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Bi Unique Range Sets -A Further Study

Abhijit Banerjee and Sanjay Mallick

ABSTRACT: The purpose of the paper is to obtain a new bi-unique range sets,
as introduced in [4] with smallest cardinalities ever for derivative of meromorphic
functions. Our results will improve all the results in connection to the bi-unique
range sets to a large extent. Some examples have been exhibited to justify our
certain claims. At last an open question have been posed for future investigations.
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1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. It will be convenient to let E denote any set of
positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h)
any quantity satisfying

S(r,h) =o(T(r,h)) (r— oco,r ¢ E).

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f —a and g —a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f—a and g—a have the same zeros ignoring multiplicities.
In addition we say that f and g share oo CM, if 1/f and 1/g share 0 CM and we
say that f and g share oo IM, if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of CU{oo} and E;(S) = (J,cq1z: f(2)—a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set (J,cg{z : f(z) —a = 0} is denoted by E¢(S). If Ef(S) = Ey(S)
we say that f and g share the set S CM. On the other hand if F;(S) = E,(S),
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we say that f and g share the set S IM. Evidently, if S contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared values.

The uniqueness theory of meromorphic functions is a vast subject. Under the
ambit of this theory several branches have been flourished. Among them set sharing
problem exists as a distinguishable entity. We start the discussion with the question
raised by Lin and Yi [17], in connection with the famous “Gross Question" {see
9]}
Question A. Can one find two finite sets S; (j = 1,2) such that any two non-
constant meromorphic functions f and g satisfying E¢(S;) = E4(S;) for j = 1,2
must be identical ¢

To find the possible answer of the above question researchers have become more
engaged to find explicitly a set S with minimum cardinalities such that any two
meromorphic functions f and g having common poles sharing the set S become
identical {cf.[1]-[3], [5]-[8], [11], [15]-[17], [22]-[23]}. The advent of the new notion
of gradation of sharing of values and sets in [13,14] further add essence to-wards
the investigations. This notion is a scaling between CM and IM and measures how
close a shared value is to being shared IM or to being shared CM. In the following
we recall the definition.

Definition 1.1. [13,1/] Let k be a nonnegative integer or infinity. For a € CU{oco}
we denote by Ey(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m < k and k+ 1 times if m > k. If Ex(a; f) = Ex(a;9),
we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a,o0)
respectively.

Definition 1.2. [13] Let S be a set of distinct elements of CU {oo} and k be a
nonnegative integer or oo. We denote by Ef(S, k) the set UsesEx(a; f).
Clearly Ef(S) = E¢(S,00) and E¢(S) = Ef(S,0).

Recently to study the possible answer of Question A the present first author
[4] have introduced the notion of bi unique range sets for entire or meromorphic
function with weight p, m as follows :

Definition 1.3. [}/ A pair of finite sets S1 and So in C is called bi unique
range sets for meromorphic (entire) functions with weights p, m if for any two
non-constant meromorphic (entire) functions f and g, Ef(S1,p) = E4(S1,Dp),
E;(S2,m) = E4(S2,m) implies [ = g. We write S;’s i = 1, 2 as BURSMp, m
(BURSEp, m) in short. As usual if both p = m = oo, we say S;’s i =1, 2 as
BURSM (BURSE).

In [4] the present first author manipulated the above definition in order to
get the possible answer of Question A for two finite sets in C, which significantly
improved the results obtained in [20] and [19]. Below we are recalling the result
in [4]. The purpose of the paper is to investigate this fact.
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Theorem A. [j] Let S;={0,1}, S; = {z : Wz”—n(n—%z”‘l

fon=bon-2 _ .- 0}, where n(> 5) is an integer and ¢ # 0, 1, 5 is a complex

1
2 2
number such that ¢ —c+1#0. Then S;’si =1, 2 are BURSMI, 3.

Theorem B. [/] Let S;, i = 1, 2 be given as in Theorem A. Then S;’s i =1, 2
are BURSM3, 2.

It is to be observed that in [4] we were unable to diminish the cardinalities of
the range sets as mentioned in [19]. So it is natural to ask the following question.
Question 1: Can there exists any pair of range sets in the sense of Definition 1.3
whose cardinalities(s) are less than that given in Theorems A-B 7

Possible answer of the above question is the motivation of the paper. We
shall show that if we take the set sharing problem of derivatives of meromorphic
functions, in stead of the original functions, a pair of range sets with cardinalities
2 and 3 different from those used in Theorems A-B provide the answer of Question
1. Till date this is the best result obtained in terms of bi-unique range sets.

Throughout the paper for an integer n and a nonzero constant a we shall denote
—a% =cy and = —cf' — ac;‘_l. Below we are giving our main theorem.
Theorem 1.4. Let S; = {0,¢1}, S2 = {2z : 2" + az""1 + b = 0}, where n(> 3)
be an integer and a and b be two monzero constants such that b # 3, g Then S;’s
i =1, 2 are bi-unique range sets with weights 1 and 3 for f*) and g*).

The following example shows that in Theorem 1.4 a # 0 is necessary.

Example 1.5. Let f(z) = /b ¢* and g(z) = (=1)*¢/~b e7* and S; = {0},
So={z:2°+b=0}. Then f*), g**) share (S;,00), i = 1,2 but fF) £ gk,

From the following example we see that if in our main result we discard fa"T_l

in S; and replace f*) and ¢(*) simply by f and g then the conclusion ceases to
hold. In other words, the presence of the element fa"T_l in 57 is essential in that
case.

Example 1.6. Let S; = {0}, So = {z : 2% + a2? + b = 0} where a # 0, b be so

chosen that So has distinct elements. Let f and g be two non-constant meromorphic
z 2z z

functions such that f(z) = —aliefﬁ, g(z) = —a%. Then they share

(Si,OO), 1= 152 but f % g-

So natural question would be whether the cardinality of the set S; in Theorem
1./ can further be diminished ?

It is seen from the next example that the sets S;, (i = 1,2) in Theorem 1./ can
not be replaced by two arbitrary sets.

Example 1.7. Let f(z) = e and g(z) = (—1)*ae™* and for a constant o # 0,11
we take S1 = {1,a}, So = {0,%,204}. Then f*) g8) share (S;,00), i = 1,2 but
£ £ o),
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Though for the standard definitions and notations of the value distribution
theory we refer to [10], we now explain some notations which are used in the

paper.

Definition 1.8. [12] For a € CU {oco}we denote by N(r,a; f |= 1) the count-
ing function of simple a points of f. For a positive integer m we denote by
N(r,a; f |[<m)(N(r,a; f |>m)) the counting function of those a points of [ whose
multiplicities are not greater(less) than m where each a point is counted according
to its multiplicity.

N(r,a; f |<m) (N(r,a; f |> m)) are defined similarly, where in counting the
a-points of f we ignore the multiplicities.

Also N(r,a; f |<m), N(r,a; f |>m), N(r,a; f |<m)and N(r,a; f |>m) are
defined analogously.

Definition 1.9. [1/] We denote by Na(r,a; f) = N(r,a; f) + N(r,a; f |> 2).

Definition 1.10. [13,1/] Let f, g share a value a IM. We denote by N.(r,a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N.(r,a; f,g) =
N.(r,a;g, f) and in particular if f and g share (a,p) then N.(r,a; f, g) < N(r,a;

f1Zzp+1)=N(ra;g|=p+1).
Definition 1.11. Let a,b1,bs,...,by € C U{oco}. We denote by N(r,a;f | g #

b1,ba,...,by) the counting function of those a-points of f, counted according to
multiplicity, which are not the b;-points of g fori=1,2,...,q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C as follows

P(F®) _ (F®)" (W +a) Pg"™) _ (¢")" (¥ +a)
F — = 5 G == 3
—b —b —b —b
(2.1)
where n(> 2) and k are two positive integers and for a meromorphic function h we
put

P(h) = (h)" +a(h)"~!. Henceforth we shall denote by H and ® the following two

functions
F'  2F G 2d
H(FFTJ<?ETO (22)
and , ,
F G
@fﬁ*ﬁ. (2.3)

Lemma 2.1. ([1/], Lemma 1) Let F, G be two non-constant meromorphic func-
tions sharing (1,1) and H £ 0. Then

Nr1;F|=1)=N(r,;G|=1) < N(r,H)+ S(r, F) + S(r,G).
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Lemma 2.2. Let Sy and Sy be defined as in Theorem 1.4 and F, G be given
by (2.1). If for two non-constant meromorphic functions f and g Epa (S1,p) =
E ) (S1,p), Efa(S2,0) = Eyu) (S2,0), where 0 < p < oo and H # 0 then

_ o 1 B
N(r,H) < N(r,0; /™ |2 p+1)+N (r,—a” P>+ 1) +N.(r,1;F,G)
n

+N(T,Oo;f) +N(7‘,oo;g) +No(r,0;f(k+1)) +Wo(r,0;g(k+1))’

where NO(T,O;f(k"'l)) is the reduced counting function of those zeros of D
which are not the zeros of f*) (f(k) —a™1) (F-1) and No(r, 0; g* D) is similarly
defined.

, k) yn—=2(p 1) 4 a(me1)) fEHD) )y =2 (00 (F) 1 (me 1)) (D)
Proof: We note that ' =" —(n/—Faln=1)J Q=" ng - tatnolls

and

I 2B taln—1) FE 4 (f) = (a(n=1) S P +a(n—1) (n-2) (<)’

F'= — :
o 8209 ® +aln=1))g*+ + ()" ln=1)g™ +aln—1)(n=2))(g ")’
b :
So
L DY = 2) 6 (0 1)ng® + afn—2))g*HD)

FO(nf® + aln — 1) g® (ng®*D 1 a(n — 1))

fk+2) gk+2) < oF 2" )

Jrf(k+1) gkt \F—-1 G-—1

Since E¢w) (S2,0) = Eym (52,0) it follows that if 2o is a O-point of fE (gt
then either g™ (20) = 0 (f*)(29) = 0) or g¥)(2) = —a21 (f%)(z) = —a”=1).
Clearly F and G share (1,0). Since H has only simple poles, the lemma can easily
be proved by simple calculation. O

Lemma 2.3. [6] Let f and g be two meromorphic functions sharing (1,m), where
1 <m < oo. Then

— — 1\ — 1
N 13 )N 19) =N 1 1= D (=5 ) W01 £0) < 5 VG335 0)4 N i)
Lemma 2.4. [18] Let f be a non-constant meromorphic function and let

> axf*

R(f) = 5—

2. b7

§=0
be an irreducible rational function in f with constant coefficients {ay} and {b;}where
an # 0 and by, #0 Then

T(r, R(f)) = dT(r, f) + S(r, f),

where d = max{n,m}.
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Lemma 2.5. Let S1 and Ss be defined as in Theorem 1.4 with n > 3 and F,
G be giwen by (2.1). If for two non-constant meromorphic functions f and g
E};f(k‘) (S1,0) = E,m(S1,p), Ef(S2,m) = Ey(S2,m), 0 < p < oo and ® # 0
then

(2p+1) {N (T,O;f(k) |2p+1) +W(7’,C1;f(’“) > p+ 1)}
< N(r,00;f) + N(r,00;9) + Nu(r,1; F,G) + S(r, f¥)) + S(r, g™).

Proof: By the given condition clearly F' and G share (1,m). Also we see that

(F®)2 (nf® 4 a(n = 1) FED (90172 (ng®) 4 a(n — 1)) g+

¢ = —b(F —1) - —b(G —1)

Let zg be a zero or a ¢i- point of f*) with multiplicity r. Since Efa (S1,p) =
E ) (S1,p) then that would be a zero of ® of multiplicity min {(n — 2)r +r —
1, » 4+ r — 1} ie., of multiplicity min {(n — 1)r — 1, 2r — 1} if » < p and a zero of
multiplicity at least min{(n —2)(p+ 1)+ p, p+ 1+ p} i.e., a zero of multiplicity
at least min{(n —1)p+ (n —2), 2p+1} if r > p. So using Lemma 2./ by a simple
calculation we can write

min{(n = p+ (n = 2), 20+ D} {N,0: /P 2 p+ 1)+ N(r e /P |2 p+ 1)
N(r,0; D)

T(r,®)

N(r,00;®) + S(r, F) + S(r, G)

N.(r,1;F,G) + N(r,00; f) + N(r,00; g) + S(r, f) + S(r, g).

VAN VAN VAN VAN

Lemma 2.6. Let S1, S2 be defined as in Theorem 1.4 and F, G be given by (2.1).
If for two non-constant meromorphic functions f and g Epu) (S1,p) = Eyu) (S1,),
Eg (S2,m) = E ) (S2,m), where 0 <p < o0, 2 <m < oo and H # 0, then

(n+ 1) {T(r, f*) + T(r, g™}

< 2{N(T,O;f(k))+N(T,C1;f(k))}+N(7’,0;f(k) |2p+1)
N (e ¥ 12 p+ 1) + 2{N(r, 001 f) + N(r. 001 )}
+;[N(T,1,F)+N7’1G ( ) «(r1; F,Q)

+8(r, f*) + S(r, g*).
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Proof: By the second fundamental theorem we get
(n+ D{T(r, f*) + T(r, g™} (2.4)
< N(r,1;F)+N(r,0; f®)+ N (r, 1 f(k)) + N(r,00; f) + N(r, 1;G)
+N(r,0:9") + N (T, c1; g(k)) + N (r,00; ) = No(r,0; f*+1)
—No(r, 0; g%V + S(r, f ) + S(r, g™).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

N(r,1;F)+ N(r,1;G) (2.5)
< %[N(T,l;F)JrN(r,l;G)] + N 1L Fl=1)— (m %) N.(r,1;F,G)
< SNG4 NG LG+ N0 79 [2 p+1)

_ —1 _
+N (r,an S f |2p+1> + N(r,00; f) + N(r,00; 9)
n

) (m } g) No(r, 13 F,G) + No(r, 03 1) 4+ No(r,097)
+S(r, fO) + S(r, g®)).
Using (2.5) in (2.4) and noting that
N(r,0; f®)+ N (r, c1; f(k)) =N(r,0;g")+ N (r, cl;g(k))
the lemma follows. O

Lemma 2.7. Let f%), ¢®) be two non-constant meromorphic functions such that

n—1 n—1
Et({0,¢1},0) = Eyi ({0,¢1},0). Then (f(k)) (f(k)—i—a) = (g(k)) (g(k)—i—a)
implies f*) = ¢(®) | where n (> 2) is an integer, k is a positive integer and a is a
nonzero finite constant.

Proof: Let zg be a zero of f(*) (g(k)). Then zp must be either a 0-point or a ¢;-point
of g®) (). But from the given condition if zo is not a zero of g(¥), then it must
be a zero of ¢*) + a, which is impossible. So we conclude that here f*) and ¢(*)
share (0,00) and f, g share (0o, 00). We also note that © (co; f*)) +© (c0; g¥)) >

é[llé]% = kQ—fl > 0. Now the lemma can be proved in the line of proof of Lemma
. O

Lemma 2.8. Let F', G be given by (2.1) and they share (1,m). Also let wy,ws ...wy,
are the members of the set Sy as defined in Theorem 1.4. Then

— 1 1— —
N.(r 1 F.G) < — [N(5,0: f9) + Nryer: )] + S ).
m
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Proof: First we note that since Sy has distinct elements, ¢; can not be a member
of S5. So

N.(r,1;F,G)
< N(rLF|>m+1)
<~ (N1 F) - N1 F)
< %[imeMnNU—W%%JWD

Jj=1
< N (n0 50 20, )]
(k) (£(k) _

< L[ (no 0T Ze)]

1 f+D)
s [N (T’ oS Fm (F) — q)H + 50 71)
< % [N (05 19) + N0 f8)] + S, 1)

Lemma 2.9. [21] If H=0, then F, G share (1,00).

Lemma 2.10. Let Sy, Sy be defined as in Theorem 1.4 with n > 3 an integer. If
for two non-constant meromorphic function f and g, Epu) (S1,p) = Eym) (S1,p),
Ep) (S2,m) = E, (S2,m), where 0 <p < oo, 2<m < oo and D Z0 then

{N (T, 0; f(k)) +N (7’, c; f(k))}
(52 ) V(o0 1)+ Wi g)] + (1) + (9.

m —

Proof: Using Lemma 2.5 for p = 0 and Lemma 2.8 we get
N (7’, 0; f(k)) +N (T, c1; f(k))
N(r,00; f) + N(r, 00 9) + Ni(r, 1, F, G) + S(r, f ) + 5 (r, g)
— — 1 r— —

) : - . (k) . £(k)
N(r,00: f) + N(r,o0ig) + — [N (1.0 /) + N (ryers /)]
+8(r, f*) + 8(r, ).

IN

IN

From above the lemma follows. O
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3. Proof of the theorem

Proof: [Proof of Theorem 1.4] Let F', G be given by (2.1). Then F' and G share
(1,3). We consider the following cases.

Case 1. Suppose that & £ 0.

Subcase 1.1. Let H # 0. Then using Lemma 2.6 for m = 3, p = 1, Lemma 2.5
for p=0and p =1, Lemma 2.8 for m = 3, Lemma 2.10 and Lemma 2./ we obtain

(n+ 1) {T(r, f*) + T(r, ")} (3.1)
2 {N(T,O;f(k)) +N (r, cl;f(k))} + N(r,0; f(k) |> 2)

IN

N (r, cr; f® > 2) +2{N(r,00; f) + N(r,00;9)}

1 _
[N(r,; F)+ N(r,1,G)] — %N*(T, L, F,G) + S(r, f*) + S(r,g®)

IN

+_

2
{443} (Froo 1)+ W)} + 5 NG 12 £ NG 156
+

1 1) =
{5 +g}N*(T,LF,G)+S(T,f(k))+5(7“,g(k))

IN

1_5’ {N(r,00; f) + N(r,00;9)} + % IN(r, 1 F) + N(r 1 G)]

5 (W, 001 1) + N(r,0039)} + (/O + 5(r,6)

o (W (r, 001 )+ N(r,003.)} + 2T, /¥ + T(r, g®)]

+8(r, f*) + S(r, g*))

{2+ 0 + 7099+ 50559 + (1),

IN

(3.1) gives a contradiction for n > 3.
Subcase 1.2 Let H = 0. Then
1 A

where A # 0, B are constants. Also T'(r, F') = T(r,G) + O(1). i.e.,
nT(r, f*) = nT(r,g™) + O(1). (3.3)

In view of Lemma 2.9 it follows that F' and G share (1,00). We now consider
the following cases.
Subcase 1.2.1.
Let B =0. From (3.2) we get
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ie., ) )
G = AF
ie.,
d =0,
a contradiction.
Subcase 1.2.2.
If B # 0, then
G-1
F-1= . 3.4
BG+A-B (3:4)
Subcase 1.2.2.1.
If A— B #0, then from (3.4) we get
G-1
F-1= — (3.5)
B(G-(%54)
So B_A
N 22 2.6) = Niroo: )
Subcase 1.2.2.1.1.
If ¢®) — ¢; is a repeated factor of G — BTEA, then
i 1G-1
(k) _ )2 k) _ )= T
(g Cl) 71;[1(9 aZ)_BFfl,
where ¢®) — a;’s (i = 1,2,...,n — 2) are the distinct simple factors of G — BTEA.

Since f*), g(®) share {0,¢1} and F, G share (1,00) it follows that ¢; points of
¢ can not be a pole of f and so it must be an e.v.P. of ¢(¥). Therefore a;’s are
neutralised by the poles of f. Now if zg is a zero of g**) — ¢; of order p, then it
would be pole of f*) of order ¢ such that p = ng > n(k +1). So in view of the
second fundamental theorem and (3.3) we get

n—2
(n=2)T(r,g™) < > N(r,ai; ™)+ N(r,c1;9™) + N(r, 005 9) + S(r,g™))
=1
ie.,
—9) 1
VT o (n—=2) . Tlr o® 4 S o®
(n—=2)T(r,g"") < W) (r,g )t (r,g"") + S(r,g""),

which gives a contradiction for n > 3.
Subcase 1.2.2.1.2. If (¢'®) — ¢;) is not a factor of G — 254, then

. 1G-1
* _ gy 1G-1
g@ B)=gF 1
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where g®) —8,’s (i = 1,2,...,n) are the distinct simple factors of G — BTEA. Clearly
from above we get

Again by the second fundamental theorem we get

(n - 1)T(T, g(k))

IN

ZW (r, B;9™) + N(r, 00; 9) + S(r,g™)

IA
=
:;\ -
3

+

=
=
8
=

+

"
=
Ne}

=

i.e., in view of (3.3)

which is a contradiction for n > 3.
Subcase 1.2.2.2.
If A— B =0, then from (3.4) we get

) eG4

Using the same argument as in Subcase 1.2.2.1.1. we get that 0 is an e.v.P. of g
and
N(r,—a; ™) < mT(T,f(k))-
So by the second fundamental theorem and (3.3) we get
T(r,g"™) < N(r,—a;g™) +N(r,0;9"™) + N(r,00;9) + 5(r, ™))

1 1
< T (k) (k)

a contradiction for n > 3.
Case 2. Suppose that ® = 0. On integration we get

(F-1)=AG 1) (3.6)

for some nonzero constant A. Here also in view of Lemma 2./, (3.3) holds. Since by
the given condition of the theorem E¢(S1,0) = E,(S1,0), we consider the following
cases.

Subcase 2.1. Let us first assume f*) and ¢(*) share (0,0) and (c1,0). If one of
0 or ¢1 is an e.v.P. of both ) and ¢®), then we get A = 1 and we have F = G,
which in view of Lemma 2.7 implies f*) = ¢(*)_ If both 0 and ¢; are e.v.P. of f(¥)
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as well as of g(*) then noting that here ' = AG + (1 — A), suppose A # 1. Using
Lemma 2.4, (3.3) and the second fundamental theorem we get

nT(r, f*)
< N(0;F)+ N(r,1 — A; F) + N(r,00; F) + S(r, F)
< N, 0; f™) + N(r,—a; f¥) + N(r,0;G) + N(r, 005 f) + S(r, f¥))
1 (k) (k) *)
< (4T ) + T, g™) + 50, £9)
S @+ T f9) + S0, fO),

which implies a contradiction since n > 3.

Subcase 2.2. Next suppose that f*) and ¢*) do not share (0,0) and (c1,0). We
now consider the following subcases.

Subcase 2.2.1.

Suppose none of 0, ¢; is e.v.P. of f*) i.e., none of ¢1, 0 is e.v.P. of g¥). Also from
(3.6) we get

P(f™) +b(1 — A) = AP(4™).

Since at least one ¢i-point of f(*) corresponds to at least one 0-point of ¢(*), from
above we have
b(1—A)=p. (3.7)

Again form (3.6) we get

P(f™)
A

b(1 — A)

=P(g") - =

(3.8)

We claim that —M # (. For if —M = 3, then in view of (3.7) we have A =
—1, which again in view of (3.7) implies b = g, a contradiction. So P(g*®))— @
has n distinct factors. Let them be v;, (1 = 1,2,...,n). Hence from (3.8) we have

n

TT6® —7) = 5 (97— (7% +a). (39)

i=1

Since none of v;, (i = 1,2,...,n) coincides with 0 or ¢;, from (3.9) it follows that
0 is an e.v.P. of f*) a contradiction to the initial assumption of this subcase.
Subcase 2.2.2.

Let one of 0 or ¢; is an e.v.P. of f(¥),

Subcase 2.2.2.1.

Suppose first 0 is an e.v.P. of f*). If ¢; is not an e.v.P. of ¢(*), then there would
be at least one zq such that g(z0) = f(z0) = ¢1 and then from (3.6) we get A =1,
which in view of Lemma 2.6 yields f**) = ¢®*) and we are done. So ¢; must be an
e.v.P. of g®). Now using the similar argument as used in Subcase 2.2.1., from (3.9)
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and the second fundamental theorem we get

nT(r,g®™) < > N(r7i;:9™) + N(r, c159%) + N(r, 005 9) + S(r, g™))
=1

_ 1
N(r,—a; f®) + mT(T,g(k)) +8(r,g®),

IN

which in view of (3.3) again gives a contradiction for n > 3.

Subcase 2.2.2.2.

Suppose next ¢; is an e.v.P. of f*) i.e., 0is an e.v.P. of g*). Here noticing the fact
that in (3.6) F' and G are interchangeable, using the same argument as in Subcase
2.2.2 this subcase can be disposed off. So we omit the details.

Subcase 2.2.3.

Let 0, ¢; are both e.v.P. of f(*) ie., ¢, 0 are both e.v.P. of ¢g(*), then again in
view of (3.6) we consider the following subcases.

Subcase 2.2.3.1.

Suppose F' + A — 1 has n distinct zeros, &, ¢ = 1,2,...,n. Then (3.6) takes the
form

Alg"m = (g® +a) = (F® —e)(f® — &) ... (f® —¢,).

Then from the second fundamental theorem we get
(n+ )T (r, f*)

< D N & fP) + N(r,0; f ) + N(ry ea5 f9) + S(r, f8)
=1
— 1

< —aa® (k) (k)

< Nlr—aig™) + =T fP) + S0 f0),

which in view of (3.3) gives a contradiction for n > 3.

Subcase 2.2.3.2.

Suppose F'+ A —1 has n — 2 distinct zeros, n;, i = 1,2,...,n—2 and a double zero
at ¢1. Then (3.6) changes to the form

2
Ag®) = (g® +a) = (F9 =) (P = n)(fB =) (O = o).
So again from the second fundamental theorem we get

n— 1)T(Ta f(k))

2

< N(r,ng; f®) + N, 05 fB) + N(r,er; f*) + N(r, 005 f) + S(r, f*)
1

(r,—a39®) + 5 T /) + 50, £ ),

—~

3
|

3

=

<

which in view of (3.3) gives a contradiction for n > 3. O
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4. Concluding Remark and an Open Question

We see from the statement of Ezample 1.7 that conclusion of Theorem 1.4 does

not hold for any arbitrary sets different from that used in Theorem 1.J. So natural
question would be

i) Whether the sets .S; used in Theorem 1.4 are the only bi-unique range sets for
the derivatives of two meromorphic functions for the case n =3 ?
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