k> n;

Then z = (zx) € [ZO(A,BZ),u,q)]I but by equation (3.5) we have x = (z3) ¢
[ZOO(A,BZ.),M,u,q)]I which contradicts (ii). Hence (iii) must hold.
(iii)=-(i) Suppose (iii) is satisfied and = € [ZOO(A,BZ),u,q)]I. Suppose that

x ¢ [ZOO(A,BZ),M,U,q)]I. Then

Uk,
: (%)
supz ant | My, V0T = 00. (3.6)
" ok=1
Put t = ¢ (Z(Bf’i):ck)) for all k € N. Then by the equation (3.6) we have
n t Up
supZan;c [Mk <—)] =00
" ok=1 P
which contradicts (iii). Hence (i) must hold. O

Theorem 3.9. Let M = (My) be a Musielak-Orlicz function. Let 1 < uy <
supgur < 00. Then the following statements are equivalent:

(i) (Zo(A, By ML)l C [ZolA, By, u,q))
(i) Zo(A, Bl Mou, ) € Zocl(A, Bl 0, o))
(iii) infp " an [Mk (g)} Y0 (tp > 0).

Proof: (i)=(ii) is obvious.
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(ii)=-(iii). Suppose [ZO(A,BZ),M,u,q)]I C [ZOO(A,BZ.),U,q)]I. We assume
that (iii) does not hold. Then for some ¢, p > 0

inf Ank |:Mk <—>:| =0.
i3 ;

We can choose an index sequence (n;) of positive integers such that

o A
Zanjk M, | - >=,7=1,2,3,.... (3.7)
—1 P J

Define a sequence x = (z) by

p g H1<k<n;j=123 .3
B(i)zk{o, itk >,

Then by equation (3.7) we have z = (z) € [ZO(A,BZ.),M,U,(])]I but z = (zx) ¢
[Zoo (A, By, u, q)]" which contradicts (ii). Hence (iii) must hold.

(iif)=>(i) Let (iii) hold and = € [Zo(4, B}y, M, u, ¢)]". Then for every ¢ > 0, we

have
0 (Btyr)

Uk

n
HENZZank M,
k=1

>epel (3.8)

Suppose that = ¢ [Zo(A, BZ), u,q)]!. Then for some integer €9 > 0, we have

{n eN: iank [q (Bﬁ)xk)rk > 50} ¢ 1.
k=1

Therefore we have
U
Uk q (sz .Tk)
e (3)] = | =
p

p

and consequently by the relation (3.8) we have
infzn:a [M <€O>}M 0
nk k\ — =
" k=1 P

which contradicts (iii). Hence [ZO(A,BZ.),M,q)]I C [ZO(A,BZ),u,q)]I. O
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