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Wijsman λ−statistical convergence of interval numbers

Ayhan Esi, N.L.Braha and Agim Rushiti

abstract: In this paper we introduce and study the concepts of Wijsman λ−statistical
convergence and Wijsman strong λ−statistical convergence of sequences for interval
numbers and prove some inclusion relations.
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1. Introduction

The notion of statistical convergence was introduced by Fast [10] and Schoen-
berg [19] independently. A lot of developments have been made in this areas after
the works of S̆alát [18] and Fridy [11]. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic
theory and number theory. In the recent years, generalization of statistical conver-
gence have appeared in the study of strong integral summability and the structure
of ideals of bounded continuous functions on Stone-C̆ech compactification of the
natural numbers.

A real or complex number sequence x = (xk) is said to be statistically convergent
to L if for every ε > 0

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write S − limx = L or xk → L(S) and S denotes the set of all
statistically convergent sequences.
The generalized de la Vallée-Poussin mean is defined by

tn (x) =
1

λn

∑

k∈In

xk

where In = [n− λn + 1, n] . A sequence x = (xk) is said to be (V ,λ)−summable
to number L [13] if tn (x) → L as n → ∞. If λn = n, then (V, λ)−summability
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reduces to (C,1)-summability.

Mursaleen [14] defined λ−statistically convergent sequence as follows: A se-
quence x = (xk) is said to be λ−statistically convergent to the number L if for
every ε > 0

lim
n→∞

1

λn

|{k ∈ In : |xk − L| ≥ ε}| = 0.

Let Sλ denotes the set of all λ−statistically convergent sequences. If λn = n, then
Sλ is the same as S.

Let (X,ρ) be a metric space. For any point x ∈ X and any non-empty subset
A ⊂ X , the distance from x to A is defined by

d(x,A) = inf
y∈A

ρ (x, y) .

For any non-empty closed subsets A,Ak ⊂ X (k ∈ N) , we say that the sequence
(Ak) is Wijsman convergent to A if limk d(x,Ak) = d(x,A) for each x ∈ X. In this
case we write W − limAk = A. The concepts of Wijsman statistical convergence
and boundedless for the sequence (Ak) were given by Nuray and Rhoades [17] as
follows: Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X

(k ∈ N) , we say that the sequence (Ak) is Wijsman statistical convergent to A if
the sequence (d(x,Ak)) is statistically convergent to d(x,A), i.e., for ε > 0 and for
each x ∈ X

lim
n

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case, we write st − limk Ak = A or Ak → A (WS). The sequence (Ak) is
bounded if supk d(x,Ak) < ∞ for each x ∈ X. The set of all bounded sequences of
sets denoted by L∞.

2. Preliminaries

A set consisting of a closed interval of real numbers x such that a ≤ x ≤ b

is called an interval number. A real interval can also be considered as a set.
Thus we can investigate some properties of interval numbers, for instance arith-
metic properties or analytical properties. We denote the set of all real valued
closed intervals by IR. Any elements of IR is a closed interval and denoted by
A. That is A = {x ∈ R : a ≤ x ≤ b}. An interval number A is a closed sub-
set of real numbers [19]. Let xl and xr be first and last points of A interval
number, respectively. For A,B ∈ IR, we have A = B ⇔ x1l = x2l , x1r =
x2r . A + B = {x ∈ R : x1l + x2l ≤ x ≤ x1r + x2r} , and if α ≥ 0, then αA =
{x ∈ R : αx1l ≤ x ≤ αx1r} and if α < 0, then αA = {x ∈ R : αx1r ≤ x ≤ αx1l} ,

A ·B = {x ∈ R : min {x1l · x2l , x1l · x2r , x1r · x2l , x1r · x2r} ≤ x

≤ max {x1l · x2l , x1l · x2r , x1r · x2l , x1r · x2r}} .
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The set of all interval numbers IR is a complete metric space defined by

d
(

A,B
)

= max {|x1l − x2l | , |x1r − x2r |} [7] .

In the special case A = [a, a] and B = [b, b] , we obtain usual metric of R.
Let us define transformation f : N → IR by k → f (k) = A, A =

(

Ak

)

. Then

A =
(

Ak

)

is called sequence of interval numbers. The Ak is called kth term of

sequence A =
(

Ak

)

. wi denotes the set of all interval numbers with real terms and
the algebraic properties of wi can be found in [2].

Recently, Şengönül and Eryılmaz [20], Esi [3,4,5] Esi and Braha [6], Esi and
Yasemin [7] and Esi and Hazarika [8] introduced and studied some properties of
interval numbers. After then, Esi and Hazarika [9], Hazarika and Esi [12] and
Hazarika et.al [13] studied different properties of Wijsman convergent sequences.
Chiao [1] introduced sequence of interval numbers and defined usual convergence
of sequences of interval numbers.

Now we give the definition of convergence of interval numbers:

Definition 2.1. [15] A sequence A =
(

Ak

)

of interval numbers is said to be

convergent to the interval number Ao if for each ε > 0 there exists a positive integer
ko such that d

(

Ak, Ao

)

< ε for all k ≥ ko and we denote it by limk Ak = Ao.

Thus, limk Ak = Ao ⇔ limk xkl
= xol and limk xkr

= xor .

3. Main results

In this paper, we introduce and study the concepts of Wijsman strongly λ−
convergence and Wijsman λ−statistically convergence for interval numbers.

Definition 3.1. Let λ = (λn) be a non-decreasing sequence of positive numbers
such that λn+1 ≤ λn+1, λ1 = 1, λn → ∞ as n → ∞ and In = [n− λn + 1, n]. The
sequence A =

(

Ak

)

of interval numbers is said to be Wijsman strongly λ−summable

if there is an interval number Ao such that

lim
n

1

λn

∑

k∈In

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ = 0.

In which case we say that the sequence A =
(

Ak

)

of interval numbers is said to

be Wijsman strongly λ−summable to interval number Ao. If λn = n, then strongly
λ−summable reduces to Wijsman strongly Cesaro summable defined as follows:

lim
n

1

n

n
∑

k=1

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣ = 0.

Definition 3.2. A sequence A =
(

Ak

)

of interval numbers is said to be Wijsman

λ−statistically convergent to interval number Ao if for every ε > 0

lim
n

1

λn

∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣ ≥ ε
}
∣

∣ = 0.
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In this case we write sλ− limAk = Ao. If λn = n, then Wijsman λ−statistically
convergence reduces to Wijsman statistically convergence as follows:

lim
n

1

n

∣

∣

{

k ≤ n :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ ≥ ε
}∣

∣ = 0.

In this case we write s− limAk = Ao.

Theorem 3.3. Let A =
(

Ak

)

and B =
(

Bk

)

be sequences of interval numbers.

(i) If sλ − limAk = Ao and α ∈ R, then sλ − limαAk = αAo.

(ii) If sλ − limAk = Ao and sλ − limBk = Bo, then sλ − lim
(

Ak +Bk

)

=

Ao +Bo.

Proof: (i) Let α ∈ R. We have d
(

αAk, αAo

)

= |α| d
(

Ak, Ao

)

. For a given ε > 0

1

λn

∣

∣

{

k ∈ In :
∣

∣d
(

αAk, x
)

−d
(

αAo, x
)∣

∣ ≥ ε
}∣

∣ ≤ 1

λn

∣

∣

∣

∣

{

k ∈ In : d
(

Ak, Ao

)

≥ ε

|α|

}
∣

∣

∣

∣

.

Hence sλ − limαAk = αAo.

(ii) Suppose that sλ − limAk = Ao and sλ − limBk = Bo. We have

d
(

Ak + Bk, Ao +Bo

)

≤ d
(

Ak, Ao

)

+ d
(

Bk, Bo

)

.

Therefore given ε > 0, we have

1

λn

∣

∣

{

k ∈ In : d
(

Ak +Bk, Ao +Bo

)

≥ ε
}∣

∣

≤ 1

λn

∣

∣

{

k ∈ In : d
(

Ak, Ao

)

+ d
(

Bk, Bo

)

≥ ε
}∣

∣

≤ 1

λn

∣

∣

∣

{

k ∈ In : d
(

Ak, Ao

)

≥ ε

2

}
∣

∣

∣
+

1

λn

∣

∣

∣

{

k ∈ In : d
(

Bk, Bo

)

≥ ε

2

}
∣

∣

∣
.

Thus, sλ − lim
(

Ak +Bk

)

= Ao +Bo. ✷

Theorem 3.4. If an interval sequence A =
(

Ak

)

is Wijsman strongly λ−summable

to interval number Ao, then it is Wijsman strongly λ− Cauchy summable.

Proof: Suppose that A =
(

Ak

)

is Wijsman strongly λ−summable to interval

number Ao. Then it follows that

1

λn

∑

k∈In

|d(Ak, x) − d(A0, x)| <
ǫ

2
,

and if N ∈ N is chosen such that

1

λn

∑

k∈In

|d(AN , x)− d(A0, x)| <
ǫ

2
.
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Then we get that:
1

λn

∑

k∈In

|d(Ak, x) − d(AN , x)| < ǫ,

for all n ≥ n0. ✷

Theorem 3.5. If an interval sequence A =
(

Ak

)

is Wijsman λ−statistically con-

vergent to interval number Ao, and d(Ak, x) = d(Bk, x) starting from some k = k0,

then it follows that B =
(

Bk

)

is Wijsman strongly λ−statistically convergent to

interval number Ao.

Proof: Let us consider that d(Ak, x) = d(Bk, x) starting from some k = k0. And
sλ − limk Bk = A0.

Then for each ǫ > 0 and for every n we have:

{

k ∈ In : |d(Ak, x)− d(A0, x)| ≥ ǫ
}

⊂
{

k ∈ In : d(Ak, x) 6= d(Bk, x)
}

∪
{

k ∈ In : |d(Bk, x)− d(A0, x)| ≥ ǫ
}

.

From fact that sλ − limBk = A0, it follows that set
{

k ∈ In : |d(Bk, x)− d(A0, x)|
≤ ǫ} has finite numbers which are not depended from n, hence

∣

∣

{

k ∈ In : |d(Bk, x)− d(A0, x)| ≤ ǫ
}∣

∣

λn

→ 0, n → ∞.

On the other hand, from d(Ak, x) = d(Bk, x) for almost all k, we get:

∣

∣

{

k ∈ In : d(Ak, x) 6= d(Bk, x)
}
∣

∣

λn

→ 0, n → ∞.

From last two relations follows that:
∣

∣

{

k ∈ In : |d(Ak, x)− d(A0, x)| ≥ ǫ
}
∣

∣

λn

→ 0, n → ∞.

✷

Theorem 3.6. Under conditions that n
λn

→ 0 as n → ∞, then space of all Wijsman
strongly λ− convergent sequences is a normal space.

Proof: Let us suppose that are given two sequence of intervals: (Bn) and (An),
such that |Bn| ≤ |An| and (An) is Wijsman strongly λ− convergent sequence. Then
it follows that:

1

λn

n
∑

k=1

|d(Ak, x)− d(A0, x)| → 0, n → ∞.
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On the other hand:

1

λn

n
∑

k=1

|d(Bk, x)− d(B0, x)| ≤
1

λn

n
∑

k=1

|d(Bk, B0)| ≤
1

λn

n
∑

k=1

|d(Bk, 0) + d(B0, 0)|

=
1

λn

n
∑

k=1

||Bk|+ |B0|| ≤
1

λn

n
∑

k=1

||Ak|+ |A0|| =
1

λn

n
∑

k=1

|d(Ak, 0) + d(A0, 0)| ≤

1

λn

n
∑

k=1

|d(Ak, x)− d(A0, x)|+
2n(|x|+ d(A, x))

λn

→ 0, n → ∞.

✷

Theorem 3.7. The space of all interval sequences A =
(

Ak

)

which are Wijsman

strongly λ−summable to interval number Ao, is not sequence algebra.

Proof: Let us consider the following example: Let (An) =
[

− 1
n
, 1
n

]

and (Bn) =
[

− 1
n
, 1
n

]

. After some calculations it follows that (An), (Bn) are Wijsman strongly

λ− summable sequences. But their product (Cn) = (An) · (Bn), is not. Really,

1

λn

n
∑

k=1

|d(Ck, 0)− d(C0, 0)| =
1

λn

n
∑

k=1

||Ck| − |C0|| =
1

λn

n
∑

k=1

||Ck|| =

1

λn

n
∑

k=1

1

k2
=

n(n+ 1)(2n+ 1)

6λn

→ ∞, n → ∞.

✷

In the following theorems, we exhibit some connections between Wijsman stron-
gly λ−summable and Wijsman λ−statistically convergence of sequences of interval
numbers.

Theorem 3.8. If an interval sequence A =
(

Ak

)

is Wijsman strongly λ−summable

to interval number Ao, then it is Wijsman λ−statistically convergent to interval
number Ao. Conversely is not true.

Proof: Let ε > 0. Since
∑

k∈In

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣ ≥
∑

k∈In
|d(Ak,x)−d(Ao,x)|≥ε

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣

≥
∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣ ≥ ε
}
∣

∣ ε

if A =
(

Ak

)

is Wijsman strongly λ− summable to Ao, then it is Wijsman λ−
statistically convergent to Ao. To prove conversely we will show this by following
example.
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Example 3.9. Let A =
(

Ak

)

defined as follows:

Ak =

{

1, if n-
[√

λn

]

≤ k ≤ n, k=1,2,3,...
0, otherwise

.

Then 1
λn

∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

0, x
)
∣

∣ ≥ ε
}
∣

∣ ≤ [
√
λn]
λn

→ 0 as n→ ∞ i.e.,
(

Ak

)

is Wijsman λ−statistically convergent to interval number 0. But 1
λn

∑

k∈In
∣

∣d
(

Ak, x
)

− d
(

0, x
)
∣

∣ → 1
2 6= 0, hence

(

Ak

)

is not Wijsman strongly λ−summable
to 0.

✷

Theorem 3.10. If A =
(

Ak

)

∈ L∞ and A =
(

Ak

)

is Wijsman λ−statistically

convergent to interval number Ao, then it is Wijsman strongly λ−summable to Ao

and hence A =
(

Ak

)

is Wijsman strongly Cesaro summable to Ao, where L∞ =
{

A =
(

Ak

)

: supk d
(

Ak, Ao

)

< ∞
}

.

Proof: Suppose that A =
(

Ak

)

∈ L∞ and Wijsman λ−statistically convergent to

interval number Ao. Since A =
(

Ak

)

∈ L∞, we write d
(

Ak, Ao

)

≤ A for all k ∈ N.

Given ε > 0, we have

1

λn

∑

k∈In

∣

∣d
(

αAk, x
)

− d
(

αAo, x
)∣

∣ =
1

λn

∑

k∈In
|d(Ak,x)−d(Ao,x)|≥ε

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣

+
1

λn

∑

k∈In
d(Ak,x)−d(Ao,x)<ε

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣

≤ A

λn

∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ ≥ ε
}∣

∣+ ε

which implies that A =
(

Ak

)

is λ− strongly λ−summable to Ao. Further we have

1

n

n
∑

k=1

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣

=
1

n

n−λn
∑

k=1

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣+
1

n

∑

k∈In

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣

≤ 1

λn

n−λn
∑

k=1

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣+
1

λn

∑

k∈In

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣

≤ 2

λn

∑

k∈In

∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ .

Hence A =
(

Ak

)

is Wijsman strongly Cesaro summable to Ao. ✷
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Theorem 3.11. If a interval sequence A =
(

Ak

)

is Wijsman statistically conver-

gent to interval number Ao and lim infn
λn

n
> 0 then it is Wijsman λ−statistically

convergent to Ao.

Proof: For given ε > 0, we have

{

k ≤ n :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ ≥ ε
}

⊃
{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ ≥ ε
}

.

Therefore

1

n

∣

∣

{

k ≤ n :
∣

∣d
(

Ak, x
)

−d
(

Ao, x
)∣

∣ ≥ ε
}∣

∣ ≥ 1

n

∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

−d
(

Ao, x
)∣

∣ ≥ ε
}∣

∣

≥ λn

n
.
1

λn

∣

∣

{

k ∈ In :
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣ ≥ ε
}∣

∣ .

Taking limit as n → ∞ and using lim infn
λn

n
> 0, we get that A =

(

Ak

)

is Wijsman

λ−statistically convergent to Ao. ✷

Finally we conclude this paper by stating a definition which generalizes Defini-
tion 3.1 of this section and two theorems related to this definition.

Definition 3.12. Let λ = (λn) be a non-decreasing sequence of positive numbers
such that λn+1 ≤ λn + 1, λ1 = 1, λn → ∞ as n → ∞ and In = [n− λn + 1, n]
and p ∈ (0,∞). The sequence A =

(

Ak

)

of interval numbers is said to be Wijsman

strongly λp−summable if there is an interval number Ao such that

lim
n

1

λn

∑

k∈In

[
∣

∣d
(

Ak, x
)

− d
(

Ao, x
)
∣

∣

]p
= 0.

In this case we say that the sequence A =
(

Ak

)

of interval numbers is said to be

Wijsman strongly λp−summable to interval number Ao. If λn = n, then Wijsman
strongly λp−summable reduces to Wijsman strongly p−Cesaro summable defined
as follows:

lim
n

1

n

n
∑

k=1

[∣

∣d
(

Ak, x
)

− d
(

Ao, x
)∣

∣

]p
= 0.

The following theorems is similar to that of Theorem 3.8 and Theorem 3.10, so
we state the theorems without proof.

Theorem 3.13. If an interval sequence A =
(

Ak

)

is Wijsman strongly λp−
summable to interval number Ao, then it is Wijsman λ−statistically convergent
to interval number Ao.

Theorem 3.14. If A =
(

Ak

)

∈ L∞ and A =
(

Ak

)

is Wijsman λ−statistically

convergent to interval number Ao, then it is Wijsman strongly λp−summable to Ao

and hence A =
(

Ak

)

is Wijsman strongly p−Cesaro summable to Ao..
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