
Bol. Soc. Paran. Mat. (3s.) v. 37 2 (2019): 51–58.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v37i2.29148

A Short Note On Hyper Zagreb Index
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abstract: In this paper, we present and analyze the upper and lower bounds on
the Hyper-Zagreb index χ2(G) of graph G in terms of the number of vertices (n),
number of edges (m), maximum degree (∆), minimum degree (δ) and the inverse
degree (ID(G)). In addition, a counter example on the upper bound of the second
Zagreb index for Theorems 2.2 and 2.4 from [20] is provided. Finally, we present
the lower and upper bounds on χ2(G) + χ2(G), where G denotes the complement
of G.
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1. Introduction

Let G be a simple graph with the vertex set V (G) and the edge set E(G). As
usual, we denote the degree of a vertex by di = d(vi) for i = 1, 2, . . . , n such that
d1 ≥ d2 ≥ · · · ≥ dn, with the maximum, second maximum and the minimum vertex
degree of G are denoted by ∆ = ∆(G), ∆2 = ∆2(G) and δ = δ(G) respectively.
G denotes the complement of G, with the same vertex set such that two vertices
u and v are adjacent in G if and only if they are not adjacent in G. A line graph
L(G) obtained from G in which V (L(G)) = E(G), where two vertices of L(G) are
adjacent if and only if they are adjacent edges of G.

In 1972, the first and second Zagreb indices are introduced by Gutman and
Trinajstić [13,14] and are defined as

M2
1 (G) =

∑

v∈V (G)

d(v)2 and M1
2 (G) =

∑

uv∈E(G)

d(u)d(v).

In 1987, the inverse degree first attracted attention through conjectures of the
computer program Graffiti [11]. The inverse degree of a graph G with no isolated
vertices are defined as

ID(G) =
∑

u∈V (G)

1

d(u)
.
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In 2005, Li and Zheng [15] introduced the generalized version of the first Zagreb
index. For α ∈ R and G be any graph which satisfies the important identity (1.1)

Mα+1
1 (G) =

∑

v∈V (G)

d(v)
α+1

=
∑

uv∈E(G)

[d(u)
α
+ d(v)

α
]. (1.1)

In 2010, Ashrafi, Došlić and Hamzeha introduced the concept of sum of non-
adjacent vertex degree pairs of the graph G, known as first and second Zagreb
coindices [2] and are defined as

M
2

1 = M
2

1(G) =
∑

uv/∈E(G)

[d(u) + d(v)] and M
1

2 = M
1

2(G) =
∑

uv/∈E(G)

d(u)d(v).

In 2013, Shirdel, Rezapour, and Sayadi [16] defined the Hyper-Zagreb index as

HM(G) =
∑

uv∈E(G)

[d(u) + d(v)]
2
. (1.2)

In 2015, Fortula and Gutman [12,13] introduced the forgotten topological index and
for α = 2 in (1.1) turns it as a very special case formula, defined by

M3
1 (G) =

∑

v∈V (G)

d(v)
3
=

∑

uv∈E(G)

[

d(u)
2
+ d(v)

2
]

.

As usual Pn,K1,n−1, Cn,Kn denotes the path, star, cycle and complete graphs
on n vertices respectively. The wheel graph Wn is join of the graphs Cn−1 and
K1. Bidegreed graph is a graph whose vertices have exactly two vertex degrees ∆
and δ. The Helm graph Hn is obtained from Wn by adjoining a pendant edge at
each vertex of the cycle. Let G and H be any graph. Then σG(H) represents the
total number of distinct subgraphs of the graph G which are isomorphic to H . The
tensor product of the two simple graphs G and H are denoted by G × H, whose
vertex set is V (G) × V (H) in which (g1, h1) and (g2, h2) are adjacent whenever
g1g2 is an edge in G and h1h2 is an edge in H.

For computational purposes, we use the software GraphTea [1] considering
various phases of testing. GraphTea is a graph visualization software designed
specifically to visualize and explore graph algorithms and topological indices inter-
actively.

2. Upper bounds for χ2(G)

An equivalent formula for the Hyper-Zagreb index was already in use, pertaining
to the first and second Zagreb index. In 2010, Zhou and Trinajstić [21] proposed
the general sum-connectivity index defined as

χα = χα(G) =
∑

uv∈E(G)

[d(u) + d(v)]α. (2.1)

Obviously, χ0(G) = m,χ1(G) = M2
1 (G). For α = 2, in (2.1) turns the Hyper-

Zagreb index as its special case. At first we give the identity for the Hyper-Zagreb
index.
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Lemma 2.1. Let G be any simple graph, then

χ2(G) = 6σG (K1,3) + 2σG (P4) + 10σG (P3) + 6σG (C3) + 6m. (2.2)

Proof. By the definition of the general sum-connectivity index and using (1.1), we
get

χ2(G) =
∑

u∈V (G)

d(u)3 + 2
∑

uv∈E(G)

d(u)d(v). (2.3)

Thus, by using M2
1 (G),M3

1 (G) and M1
2 (G) from [4], we complete the proof. ✷

It is easy to see that, an upper bound for either M1
2 (G) or M3

1 (G) suits for
χ2(G). In the preparations of presenting the upper bounds for χ2(G) through the
existing upper bounds for the second Zagreb index, we encountered the following
upper bounds

Theorem 2.2. [20] For a simple connected graph G,

M1
2 (G) ≤ 2∆m. (2.4)

Theorem 2.3. [20] For a simple connected graph G,

M1
2 (G) ≤ ∆n(n− 1)−M2

1 (G). (2.5)

Remark 2.4. Counterexamples for the above two theorems. For any edge
uv ∈ E(G), it is clear that d(u)d(v) ≤ d(u)∆. But

∑

uv∈E(G) d(u) ≤
∑

u∈V (G) d(u)

need not be true for all graphs. For K1,3,
∑

u∈V (G) d(u) = 6, and for
∑

uv∈E(G) d(u)

we have the following combinations 3, 5, 7, 9. Therefore Inequality (2.4) is not true
in general. In addition, for the helm H3 (See Figure 1) with ∆ = 4 and second
Zagreb index is 96, but the 2∆m is 72.

L(H3 )H3

Figure 1: The Helm H3 and its Line graph L(H3).

In analogy, Inequality (2.5) is also not true in general. By considering L(H3)

with the first Zagreb coindex is 126 and ∆n(n− 1)−M2
1 (G) is 306, but the second
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Zagreb index of L(H3) is 516. Let
∑

[d(u) + d(v)] denote the total number of
combinations of sum of the vertices u, v in G and is represented as

∑

[d(u) + d(v)] =
∑

uv∈E(G)

[d(u) + d(v)] +
∑

uv/∈E(G)

[d(u) + d(v)].

For any simple graph G with δ ≥ 2 then, it is easy to see that d(u) + d(v) ≤

d(u)d(v) for all uv ∈ E(G). By adding over all the edges, we have M2
1 (G) ≤

M1
2 (G), utilizing the result we get M1

2 (G) ≥
∑

[d(u) + d(v)] − M2
1 (G), but this

inequality is mentioned in the Theorem 2.4 of [20] in reverse order, which leads to
the counterexample in Figure 1.

Note that forgotten topological index [12] has only few lower bounds. At first,
we give an upper bound for M3

1 (G) which leads to the upper bound for χ2(G).

Theorem 2.5. Let G be any simple graph with no isolated vertices. Then

χ2(G) ≤ 2M1
2 (G) + (∆ + δ)

(

M2
1 (G)− n

)

+ 2m−∆δ (2m− ID(G)) (2.6)

equality if and only if G is regular or bidegreed graph.

Proof. Let a,A ∈ R and xi, yi be two sequences with the property ayi ≤ xi ≤

Ayi for i = 1, 2, . . . , n and wi be any sequence of positive real numbers, it holds
wi (Ayi − xi) (xi − ayi) ≥ 0. Since wi is a positive sequence, choose wi = mi − ni

such that mi ≥ ni. we get

n
∑

i=1

(mi − ni)
[

(A+ a)xiyi − x2
i −Aay2i

]

≥ 0 (2.7)

By setting A = ∆, a = δ, xi = d(vi), yi = 1, mi = d(vi) and ni = d(vi)
−1, we

obtain

(∆ + δ)

n∑

i=1

d(vi)
2
−

n∑

i=1

d(vi)
3
−∆δ

n∑

i=1

d(vi) ≥ (∆ + δ)

n∑

i=1

1−

n∑

i=1

d(vi)−∆δ

n∑

i=1

1

d(vi)

(∆ + δ)M2

1 (G)−M
3

1 (G)− 2m∆δ ≥ (∆ + δ)n− 2m−∆δID(G).

Substituting the above inequality into (2.1) completes the proof and the equality
holds if and only if G is regular. ✷

Theorem 2.6. Let G be any simple graph with n vertices and m edges. Then

χ2(G) ≤ 2M1
2 (G) + (∆+ δ + 1)M2

1 (G) − (2m− n∆)δ − 2m∆(δ + 1) (2.8)

equality if and only if G is regular or bidegreed graph.

Proof. The proof follows by using similar arguments as in the proof of Theorem
2.5 with setting mi = d(vi) and ni = 1. ✷
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Remark 2.7. The upper bounds (2.6) and (2.8) are incomparable. For the graphs
H3 and L(H3) depicted in Figure 1, (2.6) is better than (2.8) and for the graphs
H3 ×H3, H3 × L(H3) and L(H3) × L(H3), (2.8) is better than (2.6), as shown in
the next table

H3 L(H3) H3 ×H3 H3 × L(H3) L(H3)× L(H3)
n 7 9 49 63 81
m 9 21 162 378 882

χ2(G) 414.0 2136 86148.0 443232.0 2283840.0
(2.6) 419.333 2767.8 145902.778 746861.4 3666048.84
(2.8) 418.0 2790.0 145756.0 745236.0 3659652.0

3. Lower bounds for χ2(G)

Zhou and Trinajstić [21] obtained the following lower bound for χ2(G).

Theorem 3.1. [21] Let G be a simple graph G with m ≥ 1 edges. Then

χ2(G) ≥
M2

1 (G)
2

m
(3.1)

equality holds if and only if d(u) + d(v) is a constant for any edge uv.

Theorem 3.2. Let G be a simple graph with n vertices and m edges, then

χ2(G) ≥ 4M1
2 (G) (3.2)

equality holds if and only if G is regular.

Proof. For any two non-negative real numbers a, b we have 1
4 (a+ b)

2
≥ ab. Thus,

by fixing a = d(u) and b = d(v) for uv ∈ E(G), then adding over all the edges of
G yields

1

4

∑

uv∈E(G)

(d(u) + d(v))2 ≥
∑

uv∈E(G)

d(u)d(v),

which completes the proof, and the equality holds if and only if G is regular. ✷

Theorem 3.3. Let G be a simple graph with no isolated vertices. Then

χ2(G) ≥ 2M1
2 (G) +

1

2m

(

M2
1 (G)

2
+ 2mID(G)− n2

)

(3.3)

equality holds if and only if G is regular.

Proof. Consider w1, w2, . . . , wn be the non-negative weights, then we have the
weighted version of Cauchy-Schwartz inequality

n
∑

i=1

wia
2
i

n
∑

i=1

wib
2
i ≥

(

n
∑

i=1

wiaibi

)2

.
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Since wi is non-negative, we assume that wi = mi − ni such that mi ≥ ni ≥ 0.
Thus

n
∑

i=1

mia
2
i

n
∑

i=1

mib
2
i −

(

n
∑

i=1

miaibi

)2

≥

n
∑

i=1

nia
2
i

n
∑

i=1

nib
2
i −

(

n
∑

i=1

niaibi

)2

≥ 0.

(3.4)

Set mi = d(vi), ni = 1
d(vi)

, ai = d(vi) and bi = 1, for all i = 1, 2, · · · , n in the

above, we get

n
∑

i=1

d(vi)
3

n
∑

i=1

d (vi)−

(

n
∑

i=1

d(vi)
2

)2

≥

n
∑

i=1

d (vi)

n
∑

i=1

1

d (vi)
−

(

n
∑

i=1

1

)2

.

By combining the above inequality with (2.1), we complete the proof and the
equality holds if and only if G is regular. ✷

Theorem 3.4. Let G be a simple graph with n vertices and m edges, then

χ2(G) ≥ 2M1
2 (G) +

1

2m

(

M2
1 (G)

2
+ nM2

1 (G)− 4m2
)

(3.5)

equality holds if and only if G is regular.

Proof. The proof follows from the same terminology of Theorem 3.4 by choosing
mi = d(vi), ni = 1, ai = d(vi) and bi = 1, for all i = 1, 2, · · · , n. ✷

Remark 3.5. For every simple graph G, the lower bound in (3.5) is always better
than the lower bound in (3.3). For this, we have to show that

nM2
1 (G) − 4m2

≥ 2mID(G)− n2 (3.6)

by fixing ai = d(vi), bi = 1,mi = 1 and ni = d(vi)
−1 in (3.4), we achieve our

required claim.

Remark 3.6. The lower bounds in (3.1), (3.2) and (3.3) are not comparable.

H4 L(H4) L(L(H4))
χ2(G) 612 3564 43764
(3.1) 588 3499.2 43201.09
(3.2) 576 3456 43296
(3.3) 583.875 3477.867 43248.65
(3.5) 589.5 3482.4 43255.91

In [21], the following lower and upper bound for χ2(G)+χ2(G) was established:

n(n− 1)3

2
≤ χ2(G) + χ2(G) ≤ 2n(n− 1)3

By using Theorems 2.5 and 3.4, we deduce a finer bound for χ2(G) + χ2(G).
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Theorem 3.7. Let G be a graph of order n with m edges. Then

(i) χ2(G) + χ2(G) ≤ 2n(n− 1)3 − 12m(n− 1)2 + 4m2

+ (5n− 6) [(∆ + δ)(2m− n) + 2m−∆δ(n− ID(G))]

equality holds if and only if G is regular.

(ii) χ2(G) + χ2(G) ≥ 2n(n− 1)3 − 12m(n− 1)2 + 4m2

+
(5n− 6)

n

[

2mID(G) + 4m2
− n2

]

equality holds if and only if G is regular.

Proof. One of the present author with Song [17] have established the following
identity

M3
1 (G) +M3

1 (G) = n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M2
1 (G).

From [7], we have

M1
2 (G) +M1

2 (G) =
n(n− 1)

3

2
− 3m(n− 1)2 + 2m2 +

(

n−
3

2

)

M2
1 (G).

By using the above results in Lemma 2.1, we get

χ2(G) + χ2(G) = 2n(n− 1)3 − 12m(n− 1)2 + 4m2 + (5n− 6)M2
1 (G).

By setting A = ∆, a = δ, xi = d(vi), yi = mi = 1 and ni = d(vi)
−1 in (2.7) and

using (3.6) in the above relation, we get the required result. ✷
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